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Abstract: Neuregulins (NRGs) are a family of epidermal growth factor-related proteins, acting
on tyrosine kinase receptors of the ErbB family. NRGs play an essential role in the development
of the nervous system, since they orchestrate vital functions such as cell differentiation, axonal
growth, myelination, and synapse formation. They are also crucially involved in the functioning of
adult brain, by directly modulating neuronal excitability, neurotransmission, and synaptic plasticity.
Here, we provide a review of the literature documenting the roles of NRGs/ErbB signaling in the
modulation of synaptic plasticity, focusing on evidence reported in the hippocampus and midbrain
dopamine (DA) nuclei. The emerging picture shows multifaceted roles of NRGs/ErbB receptors,
which critically modulate different forms of synaptic plasticity (LTP, LTD, and depotentiation)
affecting glutamatergic, GABAergic, and DAergic synapses, by various mechanisms. Further, we
discuss the relevance of NRGs/ErbB-dependent synaptic plasticity in the control of brain processes,
like learning and memory and the known involvement of NRGs/ErbB signaling in the modulation
of synaptic plasticity in brain’s pathological conditions. Current evidence points to a central role of
NRGs/ErbB receptors in controlling glutamatergic LTP/LTD and GABAergic LTD at hippocampal
CA3–CA1 synapses, as well as glutamatergic LTD in midbrain DA neurons, thus supporting
that NRGs/ErbB signaling is essential for proper brain functions, cognitive processes, and complex
behaviors. This suggests that dysregulated NRGs/ErbB-dependent synaptic plasticity might contribute
to mechanisms underlying different neurological and psychiatric disorders.
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1. Introduction

Neuregulins (NRGs) are a family of neurotrophic factors, which are essential for proper development
of the peripheral and central nervous system, as well as adult brain homeostasis. NRGs were discovered
more than 25 years ago, independently by four groups that identified a protein, now recognized as the
first member of the NRGs family, neuregulin 1 (NRG1), as a factor able to activate ErbB2 tyrosine kinase
receptors (called heregulin or neu differentiation factor (NDF)) [1–3], to induce proliferation of Schwann
cells (called glial growth factor (GGF)) [4–8], or to stimulate the synthesis of acetylcholine receptors at
developing neuromuscular junctions (NMJ) (called acetylcholine receptor inducing activity (ARIA)) [9].
Such a diverse array of names and corresponding functions of NRG1 are indicative of the versatility and
importance of NRGs in human brain. Actually, far from their first identification, now it is recognized
that NRGs, by acting on ErbB tyrosine kinases (ErbB2, ErbB3, and ErbB4), are crucial developmental
factors, mediating neural differentiation, neuronal guidance, myelination, synapse formation, and NMJ
development, as well as they represent important modulators of neuronal excitability, neurotransmission,
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and synaptic plasticity in adult brain. By these multifaceted roles, NRGs/ErbB signaling controls
key physiological neural functions, affecting learning and memory processes and complex behaviors,
and its dysfunction is emerging as a pathological feature in different neurological and psychiatric
disorders, including schizophrenia, bipolar disorder, autism spectrum disorders, Alzheimer’s disease,
major depressive disorder, addiction, Parkinson’s disease, and peripheral and central nervous system
injury diseases.

In this review, we will provide an overview of NRGs/ErbB roles in the regulation of synaptic
transmission, by focusing on its contribution to the control of synaptic plasticity in the hippocampus
and midbrain dopamine (DA) nuclei. Available evidence supports diverse mechanisms engaged by
NRGs/ErbB receptors in the regulation of long term modifications of synaptic transmission in these
brain areas, depicting a complex scenario involving either presynaptic or postsynaptic NRGs-mediated
mechanisms, which affect glutamatergic, GABAergic, and DAergic transmission.

2. Neuregulins and ErbB Receptors: Subtypes and Signaling Pathways

2.1. Neuregulins

Neuregulins (NRGs) are a family of epidermal growth factor (EGF)-related proteins encoded
by six genes (Nrg1–Nrg6). Each gene, by specific controlled transcription and splicing mechanisms,
typically produces many mRNA and protein isoforms all expressing a shared domain, the EGF-like
domain, required for signaling activation. Neuregulin 1 (NRG1) is the most extensively studied
and well characterized member of the NRGs family. The Nrg1 gene produces six different types
(NRG1 I–VI) and 33 spliced isoforms, due to specific uses of six different transcriptional initiation sites
and by alternative splicing [10–14]. NRG1 types (I–VI) are identified based on differences in the N
terminal domain, besides the presence of immunoglobulin (Ig)-like domains, and/or a cysteine-rich
domain (CRD) (Figure 1A). NRG1 type I, II, IV, and V isoforms have the Ig domain, which contributes
to distinct interactions with extracellular matrix components (e.g., heparan-sulfate proteoglycans
(HSPGs)) and defines the distance and concentration over which these growth factors act [15]. NRG1
type III is the only presenting a CRD, which serves as a secondary transmembrane domain, and thus is
a membrane-anchored isoform, acting in an autocrine manner.

NRG1 type I is also known as heregulin, Neu differentiation factor (NDF), or acetylcholine receptor
inducing activity (ARIA) [1,2], whereas types II and III have been identified as glial growth factor
(GGF) [6], and sensory and motor neuron derived factor (SMDF), respectively [16], based on the first
function/cellular population for which they were firstly identified.

NRG1 types are widely and diffusely expressed in both central and peripheral nervous system,
as well as in heart, liver, stomach, lung, kidney, spleen, and skin. Human brain areas showing higher
NRG1 expression are prefrontal and cingulate cortex, hippocampus, habenula, amygdala, substantia
nigra, dorsal and ventral striatum (caudate, putamen, and nucleus accumbens), hypothalamus, spinal
cord, and cerebellum [14,17]. All six types of NRG1 are detectable in brain, but the abundance of each
form varies significantly, being also related to the developmental period and neuronal activity [14].
In general, NRG1 type III appears to be the predominant brain type of NRG1, while type I and II NRG1
are less expressed, similar to type IV, which, however, is brain specific.

The Nrg2 gene produces two types of NRG2s, with different EGF-like domains, termed NRG2α
and NRG2β, respectively, and at least 10 isoforms due to alternative splicing [18,19]. NRG2 is expressed
in the developing nervous system and is also found in the embryonic heart, lung, and bladder [19,20].
In adult brain, NRG2′s highest expression is in hippocampal dentate gyrus (granule cells), cerebellum,
and olfactory bulbs [18–20], whereas weaker expression has been reported in the neocortex, hippocampal
CA1–CA3 neurons, and striatum [21].

NRG3 is present in different splicing forms, up to 15 [22–25], and is mainly diffused in the brain,
either in the embryonic or adult stage. NRG3 has been detected in spinal cord and numerous brain
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regions, including anterior olfactory nucleus, cerebral cortex, piriform cortex, vestibular nuclei, medial
habenula, hypothalamus, thalamus, deep cerebellar nuclei, and hippocampus [26].

NRG4 exists in five isoforms [27,28]. Different from the other NRGs, NRG4 expression appears
more confined to peripheral organs, being expressed at high levels in the pancreas, in the skeletal
muscle, and in the brown adipose tissue, with its expression in adult brain considered negligible [27,29].
Recently, however, NRG4 expression has been reported in the developing brain, in various brain areas
like cortex, hippocampus, cerebellum, olfactory bulb, midbrain, and brain stem [30].

NRG5 is also known as tomoregulin or transmembrane protein with EGF-like and two follistatin-
like domains 1 (TMEFF1) [31,32]. NRG5 has five spliced isoforms [27,28], and it is highly expressed in
several brain areas, olfactory bulb, amygdala, different regions of cortex (entorhinal, cingulate, motor,
somatosensory cortex), various areas of hippocampus (CA3, CA1, and subiculum), locus coeruleus,
substantia nigra pars compacta (SNpc), hypothalamic nuclei (ventromedial and paraventricular),
and cerebellum [33].

NRG6 is also called neuroglycan C (NGC), or chondroitin sulfate proteoglycan 5 (CSPG5),
or chicken acidic leucine rich EGF-like domain containing brain protein (CALEB) [32,34]. In adult
human brain, the strongest NRG6 expression has been reported in the striatum (caudate and putamen
nuclei), hippocampus, amygdala, and cerebral cortex, whereas weaker expression has been reported in
substantia nigra, thalamus, pons, medulla oblongata, and cerebellum [35].

2.2. NRGs Processing

NRGs are synthesized as precursors, called pro-NRGs, being the active forms produced following
a proteolytic shedding. Different proteases have been associated with the NRGs’ proteolysis,
mainly belonging to the “A disintegrin and metalloprotease” (ADAM) subfamily of the matrix
metalloproteinases (MMPs), like ADAM9, ADAM10, ADAM12, ADAM15 (also called metargidin),
ADAM19 (also called meltrin-β), and ADAM17 (also called tumor necrosis factor-α converting
enzyme (TACE-1)). In addition, NRGs are processed by the β-amyloid converting enzyme (BACE-1),
a γ-secretase that is better known for its involvement in the synthesis of β-amyloid peptides. Different
NRGs can have distinct mechanisms regulating their maturation and release. More detailed information
is available for NRG1. Almost all types of NRG1 are secreted as soluble factors, released after the
conversion from pro-NRG1 to mature NRG1 forms, thus acting in a paracrine manner (Figure 1B).
The diffusion and specificity of action on distinct cellular populations might be also allowed by type
specific domains (Ig-like or additional spacer domain, as well as differences in N terminus). NRG1
type III, also after its conversion to the mature form, remains attached to the cell membrane due
to its CRD, and thus, it acts in an autocrine manner, signaling only to immediately neighboring
cells [13,36] (Figure 1B). Regarding peculiar mechanisms that might control the synthesis of specific
NRGs, it has been reported that NRG1 types I and II or NRG2 accumulate as pro-forms on cell bodies
and are released by MMPs, in an activity dependent manner (e.g., following NMDAR activation),
whereas NRG1 type III and NRG3 seem to be constitutively processed by BACE and accumulate on
axons where they interact with ErbB in juxtacrine mode [37].

Production of mature NRGs, by ectodomain shedding, occurs in response to diverse stimuli,
and possibly in a type specific and area related way. NRG1 levels are increased by an enhancement of
neuronal activity, as the one prompted during epileptic seizures in a rat model of epilepsy induced
by kainic acid administration, as well as by milder neuronal activities, as induced following forced
locomotor activity [38]. Interestingly, neuronal activity seems to shape in a different way the expression
of distinct NRG1 types/isoforms, since epileptic seizures appear to not alter NRG1 type II and III
levels, while strongly increasing NRG1 type I expression [14]. Increased expression of NRG1 type
II after seizure insurgence appears instead in non-neuronal cells. In this regard, a depolarizing
treatment increases NRG1 type I expression also in astrocytes from cellular cultures, thus suggesting
that brain activity might differently regulate the levels of distinct NRG1 isoforms in diverse cellular
populations/brain regions, thus contributing to compartmentalized NRGs related actions.
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Moreover, production of soluble NRGs, by ectodomain shedding, occurs in response to other
stimuli, like the activation of G protein coupled receptors (GPCR) or ionotropic receptors, through
a process that ultimately leads to ErbB transactivation. Such mechanisms involve the activation of
MMPs and/or ADAM-dependent shedding of pro-NRGs as a consequence of GPCRs activation, such as
angiotensin II receptors, protease-activated receptor 1 (PAR-1), as well as NMDAR stimulation [37,39].
Interestingly, the interplay between NRGs and proteases is bidirectional. Indeed, it has been seen that
NRG1 increases the expression of MMP-9, a metalloproteinase critically involved in the regulation of
extracellular matrix regulation [40].
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Figure 1. NRG1 types and synthesis. (A) Diagram of structural differences of various NRG1 types.
(B) Synthesis of NRGs’ mature forms is induced by different ADAMs and MMPs, with the release of
soluble forms (as for example for NRG1 type I) or the exposure of the membrane-anchored EGF-like
domain (as for NRG1 type III).

2.3. ErbB Receptors

NRGs signal by activating tyrosine kinases receptors of the ErbB family. Four ErbB subtypes
(ErbB1–4) have been identified, of which ErbB2, ErbB3, and ErbB4 mediate NRGs signaling, whereas
ErbB1, also known as the epidermal growth factor (EGF) receptor, is activated by EGF. Upon NRGs
binding, ErbB receptors undergo a structural/conformational change in the juxta-membrane region,
which potentiates the affinity for other ErbB subunits, thus promoting the formation of homo- and/or
hetero-dimers of functional ErbB receptors.

Each ErbB subunit displays a peculiar profile, regarding ligand binding properties and affinities
or catalytic activity, which confer them distinct abilities in the possibility to form homodimers or
heterodimers. ErbB4 represents the only autonomous subunit, since it either expresses NRGs binding
sites or has active kinase domains, thus possibly forming both homodimers and heterodimers of
ErbB receptors. ErbB3 has ligand binding sites, but does not express an active kinase domain [41],
thus, it cannot form homodimers, nor directly phosphorylate other ErbB receptors, but can associate
with other ErbB subunits (ErbB2 and ErbB4) in the formation of heterodimers. ErbB2, instead, has
an active kinase domain, but does not bind NRGs or other identified ligands (being for this still
considered an orphan receptor). Despite this, ErbB2 represents the preferred dimerization partner
among all ErbB receptors [42], and dimerization with ErbB2 strongly increases NRGs’ binding affinity
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for ErbB3 and ErbB4 [43,44]. Hence, NRGs actions are mediated by heterodimers ErbB2/ErbB3,
ErbB2/ErbB4, and ErbB3/ErbB4, as well as ErbB4/ErbB4 homodimers.

Different NRGs display specific profiles of affinity for different ErbB subunits. NRG1 and NRG2
bind both ErbB3 and ErbB4, thus possibly activating all ErbB dimers (ErbB2/ErbB3, ErbB2/ErbB4,
ErbB3/ErbB4, ErbB4/ErbB4), whereas NRG3 and NRG4 only bind to ErbB4; thus, they signal through
ErbB4/ErbB4 and/or ErbB2/ErbB4 dimers. Notably, NRG3 has a much higher affinity for ErbB4
than any other NRGs [45]. Despite NRGs are not ligands for ErbB1, it can form heterodimers with
ErbB4 [46–48], thus implying that NRGs signaling can also be mediated by ErbB1/ErbB4. However,
evidence suggests that the activation of ErbB1/ErbB4 causes significantly different cellular effects
with respect to ErbB1/ErbB1 homodimers (which mediate specific EGF effects), hence still implying
segregated functions of EGF and NRGs in neurons [13,46,49–51].

2.4. NRG/ErbB Signaling

In the canonical ErbB signaling (Figure 2A), NRGs binding induces a conformational change of
ErbB subunits fostering trans-phosphorylation and the consequent recruitment of proteins containing
phosphotyrosine binding or Src homology-2 (Shc-2) domains, which act as adaptor/effector molecules,
triggering the activation of multiple signaling pathways. Intracellular pathways commonly activated
by NRGs, downstream of ErbB receptors, are PI3K-Akt-mTOR-S6K and Ras-Raf-MEK-ERK [13].
Other NRGs/ErbB-activated pathways include the PLC-PKC pathway, as well as kinases like c-Abl,
JNK, CDK5, Kyn, and Pyk2 [52–54]. NRGs-induced effects that involve protein synthesis and
cause neuronal growth and survival are mainly mediated by the stimulation of PI3K-Akt-mTOR
and glycogen synthase 3 kinase (GS3K), activated downstream of Akt. Phosphatydil-inositole-3
kinase (PI3K) catalyzes the phosphorylation of phosphatidylinositol 4,5-diphosphate (PIP2) to the
second messenger phosphatidylinositol 3,4,5-triphosphate (PIP3), which fosters the activation of the
protein serine/threonine kinase Akt, then activating the mammalian target of rapamycin (mTOR)
(Figure 2A). Among ErbB subunits, ErbB3 expresses the highest prevalence of docking sites for
PI3K [55]; thus, the activation of the PI3K-Akt-mTOR pathway might be preferentially due to the
stimulation of ErbB3-containing receptors, like ErbB2/ErbB3 and/or ErbB3/ErbB4.

Ras-Raf-MEK-ERK is another pathway commonly stimulated by NRGs/ErbB receptors. NRGs-induced
activation of Ras-Raf-MEK-ERK is allowed by the recruitment of the adaptor protein, the growth factor
receptor/bound protein 2 (GRB2) to the phosphotyrosine residues of activated ErbB subunits. GRB2 binding
with ErbB can be either direct or intermediated by the interaction with the Src homolog and collagen
homolog (SHC) adaptor protein, which directly binds tyrosine phosphorylated ErbB sites, thus being itself
phosphorylated and then binding GRB2. ErbB-GRB2 then recruits and activates Son of Sevenless (SOS),
a guanine nucleotide exchange factor, which fosters GTP availability for binding to Ras, thus activating this
kinase. Active Ras starts the kinase cascade pathway including c-Raf, MEK1/2, and ERK1/2. Phosphorylated
ERK1/2 translocates to the nucleus, where it activates transcriptional factors (like Elk1), inducing the
transcription of genes promoting cell growth and survival. A residual pool of active cytoplasmic ERK1/2
also phosphorylates cytoskeletal proteins such as actin, which promotes cell motility, regulators of cell
division and cytokines, vesicle, and organelle movement, and mitochondrial targets such as Bcl2 that render
cells resistant to apoptosis (Figure 2A). Other NRGs/ErbB-activated pathways, like the PLC-PKC pathway or
c-Abl, JNK, CDK5, Kyn, and Pyk2 kinases [52–54], are mainly involved in the regulation of gene expression,
by controlling the activity of transcriptional factors such as c-Fos, Elk1, STAT, c-Jun, and c-Myc.

Besides canonical ErbB activation, NRGs/ErbB-dependent effects can be mediated by additional
signaling modalities, i.e., “non-canonical forward ErbB signaling” and “NRG1 backward signaling”
(Figure 2B). Non-canonical ErbB signaling is started by proteolysis of ErbB4, that can be subjected to
cleavage, by γ-secretase, in the membrane-bound fragment with the release of the ErbB4 intracellular
domain (ErbB4-ICD) [56,57]. Such ErbB4-ICD can translocate to the nucleus, thus regulating gene
transcription [58] (Figure 2B). ErbB4 can be also cleaved by TACE in the extracellular membrane region
with the release of a soluble peptide (called ecto-Erb4), which contains the NRG1 binding site and acts as
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a ligand for membrane-anchored NRGs (i.e., immature pro-NRGs forms or the membrane-bound form
of NRG1 type III). Ecto-ErbB4 binding to presynaptic NRGs has dual effects, since either it neutralizes
NRGs’ canonical actions by preventing NRGs/ErbB forward signaling or can trigger the so-called
“NRG1 backward signaling” [59] (Figure 2B). Such a modality of non-canonical NRG1 signaling is
elicited by a proteolytic cleavage of the intracellular domain of pro-NRG1, by γ-secretase, with the
release of the NRG1 intracellular domain (NRG1-ICD). After its translocation to nucleus NRG1-ICD,
through the interaction with the transcription factor Eos, regulates the transcription of different genes,
including postsynaptic density (PSD) protein PSD95 [13,60]. Some evidence also documented that
NRG3, like NRG1, can participate in back signaling by the C-terminal domain [59].

Overall, the emerging scenario demonstrates that NRGs can activate a complex network of
signaling pathways, since NRGs/ErbB signals can be transmitted either in forward (canonical and
non-canonical) and backward modalities (Figure 2A,B).
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Figure 2. NRGs/ErbB signaling. (A) Diagram showing canonical ErbB signaling pathways activated
by NRGs. (B) Scheme of non-canonical ErbB signaling modalities: (a) Non-canonical forward ErbB4
signaling: proteolytic cleavage of ErbB4 causes the release of its intracellular domain (ErbB4 ICD),
which translocates to the nucleus, modulating gene expression; (b) Ecto-ErbB4 domain, containing the
binding site of NRGs, is released by proteolytic cleavage of ErbB4 extracellular domain. Ecto-ErbB4 can
bind pro-NRGs, thus interfering with NRGs canonical signaling or triggering NRG1 backward signaling;
(c) NRG1 backward signaling: proteolytic cleavage of NRG1 (pro-NRG1s or membrane-anchored
NRG1 type III) in the intracellular domain induces the release of NRG1 ICD, which triggers backward
signaling by nuclear translocation and modulation of gene transcription.

3. NRGs/ErbB Roles in the Modulation of Synaptic Plasticity

3.1. NRGs/ErbB-dependent Regulation of Synaptic Plasticity in the Hippocampus

Synaptic plasticity, the ability to finely adjust the strength of synaptic transmission, is a critical
feature of the CNS and is supposed to underlie essential physiological processes, such as learning and
memory, as well as complex behaviors, including goal-oriented behaviors. Hippocampal synapses
operate over a dynamic range of efficacy and are subject to both short- and long-term forms of plasticity,
including long-term potentiation (LTP) and long-term depression (LTD), leading candidates as synaptic
mechanisms for memory [61–64]. While the description of different types of synaptic plasticity in
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the hippocampus is out of the scope of this review, here we will focus on those that are known to be
modulated by NRGs/ErbB signaling.

3.1.1. Glutamatergic LTP at CA3–CA1 Synapses

LTP at CA3–CA1 synapses of the hippocampus is the most extensively studied form of activity-
dependent synaptic plasticity in the vertebrate nervous system. LTP induction can be triggered by different
stimulation protocols, resembling those occurring physiologically, and it mainly requires NMDARs activation
during a strong postsynaptic depolarization. The increase in postsynaptic calcium concentration leads to the
consequent activation of biochemical events necessary to sustain LTP expression and maintenance, which is
ultimately due to increased AMPAR-mediated excitatory postsynaptic currents (EPSCs) [61].

Stimulating protocols able to induce hippocampal LTP include high-frequency (tetanic) stimulation
(HFS, 100 Hz) or “pairing protocols”, during which delivery of low-frequency synaptic activation
is paired with a direct depolarization of the postsynaptic cell. LTP induction is also achieved by
a stimulation that generates a synaptic response within a discrete time window prior to the firing of
the postsynaptic cell, producing the so called “spike-time dependent plasticity” (STDP) [65,66], as well
as through the delivery of theta-burst stimulation (TBS), which consists of a pattern of neuronal firing
(complex spikes) applied at the frequency of the hippocampal theta rhythm, which spontaneously
occurs during behavior [67]. Depotentiation of potentiated synapses, mimicking an LTP reversal,
is an additional mechanism preserving synaptic homeostasis at hippocampal CA3–CA1 synapses.
Such depotentiation can be induced in acute hippocampal slices and in freely moving animals by brief
TBS, delivered shortly after LTP induction [68].

The first demonstration that NRGs/ErbB signaling plays a central role in the modulation of
synaptic plasticity in adult brain is represented by the evidence that NRG1 application to hippocampal
rat slices prevents the induction of LTP at Schaffer collaterals-CA1 synapses [69]. In particular,
a treatment with NRG1 suppresses the induction of HFS-induced LTP of field excitatory postsynaptic
potentials (fEPSPs) from the CA1 dendritic region, without affecting basal glutamatergic synaptic
transmission [69]. NRG1′s effects on tetanic-induced LTP are concentration dependent and considered
to be reliant on postsynaptic mechanisms, since paired-pulse facilitation of evoked glutamatergic
synaptic responses, representing a measure of presynaptic function, was not altered by NRG1
treatment [69]. The involvement of NRGs/ErbB signaling in the modulation of hippocampal synaptic
plasticity has been further confirmed by several other pieces of evidence, also providing insights
into the cellular mechanisms engaged by NRGs in the maintenance of synaptic efficacy and neuronal
connectivity in hippocampal formation. NRG1 acutely reverses TBS-induced LTP of fEPSPs in
the hippocampal CA1 area at pre-stimulation values [70]. Such NRG1-dependent depotentiation
depends on the activation of ErbB receptors, since it is counteracted by ErbB inhibitors. Notably,
besides preventing NRG1-dependent synaptic depotentiation, ErbB inhibition per se increases the
magnitude of TBS-induced LTP, thus supporting a role of endogenous ErbB signaling in synaptic
strength regulation. NRG1-induced synaptic downscaling appears to be mediated by a specific
internalization of AMPARs, whereas NMDARs surface expression and function are not altered [70].

Although the precise cellular mechanisms by which NRG1 prevents LTP induction [69] or
depresses its expression [70] at hippocampal CA3–CA1 synapses are not completely elucidated, several
hypotheses have been postulated, mainly based on evidence from studies analyzing synaptic plasticity
at CA3–CA1 synapses following conditional ErbB genetic ablation or pharmacological inhibition.
GABAergic transmission plays an important role in the NRG1-dependent suppression of LTP at
CA3–CA1 synapses in the hippocampus, as proven by the evidence that NRG1′s effects on LTP are
impaired in mice harboring a conditional genetic ablation of ErbB4 in parvalbumin (PV) expressing
GABAergic interneurons [71]. NRG1 has a facilitatory effect on GABAergic transmission, since it
increases GABAA-mediated currents in CA1 pyramidal cells, as a consequence of a direct stimulation
of ErbB4 located on PV+ GABAergic interneurons. Thus, by boosting GABA-mediated inhibition in
CA1 pyramidal neurons, NRG1 could counteract LTP induction/expression at CA3–CA1 synapses.
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Interestingly, since the conditional deletion of ErbB4 in CAMKII positive neurons (i.e., pyramidal
neurons in the forebrain) does not alter the NRG1-induced suppression of LTP, it has been suggested that
ErbB4 in CA1 pyramidal cells has a minor contribution to the regulation of glutamatergic LTP [32,71].
Thus, the proposed scheme accounting for this evidence points to a direct stimulation, by NRG1,
of ErbB4 receptors expressed on PV+ GABAergic neurons, which enhances GABA release on CA1
pyramidal cells, thus increasing their inhibition and shifting up the threshold for LTP induction at
CA3–CA1 synapses (Figure 3A). Notably, NRG1/ErbB-dependent LTP impairment has been observed
also in the presence of GABAA antagonists [70,72], thus questioning NRG1/ErbB-induced GABA release
acting on the GABAA receptor as specific mechanism underlying LTP impairment. Thus, additional
mechanisms, independent on GABAA stimulation, might be engaged by NRGs/ErbB signaling in LTP
depression [32].

Besides GABAergic transmission, also dopamine (DA) transmission takes part in NRG1-dependent
modulation of LTP at hippocampal CA3–CA1 synapses. NRG1 injection in the dorsal CA1 area of
the hippocampus of rats acutely stimulates DA release, with the consequent activation of DAergic
D4 receptors, which directly mediate the inhibition of glutamatergic synaptic plasticity at CA3–CA1
synapses [73]. Indeed, NRG1-dependent reversal of LTP is selectively blocked in hippocampal slices
treated with a D4 antagonist, L-745,870 [73]. The functional role of D4 in shaping hippocampal
synaptic plasticity at CA3–CA1 synapses, as well as its engagement in NRG1-dependent regulation
of LTP have been further confirmed by experiments showing that D4 pharmacological activation
mimics NRG1’s effects on LTP, which are conversely abolished in D4 knockout (KO) mice [73].
However, while this evidence suggests involvement of DA transmission in NRGs/ErbB-dependent LTP
regulation at hippocampal CA3–CA1 synapses, the specific mechanisms underlying NRG1-induced
DA release in the CA1 dorsal hippocampus are not completely clarified yet. In this respect, it has
been previously postulated that NRG1-induced ErbB activation in GABAergic PV+ interneurons
might be instrumental to NRG1-induced DA release [32,73]. This hypothesis is mostly based on
the preferential localization of ErbB4 on GABAergic PV+ interneurons in the hippocampus and the
evidence that ErbB4 activation is involved in LTP modulation. Nevertheless, a functional link by
which ErbB4 stimulation of GABAergic interneurons could lead to increased DA extracellular levels is
lacking. More recently, such a contribution of GABAergic interneurons has been questioned by the
evidence that NRG1-dependent regulation of DA outflow in CA1 dorsal hippocampus is dependent
on ErbB4 expressed on DA neuronal terminals [74]. Indeed, in mice harboring a conditional genetic
ablation of ErbB4 in tyrosine hydroxylase (TH) positive neurons, NRG1 injection in CA1 dorsal
hippocampus fails to potentiate DA release [74]. Regarding the underlying functional mechanisms,
NRG1-dependent regulation of DA levels appears to be mediated by an interplay between ErbB4 and
the dopamine transporter (DAT) expressed on DAergic terminals. Indeed, based on the evidence that
ErbB4 stimulation inhibits DAT activity in neuronal cultures, it has been proposed that NRG1-induced
potentiation of DA transmission is consequent to an ErbB4-induced DAT inhibition [74]. Hence,
according to this hypothesis, hypofunctional DA reuptake results in increased DA extracellular
levels, which fosters D4 activation in CA1 pyramidal neurons, depressing LTP at CA3–CA1 synapses
(Figure 3B). Regarding the specific involvement of D4 receptors downstream of NRG1-induced DA
release, however, there is recent evidence demonstrating that, although either NRG1/ErbB signaling or
D4 stimulation is able to mediate LTP reversal/suppression, they act in an independent way in the
modulation of glutamatergic synaptic plasticity in the CA1 dorsal hippocampus [75].

NRG1-dependent LTP depression might also be induced by additional postsynaptic mechanisms,
directly occurring in hippocampal CA1 pyramidal neurons. It has been reported that NRG1/ErbB4
signaling interferes with the Src-dependent regulation of NMDAR in CA1 pyramidal neurons [72].
Specifically, NMDAR-mediated transmission in CA1 pyramidal neurons is enhanced by activating Src
kinases, as demonstrated by the injection of Src activating peptides in single pyramidal neurons [72].
Such Src-dependent potentiation of NMDAR-mediated transmission is impaired by NRG1/ErbB4
signaling, which directly inhibits Src kinase activity. Hence, a model accounting for this evidence
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depicts ErbB4 activation in CA1 pyramidal cells as the triggering event to reduce, in a cell autonomous
manner, NMDAR-mediated transmission and consequently impairing LTP expression (Figure 3C).
Notably, ErbB4 localization in the hippocampus is more restricted to GABAergic interneurons [76–78],
while expression in CA1 pyramidal cells appears low [79–82] or absent [76–78]. This questions the
postsynaptic/cell autonomous function of ErbB4 in the NRGs-dependent LTP impairment at CA3–CA1
synapses. Notwithstanding, in spite of undetected expression, ErbB4 functions in hippocampal
and cortical pyramidal neurons have been reported [30,72,83–86]. Thus, the factual role of ErbB4 in
hippocampal CA1 pyramidal cells in NRGs-dependent LTP regulation remains to be better elucidated.
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Figure 3. NRGs/ErbB-dependent regulation of LTP in the hippocampal CA1 area. (A–C) Diagrams
illustrating the cellular mechanisms underlying NRGs/ErbB-dependent impairment of LTP at
hippocampal CA3–CA1 synapses. (A) NRG1-dependent activation of ErbB4 in GABAergic interneurons,
by triggering GABA release, fosters the activation of GABAA receptors expressed in CA1 pyramidal cells,
thus reducing neuronal excitability and dampening LTP induction. (B) NRG1-induced ErbB4 activation
on DAergic terminals inhibits DAT activity, thus increasing DA extracellular levels. The consequent
activation of D4 receptors localized on CA1 pyramidal neurons impairs LTP induction/expression,
via internalization of AMPARs. (C) NRG1-dependent ErbB4 activation in CA1 pyramidal neurons
inhibits Src kinase and consequently NMDAR activity, thus reducing LTP expression.

3.1.2. mGluRI-dependent Glutamatergic LTD

Long term depression (LTD) of glutamatergic synaptic transmission at CA3–CA1 synapses
represents a well characterized and largely studied form of synaptic plasticity in the hippocampus.
Group 1 metabotropic glutamate receptors (mGluRI), encompassing the mGluR1 and mGluR5 subtypes,
are involved in the induction of this form of synaptic plasticity either in the hippocampus or in
different other areas, including dorsal and ventral striatum, medial prefrontal cortex, cerebellum,
and midbrain DAergic nuclei [87]. mGluRI-LTD at hippocampal CA3–CA1 synapses ultimately
relies on mGluRI-induced AMPARs internalization [61,88,89]. Intracellular mechanisms, downstream
of mGluRI activation, encompass the activation of several kinases pathways, including ERK1/2,
PI3K-Akt-mTOR, and mitogen activated protein kinases (MAPKs) [90–92], which fosters the synthesis
of “LTD proteins”, instrumental to LTD expression and maintenance [61,87,93]. mGluRI-LTD can
be easily achieved through mGluRI activation with the agonist DHPG or by endogenous glutamate,
synaptically released through specific electrical protocols, like paired pulse (PP) low frequency
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stimulation (PP-LFS 1 Hz, 15 min) [94–96]. We recently reported that NRG1/ErbB signaling is a critical
modulatory pathway of mGluRI-dependent LTD at CA3–CA1 synapses [86]. Actually, NRG1 fosters
the induction of mGluRI-LTD in CA1 pyramidal neurons from hippocampal mice slices. Such
NRG-dependent facilitation of LTD is especially unmasked in conditions of minimal stimulation
of mGluRI, which per se induces only a short term depression of AMPAR-mediated transmission,
but causes a stable LTD following NRG1 treatment. More interestingly, preventing endogenous
ErbB activation, with ErbB inhibitors, impairs mGluRI-LTD expression. Indeed, the intracellular
injection of pan-ErbB inhibitors or selective ErbB2 inhibitors in single CA1 pyramidal cells depresses
mGluRI-induced LTD, thus supporting an NRG1/ErbB-dependent cell autonomous mechanism
of regulation of mGluRI-mediated synaptic plasticity, involving ErbB2-containing receptors [86]
(Figure 4A). Such a postsynaptic model is also supported by the evidence that NRG1/ErbB-dependent
effects are observed in the presence of a GABAA antagonist, thus not comprising the interplay of
GABAergic transmission, but rather a direct mGluRI regulation in CA1 pyramidal neurons, as similarly
occurs in midbrain DA cells (see the section below).

Overall, evidence on the modulatory roles of NRGs/ErbB signaling in glutamatergic synaptic
plasticity in the hippocampus indicate that NRG1-dependent ErbB activation dampens glutamatergic
LTP and favors mGluRI-dependent glutamatergic LTD at hippocampal CA3–CA1 synapses,
thus representing a central mechanism balancing the LTP/LTD equilibrium, which shapes the strength
of the excitatory transmission at CA3–CA1 synapses.
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Figure 4. Mechanisms underlying NRGs/ErbB-dependent regulation of mGluRI-LTD in the hippocampus.
(A) NRG1-dependent activation of ErbB receptors in CA1 pyramidal neurons, by regulating mGluRI function,
controls the LTD magnitude of AMPAR-mediated transmission. (B) NRG1, by activating ErbB receptors,
reduces endocannabinoids (eCBs) levels, thus impairing the eCB-dependent LTD of GABAergic transmission,
which is physiologically triggered by the eCB-mediated activation of CB1 located on presynaptic GABAergic
terminals, controlling GABA release.
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3.1.3. mGluRI-dependent GABAergic LTD

While it is largely recognized that NRGs/ErbB signaling plays a prominent role in the regulation
of the GABAergic system, affecting synapses development, as well as neurotransmitter release and
GABAergic receptors expression/function, evidence regarding long term modifications of GABAergic
transmission, by NRGs/ErbB-dependent mechanisms, are scarce.

The activation of mGluRI in hippocampal CA1 pyramidal neurons induces an LTD of GABAergic
transmission, which is reliant on mGluRI-induced production of endocannabinoids (eCBs), which act
retrogradely on their presynaptic receptors, cannabinoid receptors 1 (CB1Rs), thus inhibiting GABA
release [97,98]. Such a form of mGluRI-dependent eCBs-mediated LTD of GABAergic transmission,
which is inducible upon mGluRI stimulation, is modulated by NRG1/ErbB signaling [99]. Indeed,
a chronic treatment with NRG1 (8–11 days on organotypic hippocampal slices) impairs the expression of
mGluRI-dependent GABAergic LTD at CA3–CA1 synapses, via an eCB-dependent mechanism, which is
reliant on a reduced tone of eCBs, as a consequence of their increased catabolism [99] (Figure 4B).
The intracellular events, by which NRG1-induced ErbB activation potentiates the expression of catabolic
enzymes of eCBs, as well as the synaptic compartments where they occur, are still uncharacterized [99].
Notwithstanding, this evidence points to an important role of NRGs/ErbB signaling in the regulation
of GABAergic LTD at hippocampal CA3–CA1 synapses, thus adding further to the picture describing
the relevance of NRGs/ErbB signaling in the regulation of synaptic plasticity in the hippocampus.

3.2. NRGs/ErbB-dependent Regulation of Synaptic Plasticity in Midbrain DA Neurons

Long lasting modifications of synaptic transmission have been reported in midbrain DA nuclei.
The evidence is mainly related to the ventral tegmental area (VTA) DA cells, where different forms of
synaptic plasticity (LTP and LTD) can be induced by either electrical stimulation protocols or pharmacological
activation of mGluRI [100–105]. In VTA DA cells, glutamatergic LTP is inducible by HFS protocols paired
with neuronal depolarization [100], as well as by a spike-timing-dependent stimulation protocol [106],
by mechanisms involving NMDAR activation and increase in intracellular Ca2+.

LTD of glutamatergic transmission can be observed in VTA and SNpc DA neurons, upon delivery
of LFS (1 Hz, 10 min) paired with neuronal depolarization during stimulation. Such LFS-induced LTD
is reliant on the activation of voltage-dependent Ca2+ channels, but does not require the activation of
NMDAR or glutamatergic metabotropic receptors [101,102]. As occurs in other brain areas, mGluR1
activation triggers LTD of AMPAR-mediated transmission either in VTA [103] or SNpc DA cells [107].
In nigral DA cells, mGluR1-LTD is easily inducible by mGluR1 activation either achieved with
an agonist or by synaptic glutamate, endogenously released during electrical LFS [107]. In VTA DA
cells from mice, mGluRI-LTD is especially unmasked in already potentiated synapses (e.g., following
exposure to psychostimulants) more than in naive synapses [108] and is due to a modification of
AMPARs subunit composition, which decreases AMPARs ion conductances [103].

NRGs/ErbB signaling critically regulates glutamatergic synaptic plasticity in SNpc DA neurons [107].
Indeed, ErbB signaling is required to preserve mGluRI-dependent LTD expression in nigral DAergic neurons,
the mGluRI-LTD magnitude being reduced by preventing endogenous ErbB stimulation, with ErbB inhibitors
that preferentially act on ErbB2/ErbB4 subunits [107]. Furthermore, exogenous NRG1 application fosters
mGluRI-dependent LTD in DA neurons, allowing its induction also in the presence of a minimal mGluRI
stimulation. Hence, NRG1/ErbB signaling controls the strength of glutamatergic synaptic transmission in
midbrain DA neurons, fine tuning the magnitude of LTD of AMPAR-mediated transmission caused by
mGluR1 activation [107].

Regarding the cellular mechanisms underlying NRG1-dependent regulation of mGluRI-LTD,
we previously found that NRG1/ErbB signaling bidirectionally controlled mGluR1 expression levels
on the surface membrane of midbrain DA neurons [109]. Indeed, NRG1-induced ErbB activation rapidly
stimulates mGluR1 synthesis and membrane trafficking. Exogenous NRG1 increases mGluR1 protein levels
in SNpc/VTA homogenates and mGluR1 immunolabeling in TH+ DA neurons, in addition to potentiating
mGluR1-mediated currents in SNpc DA cells [109]. The mechanisms underlying NRG1-induced increase in
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mGluR1 expression/function in midbrain DA neurons involved ErbB receptors, possibly as ErbB2/ErbB4
dimers, and downstream activation of PI3K-Akt-mTOR pathways [109]. Importantly, endogenous ErbB
signaling controls mGluR1 docking on the membrane surface of midbrain DA neurons, since pharmacological
ErbB inhibition causes mGluR1 internalization, which occurs through dynamin-dependent endocytosis.
Hence, our evidence suggests that NRG1/ErbB-dependent regulation of mGluRI-LTD in nigral DA neurons
is reliant on a direct ErbB-dependent regulation of mGluR1 expression levels, with ErbB receptor activation
orchestrating the synthesis, trafficking, and membrane docking of mGluR1 in midbrain DA neurons
(Figure 5). Notably, in such a way, NRG1/ErbB signaling controls several mGluR1-dependent functions in
SNpc DA neurons, besides mGluRI-LTD, including mGluR1-dependent activation of the nigrostriatal DA
pathway in vivo [109], supporting a central role of NRG1/ErbB signaling in the regulation of the midbrain
DA system.
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Figure 5. Mechanisms underlying NRG1/ErbB-dependent regulation of mGluRI-LTD in midbrain
DA neurons. NRG1-dependent activation of ErbB receptors in SNpc DA neurons induces the
synthesis of mGluR1 receptors, thus fostering mGluR1-LTD of AMPARs-mediated transmission,
whereas inhibition of endogenous ErbB signaling causes mGluR1 internalization and consequent
impairment of mGluR1-LTD.

4. Implications of NRG/ErbB-dependent Regulation of Synaptic Plasticity

What is the physiopathological relevance of NRGs/ErbB-induced modulation of synaptic plasticity?
NRGs/ErbB-dependent regulation of the hippocampal synaptic plasticity has obvious implications
in learning and memory processes, in which enduring changes of synaptic strength represent the
underlying cellular mechanisms. Hippocampal LTP at CA3–CA1 synapses is involved in different
learning processes, including contextual fear conditioning. Notably, NRG1/ErbB signaling, besides
affecting hippocampal LTP, regulates contextual fear memory, mainly acting on PV+ GABAergic
interneurons, as demonstrated by the evidence that a conditional genetic ablation of ErbB4 in this
neuronal population impairs this learning process [71]. Contextual fear memory is similarly affected
by intra-hippocampal injection of an ErbB inhibitor [110].
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mGluRI-dependent LTD at hippocampal CA3–CA1 synapses has been associated with novelty detection
and related learning processes, like object recognition memory [87,111]. We recently demonstrated that
NRGs/ErbB signaling in the hippocampal CA1 area regulated either mGluRI-dependent LTD or object
recognition memory in mice [86]. Indeed, intra-hippocampal injection of an ErbB inhibitor in the CA1 area
prevented the induction of mGluRI-LTD and impaired the acquisition of object configurations, affecting the
recognition memory [86].

NRG1/ErbB-dependent modulation of synaptic plasticity in the hippocampus has been reported
also in pathological contexts, as in animal models of neurological and psychiatric disorders, like
Angelman’s syndrome (AS) and Alzheimer’s disease (AD). AS is characterized by autism, mental
retardation, motor abnormalities, and epilepsy and is mostly caused by the deletion of portions of the
maternal copy of chromosome 15, which includes the UBE3A gene. The AS mouse model, produced
by UBE3A deletion, displays hippocampal LTP impairment and deficits in hippocampal-dependent
learning processes, like contextual fear memory [112,113], as well as an alteration of NRGs/ErbB
signaling, consisting of enhanced levels of NRG1 and ErbB4 phosphorylation in the hippocampus.
Interestingly, the injection of an ErbB inhibitor, PD158780, in the dorsal hippocampus, rescues synaptic
and behavioral deficits, allowing proper LTP expression at CA3–CA1 synapses and rescuing contextual
fear memory [110].

NRGs/ErbB-dependent regulation of hippocampal synaptic plasticity in AD animal models
has been also reported. Indeed, NRG1 counteracts amyloid β-induced impairment of LTP in the
hippocampal CA1 area and dentate gyrus in mouse slices, through a mechanism involving ErbB4
stimulation [114] and downstream PI3K activation [115]. Moreover, the activation of NRGs/ErbB
signaling ameliorates LTP deficits, as well as cognitive abnormalities in adult Tg2576 mice, an AD
animal model [116,117]. Overall, this evidence supports a relevant function of NRG1/ErbB-dependent
regulation of synaptic plasticity in hippocampal-dependent learning/memory processes and suggests
that a modulation of ErbB signaling might represent a rescue strategy for neuropsychiatric disorders,
like autism spectrum disorders, intellectual disabilities, and AD, which display abnormalities in
hippocampal-related forms of synaptic plasticity.

Conversely, the factual relevance of NRGs/ErbB-dependent regulation of glutamatergic synaptic
plasticity in nigral DA neurons is still completely mysterious, mainly because the physiological
functions of specific forms of synaptic plasticity in this DA nucleus are yet to be deciphered. However,
since it is well recognized that the nigrostriatal DA pathway plays an important role in the establishment
of goal-oriented behaviors, like feeding and locomotion, as well as in different cognitive functions,
including reward/aversion-based learning, mental flexibility, and habit formation [118–124], it could
be speculated that synaptic plasticity-related mechanisms within SNpc DA cells might contribute
and/or underlie these brain processes. In such a perspective, NRGs/ErbB-dependent modulation
of mGluRI-dependent LTD might have several implications in the regulation of various cognitive
processes and complex behaviors dependent on the midbrain DA system. Regarding a potential
link between NRG1/ErbB signaling in midbrain DA neurons and learning processes dependent
on mGluR1-dependent synaptic plasticity in SNpc, it should be mentioned that ErbB4 deletion in
midbrain DA neurons specifically impairs spatial/working memory [74], which is similarly affected
by either systemic administration of mGluR1 antagonists or by a neurotoxin-induced lesion of
SNpc [118,125–129]. Therefore, despite a direct connection between nigral ErbB, mGluR1, and working
memory is lacking, an interplay between mGluR1-dependent synaptic plasticity and ErbB signaling in
this cognitive process related to the nigrostriatal pathway could be conceived. Moreover, mGluR1-LTD
in nigral DA neurons might be instrumental to motor learning, in which nigral mGluR1 has been
also involved [87,130,131].

Notably, increasing evidence supports the contribution of mGluR1-dependent mechanisms in the
pathogenesis of neurological and psychiatric disorders, such as schizophrenia, Parkinson’s disease
(PD), addiction, and autism [87,132–134], which are either characterized by alterations in midbrain DA
transmission and also linked to NRG1/ErbB dysfunctions [13,46,135–137]. Whether or not a dysfunction
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in NRGs/ErbB-dependent regulation of synaptic plasticity in midbrain DAergic neurons represents
a factual contributing factor in these pathological conditions is still to be ascertained. Nevertheless,
genetic evidence suggests an association between altered NRG1/ErbB signaling and drug of abuse
dependence [135–138] or autism [136,139], and indeed, dysregulated mGluRI-LTD in VTA DA neurons
is instrumental to the establishment of addiction-related behaviors [87] and has been reported in
an animal model of autism [140]. Future studies might unveil if altered NRGs/ErbB-dependent
regulation of mGluR1-LTD in midbrain DA neurons contributes to the aberrant DA transmission
occurring in schizophrenia, which is the first neuropsychiatric disorder in which the alteration of
NRGs/ErbB signaling has been overtly shown [13].

5. Conclusions and Outstanding Issues

Growing evidence indicates that NRGs/ErbB signaling is essential for proper brain development
and functioning. While NRGs have multifaceted roles in neurodevelopment, controlling synapse
formation and myelination, the modulation of synaptic plasticity in adult brain probably represents
the prominent mechanism by which NRGs can affect cognitive functions and complex behaviors
in adulthood. The mechanisms engaged by NRGs in the regulation of synaptic plasticity are
various. They occur at either presynaptic or postsynaptic compartments and involve modifications of
neurotransmitters release or direct modulation of neurotransmitter receptors, which are chief players
in the induction and/or expression of different forms of synaptic plasticity, like NMDAR, AMPAR,
and mGluRI.

In the hippocampus, NRGs-dependent ErbB activation impairs LTP induction and causes
depotentiation at CA3–CA1 synapses. The mechanisms underlying such LTP impairment involve
NRGs-dependent enhancement of GABAergic transmission, regulation of DA extracellular levels,
and postsynaptic NMDARs inhibition. At hippocampal CA3–CA1 synapses, NRGs/ErbB signaling also
fosters mGluRI-dependent LTD, by preserving mGluRI function, thus shifting LTP/LTD equilibrium
toward inhibition of glutamatergic transmission. Moreover, NRGs-induced ErbB activation impairs
mGluRI/eCB-dependent GABAergic LTD at CA3–CA1 synapses, implying that NRGs have multifaceted
roles in the long term regulation of excitatory/inhibitory balance in the hippocampus.

In midbrain DA neurons, NRGs/ErbB receptors are essential for the induction of mGluRI-dependent
glutamatergic LTD. Indeed, NRGs/ErbB signaling favors mGluR1 synthesis, trafficking, and membrane
docking in DA neurons, thus affecting mGluRI-LTD magnitude and midbrain DA system activation.

Although, herein, the description of NRGs/ErbB-dependent roles in the modulation of synaptic
plasticity has been focused on the hippocampus and midbrain DA nuclei, it should be considered that
emerging evidence also documented NRGs-induced regulation of synaptic plasticity in other brain areas,
and several reports mainly obtained in transgenic mice with altered NRGs/ErbB signaling support that
the proper NRGs/ErbB tone (neither too much nor too little) is essential for various cognitive functions
and behaviors. Since dysfunctions in NRGs/ErbB signaling have been linked to different neurological
and psychiatric disorders, including schizophrenia, bipolar disorder, autism spectrum disorders, genetic
intellectual disabilities, AD, major depressive disorder, PD, and addiction [23,46,136–139,141–159],
intense research efforts should be aimed at deciphering NRGs-dependent mechanisms causing
pathological defects, as this might have noticeable implications on the understanding and treatment of
different serious brain diseases.
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