
Citation: Kong, A.S.-Y.; Maran, S.;

Yap, P.S.-X.; Lim, S.-H.E.; Yang, S.-K.;

Cheng, W.-H.; Tan, Y.-H.; Lai, K.-S.

Anti- and Pro-Oxidant Properties of

Essential Oils against Antimicrobial

Resistance. Antioxidants 2022, 11,

1819. https://doi.org/10.3390/

antiox11091819

Academic Editors: Alessandra

Napolitano and Claus Jacob

Received: 17 August 2022

Accepted: 9 September 2022

Published: 15 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antioxidants

Review

Anti- and Pro-Oxidant Properties of Essential Oils against
Antimicrobial Resistance
Amanda Shen-Yee Kong 1, Sathiya Maran 2 , Polly Soo-Xi Yap 3, Swee-Hua Erin Lim 4, Shun-Kai Yang 4 ,
Wan-Hee Cheng 5, Yong-Hui Tan 6 and Kok-Song Lai 4,*

1 School of Biosciences, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia
2 School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan,

Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
3 Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan,

Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
4 Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology,

Abu Dhabi 41012, United Arab Emirates
5 Faculty Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai,

Nilai 71800, Negeri Sembilan, Malaysia
6 Department of Biotechnology, Faculty of Applied Sciences, UCSI University, UCSI Heights, 1, Jalan Puncak

Menara Gading, Taman Connaught, Cheras, Wilayah Persekutuan Kuala Lumpur 56000, Malaysia
* Correspondence: lkoksong@hct.ac.ae

Abstract: The rapid evolution of antimicrobial resistance (AMR) has remained a major public health
issue, reducing the efficacy of antibiotics and increasing the difficulty of treating infections. The
discovery of novel antimicrobial agents is urgently needed to overcome the challenges created by
AMR. Natural products such as plant extracts and essential oils (EOs) have been viewed as potential
candidates to combat AMR due to their complex chemistry that carries inherent pro-oxidant and
antioxidant properties. EOs and their constituents that hold pro-oxidant properties can induce
oxidative stress by producing reactive oxygen species (ROS), leading to biological damage in target
cells. In contrast, the antioxidant properties scavenge free radicals through offsetting ROS. Both
pro-oxidant and antioxidant activities in EOs represent a promising strategy to tackle AMR. Thus, this
review aimed to discuss how pro-oxidants and antioxidants in EOs may contribute to the mitigation
of AMR and provided a detailed description of the challenges and limitations of utilizing them as a
means to combat AMR.
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1. Introduction

Antimicrobial resistance (AMR) has caused significant detrimental effects on human
health, contributing to increased mortality rates and infections due to the implementation
of inefficacious antibiotic dosages [1]. According to the Centers for Disease Control and
Prevention (CDC), human infections caused by antibiotic-resistant pathogens affect more
than 2.8 million people, resulting in over 35,000 deaths annually in the United States [2].
The emergence of AMR is mainly due to the overprescription of antimicrobial agents by
physicians and a lack of compliance by consumers [3]. Furthermore, easy accessibility
and availability of antibiotics from over-the-counter pharmaceutical sales aggravate this
issue. Due to the growth of industrialization, antibiotic residues discarded in environmental
matrices such as water and soil contribute to environmental problems, and these substances
were reported to be unstable in water [4]. Over the past three decades, AMR rates have
risen considerably while the pipeline of new antibiotics has declined significantly [5]. The
administration of treatments during infections in the clinical setting is becoming more
complicated; it remains unclear if we will be able to treat common infections in the future.
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As such, there is a pressing need to better understand underlying resistance mechanisms
and uncover novel therapeutic strategies to fight against AMR [6].

Oxidative stress is defined as the disturbance of the balance between reactive oxygen
species (ROS) production and antioxidants to neutralize their harmful effects [7]. This
imbalance leads to molecular cell damage and complex biochemical mechanisms are
required to regulate the entire process [5]. ROS can be produced intracellularly in biological
pathways or induced extracellularly by exogenous procedures [8]. Generally, traditional
antibiotics induce ROS to cause secondary damage to the pathogens or exerting bactericidal
effects as the main mechanism. To increase survivability, pathogens may employ different
strategies such as increased enzyme production and formation of oxidant scavengers to
avoid cellular damage caused by ROS. In this regard, ROS is suggested to be used in
clinical practice based on its antimicrobial activity against a wide spectrum of pathogens,
including multidrug-resistant organisms. In clinical studies, surgihoney reactive oxygen
(SHRO) is the first ROS product that has shown great potency in controlling and eradicating
bacterial bioburden and biofilm in chronic wounds, especially towards multidrug-resistant
bacteria such as Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus (MRSA),
and vancomycin-resistant enterococci [9]. ROS can help to prevent and also to break
down bacterial and fungal biofilms; these biofilms have remained a significant problem
in many clinical settings by their increased resistance toward conventionally prescribed
antimicrobials [10].

In addition to the promising outcomes with ROS therapy on infection models, re-
searchers have diverted mining approaches towards medicinal plants, an option which
seems to be more widely accepted by the public [7]. Natural products such as essential oil
(EO) consisting of a plethora of chemical compounds are becoming a popular platform for
researchers in drug discovery to improve antimicrobial efficacy and reduce the development
of resistance [11]. Numerous studies have also demonstrated the efficacy of EOs from cinna-
mon (Cinnamomum zeylanicum), lemongrass (Cymbopogon citratus), tea tree (Melaleuca alterni-
folia), and rosemary (Rosmarinus officinalis) as promising antimicrobials [12–16]. Multiple
studies have shown synergistic effects between various EOs and antibiotics, potentially pro-
viding a possible resolution to the antibiotic resistance issue in the clinical setting [1,17–20].
EOs have garnered great attention due to their accessibility, biocompatibility, and potential
antibacterial capacities without inducing drug resistance [21]. In this review, we focused on
EOs as oxidative stress inducers (as pro-oxidants and antioxidants), their mechanisms of
action employed in AMR, as well as the potential utilization of ROS and EOs as a possibly
effective solution to combat the development of AMR.

2. Sources and Functionality of Pro-Oxidant and Antioxidant

Pro-oxidants are chemicals that induce oxidative stress, either by generating ROS or by
inhibiting antioxidant mechanisms [22]. ROS refers to reactive radicals including hydrogen
peroxide, hydroxyl ion, hydroxyl radical, peroxide, singlet oxygen, and superoxide anion
that are recognized as side products of some biological processes [8]. ROS may induce
peroxidation in proteins and lipids as well as damage to nucleic acids [7]. Lipid peroxidation
is a self-propagating chain reaction between ROS and membrane fatty acids which causes
membrane damage and cell killing [23]. Interaction between ROS and proteins encourages
covalent modification which destabilizes and inactivates protein. Furthermore, nucleic acid
is also a common target of ROS, causing lesions and DNA breakage and leading to non-
functional protein production that eventually kills the cells [24]. Antibiotics, for example,
aminoglycosides, disrupt protein synthesis and produce large amounts of hydroxyl radicals.
Thus, ROS inducers may serve as a potential therapeutic agent against antibiotic resistance.

Pathogens that produce ROS-detoxifying enzymes undergo several cellular, metabolic,
and phenotypic changes in order to reduce cellular damage caused by the ROS when
exposed to antibiotics [5]. Regulation of the genes involved in the bacterial defense response
is complex but limited to regulators that can directly sense the levels of ROS and activate
the gene transcription [25]. Two major global regulators, superoxide sensing SoxR and
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hydrogen peroxide sensing OxyR, play pivotal roles in gene regulation against ROS [26].
These transcription regulators contribute to the formation of biofilm, evasion of host
immune responses, and antibiotic resistance via direct regulation of specific proteins.

On the other hand, antioxidants protect cells by a variety of mechanisms including
the conversion of ROS to non-radical species, breakage of the oxidative chain reaction, and
suppression of localized oxygen concentrations [27]. The general public today is more
health-conscious and natural products are becoming a popular approach for researchers to
undergo novel drug discoveries against AMR, considering their low side effects and cost-
effectiveness [1]. EOs are a mixture of natural, volatile, and aromatic compounds extracted
from medicinal plants through methods such as steam distillation, hydro distillation, and
supercritical carbon dioxide in the form of secondary metabolites [28]. They exhibit potent
antimicrobial properties against a wide spectrum of gram-positive and gram-negative
bacteria with a lower likelihood of initiating multidrug resistance as compared with existing
antibiotics [29].

The mechanism of antimicrobial action depends on the type of chemical constituents
in the EOs. Mainly, lipophilic compounds in the EOs can easily penetrate the cell membrane
of pathogens that play important roles in processes such as nutrient processing, structural
protein-synthesizing, and energy production [30]. De Oliveira and colleagues (2022) demon-
strated the ability of EO extracted from lemongrass in protecting erythrocytes against lipid
peroxidation with high antioxidant activity when the medium was exposed to high levels
of ROS [31]. Antioxidant properties of EOs are not only useful in fighting infections but
also serve a role in the preservation of food from the toxic effects of oxidants [32]. The
ability of EOs in modulating immune systems on interleukins and tumor necrosis factors
increases the possibility of including them in the production of functional foods.

3. Mechanisms of EOs in Combating AMR by Inducing ROS

The killing of pathogens can be derived from the primary damage of antibiotics or a
secondary lethal stress response mediated by ROS [33]. Bacteriostatic activity is related to
initial lesion formation whereas bactericidal action may result from both primary lesions
and the cellular response to primary damage [34]. Primary damage stimulates a pathway
that leads to ROS accumulation and oxidative stress response as secondary damage when
the primary damage is not severe enough to cause cell death directly. ROS acts as a potential
solution to antibiotic resistance, emphasizing that it is not a replacement but could minimize
the use of antibiotics to prevent further resistance.

Under aerobic conditions, antibiotic treatment generates ROS, which boosts the bacte-
ricidal effect and induces the production of ROS defense enzymes including catalase (CAT)
and superoxide dismutase (SOD) [26]. There is much evidence of antibiotic-mediated ROS
generation in Escherichia coli, P. aeruginosa, and Acinetobacter baumannii [35,36]. Polymyxin
B is an example of bacterial antimicrobial peptides that were observed to induce rapid
bacteria cell death through Fenton chemistry-mediated hydroxyl radical production in
A. baumannii [37]. Similarly, superoxide and hydroxyl radical accumulation was detected in
response to the treatment of E. coli with ampicillin and kanamycin [38]. This accumulation
further amplified the oxidative damage and lethality of the antibiotics involved.

EOs are a composite mixture of volatile compounds which possess not only antiox-
idant activities but also act as pro-oxidants as they affect the cellular redox status while
contributing to cellular damage (Figure 1) [39]. Mainly, EO can be grouped into three main
groups—terpenes, terpenoids, and aromatic compounds [1]. Yang and colleagues (2020)
demonstrated the synergism effect of lavender (Lavandula angustifolia) EO and meropenem
in treating carbapenemase-producing Klebsiella pneumoniae (KPC-KP) cells [19]. Compara-
tive proteomic analysis revealed the presence of oxidative stress, suggesting that lavender
EO and meropenem generated ROS in KPC-KP cells. Further validation tests confirmed
the high concentrations of ROS and malondialdehyde (MDA), indicating the presence of
lipid peroxidation and explaining the observed membrane disruption in KPC-KP cells.
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Figure 1. A schematic representation of pro-oxidant and antioxidant activities of EOs against clinically
important pathogens. Both pro-oxidant and antioxidant properties of EOs act on different mechanisms
of action that eventually lead to bacterial cell death.

More recently, Yang and colleagues (2021) revealed the accumulation of ROS and
high levels of MDA in medium-treating KPC-KP cells with linalyl anthranilate (LNA), a
compound that originated from the lavender plant [7]. This implies that the generation
of ROS is induced and lipid peroxidation is triggered. With treatment of terpene LNA,
the abundance of membrane-related proteins in treated cells was reduced, suggesting a
disrupted bacterial membrane that led to intracellular leakage and loss of cytoplasmic
proteins. LNA has a different approach to killing bacterial cells and their antibacterial
activity is lower in terms of effective concentration as compared with commercialized
antibiotics. The ability of LNA in inducing ROS may facilitate the uptake and enhance the
activity of antibiotics.

Yang and colleagues (2019) demonstrated the antibacterial activity of Cinnamon bark
(Cinnamomum verum) EO by inducing oxidative stress in KPC-KP cells [11]. Accumulation
of ROS disrupted the bacterial membrane and enabled influx of ROS into the cells, leading
to intracellular content leakage. Overproduction of ROS subsequently contributed to
bacterial cell death by malfunctioning the proteins involved in energy production such
as the adenosine triphosphate (ATP synthase), the electron transport complex, and the
NADH-quinone oxidoreductases. The proteomic profile revealed the loss of three essential
proteins involved in bacterial cell wall synthesis upon treatment with cinnamon bark EO.
Deleterious effects were also observed in genetic damage and impairment of DNA and
membrane repair systems. Exposure of cinnamon bark EO released the DNA mismatch
repair protein (MutS) and DNA ligase, indicating the presence of damage in genetic
materials of KPC-KP cells.

Brun and colleagues (2019) revealed oxidative damage in C. glabrata by the exposure
of tea tree EO, indicating that ROS production is associated with the disruption in mito-
chondria membrane and organelles [40]. Incubation with tea tree EO also reduced biofilm
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formation in both gram-positive and gram-negative bacteria, with observed significant
biofilm inhibition in MRSA and P. aeruginosa. The antiviral activity of tea tree EO is similar
to its antibacterial effects in which both infectivity and uptake of Herpes simplex virus
type 1 (HSV-1) were reduced upon administration of Tea Tree EO.

Khan and colleagues (2017) performed several analyses on the ascitic fluid of a patient
with urinary tract infection to determine the mechanism action of carvacrol (phenolic
monoterpenoid) against extended-spectrum beta-lactamase E. coli [41]. In the presence of
carvacrol (MIC: 450 µg/mL), high generation of ROS and bacterial membrane depolar-
ization were observed. Carvacrol induced the highly oxidative stress environment in the
bacterial cell, changed the membrane permeability, and increased the leakage of cellular
contents (DNA and proteins) by disrupting the bacterial membrane integrity. Further
scanning electron microscopy analysis revealed induction of structural disruption by the
interaction between carvacrol and the lipid bilayer of E. coli.

Similar findings were found in the study conducted by Kim and colleagues (2019).
Thymol and carvacrol extracted from Thyme White (Thymus vulgaris) and Summer Savory
(Satureja hortensis) EOs showed strong fumigant antifungal activity against Raffaelea quercus-
mongolicae and Rhizoctonia solani [42]. Exposure of R. quercus-mongolicae and R. solani
to thymol and carvacrol induced the production of ROS in two phytopathogenic fungi,
disrupted fungal cell membranes, and contributed to fungal cell death. Interestingly, thymol
showed higher antifungal activity than carvacrol in R. quercus-mongolicae but this effect was
not significantly observed in R. solani.

Lee and colleagues (2020) experimented with different EOs on the same fungi species.
Trans-cinnamaldehyde, neral, and geranial extracted from cinnamon bark and lemongrass
EOs were associated with the induction of ROS production in R. quercus-mongolicae and
R. solani [43]. Further microscopy analysis revealed the importance of the stated constituents
in fungal cell membrane disruption, leading to fungal cell death. Table 1 summarizes the
pro-oxidant activities of EOs appraised in this review.
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Table 1. Recent insight of pro-oxidant activity of EOs against AMR.

Essential Oil/Essential Oil Constituents Bacteria Findings References

Lavender KPC-KP

• Comparative proteomic analysis revealed the presence of oxidative stress, suggesting
that Lavender EO and meropenem generated ROS in KPC-KP cells.

• High concentrations of ROS and MDA were detected, indicating the presence of lipid
peroxidation, and explaining the observed membrane disruption in KPC-KP cells.

[19]

LNA KPC-KP

• Accumulation of ROS and high levels of MDA were detected, indicating the presence of
lipid peroxidation.

• The abundance of membrane-related proteins in the treated cells was reduced,
suggesting a disrupted bacterial membrane that led to intracellular leakage and loss of
cytoplasmic proteins.

• the antibacterial activity of LNA is lower in terms of effective concentration as compared
to commercialized antibiotics.

[7]

Cinnamon bark KPC-KP

• Oxidative stress was induced in KPC-KP cells.
• Accumulation of ROS disrupted the bacterial membrane and enabled the influx of ROS

into the cells, leading to intracellular content leakage.
• Overproduction of ROS contributed to bacterial cell death by causing malfunction of the

proteins involved in energy production such as the ATP synthase, the electron transport
complex, and the NADH-quinone oxidoreductases.

• Proteomic profile revealed the loss of three essential proteins involved in bacterial cell
wall synthesis.

• Deleterious effects were observed in genetic damage and impairment of DNA and
membrane repair systems.

• Exposure of Cinnamon bark EO released the MutS and DNA ligase, indicating the
presence of damage in the genetic materials of KPC-KP cells.

[11]

Tea Tree
C. glabrata,

MRSA,
HSV-1, P. aeruginosa

• Oxidative damage was observed in C. glabrata, indicating that ROS production is
associated with disruption in mitochondria membrane and organelles.

• Incubation with Tea Tree EO inhibited biofilm formation in MRSA and P. aeruginosa.
• The infectivity and uptake of HSV-1 were reduced upon administration of Tea Tree EO.

[40]
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Table 1. Cont.

Essential Oil/Essential Oil Constituents Bacteria Findings References

Carvacrol Extended-spectrum
beta-lactamase E. coli

• Carvacrol induced a high production of ROS and bacterial membrane depolarization
with its MIC value at 450 µg/mL

• The highly oxidative stress environment in the bacterial cell changed membrane
permeability and increased the leakage of cellular contents (DNA and proteins) by
disrupting the bacterial membrane integrity.

• Further scanning electron microscopy analysis revealed the induction of structural
disruption by the interaction between carvacrol and the lipid bilayer of E. coli.

[41]

Thymol and Carvacrol R. quercus-mongolicae, R. solani

• Thymol and carvacrol showed strong fumigant antifungal activity against R.
quercus-mongolicae and R. solani.

• Generation of ROS is induced and this disrupted the fungal cell membrane, contributing
to fungal cell death.

• Thymol showed higher antifungal activity than carvacrol in R. quercus-mongolicae but this
effect does not significantly observe in R. solani.

[42]

Trans-cinnamaldehyde, Neral, and
Geranial

R. quercus-mongolicae,
R. solani

• Trans-cinnamaldehyde, neral, and geranial induced ROS production in R.
quercus-mongolicae and R. solani.

• Further microscopy analysis revealed the importance of the stated constituents in fungal
cell membrane disruption, leading to fungal cell death.

[43]
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4. Antioxidant Activities of EO in Mitigating AMR

EOs may act as pro-oxidants and antioxidants due to their complex chemistry [39].
Cinnamon bark EO, which was discussed in the previous section, was found to comprise
13 compounds, of which 4 were non-antioxidant compounds that are believed to be respon-
sible for the induction of oxidative stress by generating ROS [11]. The presence of oxidative
stress seems to conflict with the perception that the EO contains a high concentration
of antioxidants.

Although earlier research has examined the antioxidant activity of EOs by free radical
scavenging methods such as 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis-
3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay [44,45], there is limited literature
focusing on the mechanism of antioxidant action of EOs.

The outer membrane component lipopolysaccharide (LPS) of bacteria such as E. coli
play a crucial role in its antimicrobial susceptibility [46]. Upon LPS binding, toll-like
receptors on macrophages will activate the immune response’s downstream signaling
pathways, including NFκB and MAPK [47]. In a review, de Lavor and colleagues (2018)
highlighted the antioxidant activity of various EOs and their constituents in reducing
ROS concentration, NF-Kb expression, and proinflammatory cytokines synthesis after
the interaction with bacteria LPS [48]. Recent research by Pandur and colleagues (2022)
revealed similar findings on the antioxidant capacity of thyme (Thymus vulgaris L.) EO and
thymol [49]. Thyme EO and thymol significantly reduced the level of ROS at LPS-treated
human macrophage cell lines after 6 h and 24 h. Increased levels of CAT and SOD activities
were also observed, indicating the antioxidant properties of thyme EO and thymol.

Tang and colleagues (2021) employed metabolomics and found that the ROS concen-
trations were significantly lower in MRSA, while there was an increase in the concentration
of Amomum Villosum EO compared with the control group [50]. A. Villosum EO inhibited the
growth of MRSA by reducing the intracellular ROS levels, suggesting a different inhibition
mechanism of bacterial growth compared with antibiotics. The activity of key enzymes
involved in the tricarboxylic acid cycle was suppressed, leading to the inhibition of ATP
production in MRSA. Hence, the reduction of ROS levels contributed to energy metabolic
dysfunction and bacterial cell killing.

5. Challenges and Limitations in Combating AMR Using
Plant-Derived Antimicrobials

In recent decades, there has been an emerging increase in the usage of EOs and their
main constituents. The market for natural products is expected to grow substantially due to
rising consumer demand. However, side effects of EOs such as allergic reactions and skin
inflammation are present even when diluted [51,52]. Fuentes and colleagues (2021) showed
the adverse effects of EOs and their components at medium and high concentrations
exposure [53]. In vivo studies demonstrated adverse effects with acute and long-term
usage of carvacrol and thymol in animals including mice, rats, and rabbits. Exposure
to carvacrol, thymol, and eugenol caused skin irritation, inflammation, ulcer formation,
dermatitis, and slow healing in human subjects. Interaction between the lipophilic property
of EOs and the hydrophobic parts of the cell contributed to the toxicity mechanism [28].
Thus, more toxicological research focusing on chronic exposure and combined exposure
is necessary to elucidate possible risks to the biological system for the preservation of
human health.

Moreover, studies with plant-derived antimicrobials are lacking detail regarding the
involved mechanisms. The antimicrobial mechanism of EO, for example, centralized on
bacterial cell membrane disruption, which resulted in increased cell permeability and cell
death. Several approaches including genomic profiling, proteomic profiling, transcriptomic,
and metabolomics should be included in future research to provide a glimpse into cellular
physiology and their mode of action with data combined from other approaches [1]. In
addition, genetic changes of target microorganisms against EOs can be observed through
comparative analysis of gene expression between EO-treated and untreated cells [54]. A
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panel of genes that are involved in pathogenic process, stress response, basic metabolism,
and transcription regulation were identified when Kovács and colleagues (2019) employed
quantitative real-time polymerase chain reaction to compare the activities of peppermint
(Mentha piperita) EO in Campylobacter jejuni [55]. A high expression of oxidative stress
response protein was also found in the study.

The metabolomics method is another potential tool for studying the antimicrobial
mechanism of EO extracts using both quantitative and qualitative approaches [50]. Tang
and colleagues (2021) identified key metabolic pathways that influenced MRSA activity
as discussed in the previous section. Transcriptomic and proteomic profiling is becoming
a popular approach that helps to measure gene expression and protein abundance [56].
Techniques such as two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), stable
isotopic labeling method, and matrix-assisted laser desorption/ionization time-of-flight
mass spectrometry (MALDI-TOF MS) aid in finding the effective interactions of EO con-
stituents with their targets, which are mostly proteins in nature [57]. Transcriptomic
approaches can then be used to further validate the proteomics data by examining the
gene expression profile and quantifying the protein abundance. With extensive knowledge
of the mechanisms of plant-derived antimicrobials, development of novel antimicrobials
for effective therapeutic usage that may help in reviving existing antibiotics is greatly
anticipated in the near future.

6. Conclusions

In conclusion, both pro-oxidants and antioxidants bear promise as a starting point
to tackle this global challenge of AMR. Future research should therefore focus on how
pro-oxidants can benefit us without causing harm and the mechanism of action for current
antioxidants to substitute and complement antibiotic therapies if needed. Discovery and
development of multifaceted approaches that may effectively combat AMR are needed
to balance off the rapid emergence of resistant pathogens. Both human and veterinary
medicine must come up with a winning strategy by improving stewardship programs and
identifying the best practices to prevent further antibiotic resistance, which is a truly One
Health approach in AMR mitigation.

Author Contributions: Conceptualization, A.S.-Y.K., P.S.-X.Y., S.-K.Y. and K.-S.L. writing—original
draft preparation, A.S.-Y.K.; writing—review and editing, A.S.-Y.K., P.S.-X.Y., S.-K.Y., S.-H.E.L. and
K.-S.L. supervision, S.M. and Y.-H.T. funding acquisition, W.-H.C. and Y.-H.T. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was funded by the UCSI University Research Excellence & Innovation Grant
(REIG-FAS-2020/043) and Interdisciplinary Research Grant from the Higher Colleges of Technology
(Interdisciplinary_212322).

Conflicts of Interest: The authors declare no conflict of interest.

References
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