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Studies conducted in the early 1990s showed for the first time that Saccharomyces cere-
visiae can undergo cell death with hallmarks of animal apoptosis.These findings came as a
surprise, since suicide machinery was unexpected in unicellular organisms. Today, apopto-
sis in yeast is well-documented. Apoptotic death of yeast cells has been described under
various conditions and S. cerevisiae homologs of human apoptotic genes have been identi-
fied and characterized.These studies also revealed fundamental differences between yeast
and animal apoptosis; in S. cerevisiae apoptosis is mainly associated with aging and stress
adaptation, unlike animal apoptosis, which is essential for proper development. Further,
many apoptosis regulatory genes are either missing, or highly divergent in S. cerevisiae.
Therefore, in this review we will use the term apoptosis-like programed cell death (PCD)
instead of apoptosis. Despite these significant differences, S. cerevisiae has been instru-
mental in promoting the study of heterologous apoptotic proteins, particularly from human.
Work in fungi other than S. cerevisiae revealed differences in the manifestation of PCD in
single cell (yeasts) and multicellular (filamentous) species. Such differences may reflect
the higher complexity level of filamentous species, and hence the involvement of PCD in
a wider range of processes and life styles. It is also expected that differences might be
found in the apoptosis apparatus of yeast and filamentous species. In this review we focus
on aspects of PCD that are unique or can be better studied in filamentous species. We will
highlight the similarities and differences of the PCD machinery between yeast and filamen-
tous species and show the value of using S. cerevisiae along with filamentous species to
study apoptosis.
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OVERVIEW
Organisms in the fungal kingdom can be separated into two
distinct morphotypes: unicellular (yeasts) and multicellular
(filamentous), with some species having a dimorphic appear-
ance. Although this separation does not have a phylogenetic basis,
the different in morphology also extends to the molecular level.
Yeasts are the better studied group due to their long associa-
tion with human civilization and ease of use; the combination
of eukaryotic single cell type, genetic tractability, and the ability
to easily quantify cell populations, make yeasts excellent research
systems. In particular, the baker’s yeast Saccharomyces cerevisiae
has been developed as an eukaryotic model to study cellular and
developmental processes, including programed cell death (PCD).
Originally, S. cerevisiae was used as a system to evaluate and
search for human apoptotic proteins (Sato et al., 1994; Xu and
Reed, 1998). These studies lead to the discovery and study of
PCD in S. cerevisiae (Madeo et al., 1997). Research of PCD was
later extended to additional fungi, including filamentous species.
These studies revealed substantial variability in the regulation and
manifestation of PCD in different species, and especially between
S. cerevisiae and filamentous fungi. Most significantly, processes
such as multicellular development and pathogenicity, in which
PCD may play a significant role, cannot be studied in S. cerevisiae.

We will compare the current status of knowledge on PCD in S. cere-
visiae and filamentous species, and highlight the advantages of
using S. cerevisiae along with filamentous species in the study
of PCD.

PCD IN S. CEREVISIAE
In metazoans there are two major apoptotic pathways: the extrinsic
pathway, composed of a so called death receptors and ligands of the
TNF family, and the intrinsic pathway culminating in mitochon-
drial outer membrane permeability. In mammals the extrinsic
pathway is mediated by the death-inducing signaling complex
(DISC), which contains a death receptor trimer, FADD adaptor
proteins and caspases 8 and 10. The intrinsic pathway is initiated
by the release of cytochrome c from the mitochondria follow-
ing apoptotic stimuli, which along with Apaf-1 and procaspase
9 form a heptameric complex known as the apoptosome (Mace
and Riedl, 2010). Pro- and anti-apoptotic members of the Bcl-2
family of proteins, which function upstream of or at the mito-
chondria membrane, are central regulators of PCD in animals
(Chipuk et al., 2010).

Programed cell death is induced in yeast by a variety of triggers
and is accompanied by most if not all the typical characteristics
of animal apoptosis (Xu and Reed, 1998; Rockenfeller and Madeo,
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2008; Schmitt and Reiter, 2008; Carmona-Gutierrez et al., 2010).
Nevertheless, the yeast apparatus bears significant differences
compared to apoptotic apparatus in animals. Most significantly,
the entire extrinsic pathway is not found in fungi. Furthermore,
important regulators of the intrinsic pathway, including Bcl-2 pro-
teins, P-53, FLIP, poly ADP-ribose polymerase (PARP), and even
caspases do not have clear homologs in S. cerevisiae. Interest-
ingly, homologs of some of the proteins that are not present in
S. cerevisiae can be found in filamentous species (see below). Such
differences at the molecular level are indicative of significant func-
tional differences and should be taken into consideration when
comparing fungal and animal PCD.

The most highly represented apoptosis-related proteins found
in yeast are mitochondria-associated proteins. In particular, a
significant portion of the apoptosis-promoting, mitochondria-
secreted proteins have been identified, including homologs of
genes encoding for cytochrome c, the endonucleases apoptosis-
inducing factor (AIF) and EndoG, and the IAP-inhibiting serine
protease Omi/HrtA2. In addition, several orthologs of non-
mitochondrial proteins have been analyzed (for a review, see
Carmona-Gutierrez et al., 2010). Interestingly, the only known
executor of apoptosis in S. cerevisiae is the metacaspaseYca1/Mca1,
which mediates the final stages of cell death following a wide
range of stimuli (Madeo et al., 2009). Likewise, Bir1p, a class II
IAP protein and homolog of human survivin, is the only known
inhibitor of apoptosis in yeasts (Owsianowski et al., 2008). In addi-
tion to homologs of apoptosis proteins, a number of mitochondria
proteins that are involved in mitochondria fusion, fission, and
homeostasis also affect yeast apoptosis (Fröhlich et al., 2007). Dele-
tion of the S. cerevisiae dynamin related protein Dnm1p, which is
responsible for mitochondrial fission caused elongation of mito-
chondria and subsequent increase of life (Scheckhuber et al., 2007;
Carmona-Gutierrez et al., 2010). Mutants in Fis1p, an anchor pro-
tein for Dnm1p, increased sensitivity of the yeast cells to apoptosis,
probably due to selection for a whi2 mutation (Teng et al., 2011).
The microtubule and mitochondria interacting protein Mmi1p,
an ortholog of human Tctp, shuttles from the cytoplasm to mito-
chondria upon an apoptosis stimulus and promotes PCD in yeast
cells (Rinnerthaler et al., 2006).

Despite the absence of a significant portion of the animal apop-
totic network, S. cerevisiae has proven a viable system to study
human apoptosis. These studies stem from the first observation
that expression of human Bcl-2 pro- and anti-apoptotic proteins
promote or suppress PCD in yeast cells, respectively (Sato et al.,
1994; Xu and Reed, 1998). Nevertheless, as a single cell organism,
the results obtained in S. cerevisiae are limited to cellular pro-
cesses and relevance to situations in animals is not always clear;
primarily, multicell level development cannot be studied in S. cere-
visiae. In addition, certain PCD-related processes such as aging and
autophagy might be significantly different in the context of multi-
cellular organisms compared with unicellular organisms. In these
instances filamentous fungi might be useful in complementing
and augmenting the results obtained in yeasts.

PCD IN FILAMENTOUS FUNGI
Filamentous fungi combine the genetic simplicity and short life
cycle of yeast with the morphological complexity of multicellular

organism. They typically form a network of interconnected
hyphae, which are defined as “colonies” that grow by hyphal tip
extension, branching, and fusion. In higher fungi (Ascomycotina
and Basidiomycotina, subkingdom Dikarya), the septa along the
hyphae are incomplete, leaving a pore through which cytoplasm
and organelles can move (Glass and Fleissner, 2006). PCD has
been observed in higher fungi during sexual and asexual devel-
opment, for example during gills formation in mushrooms or
formation of sclerotia in some Ascomycetes (Georgiou et al., 2006).
This type of coordinated cell death echoes developmental PCD in
higher eukaryotes. In addition, and similar to the situation in
yeasts, PCD in filamentous fungi is also associated with stress
adaptation, spore formation, antagonistic interactions, and aging
(Sharon et al., 2009). However, some aspects of fungal PCD are
significantly different between single cell and filamentous species.
These differences might stem from the different lifestyles of single
cell and multicellular organisms. In addition to differences due
to unicellular and multicellular organization, there are processes
related to PCD that either cannot be analyzed in S. cerevisiae,
e.g., pathogenicity, or are significantly different in multicellular
species. The use of filamentous species in these cases is of special
importance.

PCD AND AGING
Aging is a process of progressive decline in the ability to with-
stand stress, damage, and disease. Aging processes have been
extensively studied in various model organisms including S. cere-
visiae. In addition, the filamentous fungus Podospora anserina has
been used as a model to study aging in multicellular eukaryote
(Osiewacz, 2002, 2011). In fact, study of aging in P. anserina
started already in the 1950s, and the connection of mitochon-
dria and aging was demonstrated for the first time in this fungus
(Rizet, 1953). In P. anserina, senescence is characterized by an age
related decrease in mycelium growth rate, reduction in forma-
tion of aerial hyphae, increased pigmentation, and eventual death
of peripheral hyphae (Albert and Sellem, 2002; Scheckhuber and
Osiewacz, 2008). At the microscopic level, the peripheral hyphae
show abnormal branching and swelling. In wild-type isolates of
P. anserina, aging is correlated with accumulation of mutated
mtDNA leading to mitochondrial genome instability (Stahl et al.,
1978; Kuck et al., 1985; Osiewacz and Borghouts, 2000; Albert
and Sellem, 2002). The instability of the mitochondria genome
correlates with appearance and accumulation of a 2.5-kb DNA
fragments that correspond to an integral part of the 95-kb mtDNA
and to the first intron (pl-intron) of the PaCOX1 gene, the first
subunit of cytochrome c oxidase (Cox) in the respiratory chain.
Strains selected for increased lifespan were found to be deficient in
Cox activity due to deletion of the first exon of the PaCOX1 gene.
Deletion of PaCOX5 (encoding subunit V of Cox) led to severe
decrease in growth rate, along with decreased ROS production,
drastic reduction in the rearrangement of mtDNA, and a 30-fold
increased lifespan of the fungus (Dufour et al., 2000). Mutants
with deletions in genes encoding other Cox subunits had a similar
phenotype (Lorin et al., 2006). In these mutants, respiration was
carried out via alternative oxidase (Aox)-dependent pathways, an
enzyme of the inner mitochondrial membrane. Genetic manipula-
tion that restored ROS production to wild-type levels also reversed
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the amount of mutated mtDNA to wild-type levels and reversed
lifespan of the strains to wild-type levels. Deletion of PaDNM1
forced increased lifespan and reduced sensitivity to the apoptosis-
inducing compound etoposide, further demonstrating the central
role of mitochondrion-mediated PCD in aging (Scheckhuber
et al., 2007). Collectively, these results indicate that increased
ROS levels during aging trigger mitochondria-dependent PCD
in senescent cultures of P. anserina. Deletion of putative AIFs
also leads to lifespan extension, providing evidence that aging
in P. anserina is programed and tightly connected with PCD
(Hamann et al., 2007; Brust et al., 2010).

Similar to all other systems, the final stages of PCD in fungi
are carried out by cysteine proteases exhibiting caspase activity.
At least one, but usually two or three caspase-related genes are
found in fungi. While the enzymes encoded by these genes recog-
nize the typical substrates of caspases, the encoded proteins show
limited homology to animal caspases. Furthermore, they lack a
cas domain, the most significant signature of caspases. It has been
proposed that these proteins represent an ancient form of caspases
and therefore they were termed metacaspases (Savoldi et al., 2008;
Tsiatsiani et al., 2011). A caspase-independent pathway also exists
in fungi, which (similar to situation in human) involves homologs
of AIF and AIF-homologous mitochondrion-associated inducers
of death (AMID; Modjtahedi et al., 2006).

Functional analyses of the metacaspase-dependent and -
independent pathways were conducted by deletion of either the
metacaspases or AIF members in P. anserina. Deletion of either of
the two putative metacaspases, PaMCA1 and PaMCA2, in P. anse-
rina reduced sensitivity to PCD-promoting conditions and had
a lifespan extending effect on the fungus (Hamann et al., 2007).
The AIF family in P. anserina includes at least five members that
are divided to cytosolic and mitochondria species. Deletion of
the mitochondria-residing members, either PaAIF2 or PaAMID2,
caused reduced sensitivity to oxidative conditions and extended
lifespan of the fungus. In contrast, deletion of the cytosolic iso-
forms of AIF, PaAIF1 and PaAMID1, had no effect on lifespan and
on sensitivity of the fungus to oxidative stress (Brust et al., 2010).

Together, S. cerevisiae and P. anserina form an excellent system
for unraveling the role of mitochondria in aging. Both species
are capable of adjusting their metabolism in case of mitochondria
dysfunction, but S. cerevisiae does not have the Aox pathway, which
is used by P. anserina to compensate for Cox deficiency. S. cerevisiae
also lacks complex I of the mitochondria respiratory chain and
therefore this complex can only be studied in P. anserina (Osiewacz
and Scheckhuber, 2006). Likewise, S. cerevisiae can grow under
anaerobic conditions, and hence is useful in studying processes
that might be lethal in strict aerobes such as P. anserina.

PCD AND FUNGAL PATHOGENESIS
During pathogenic interaction both the host and pathogen are
exposed to PCD-inducing conditions and compounds (Sharon
and Finkelshtein, 2009). Interestingly, all plant pathogenic fungi
are filamentous in nature. While not as strict, most human fungal
pathogens also are either filamentous or dimorphic. Furthermore,
dimorphic pathogenic species, such as the human pathogen Can-
dida albicans or the maize pathogen Ustilago maydis, switch from
a yeast to a filamentous state during transition from a latent to a

pathogenic state (Garber and Day, 1985; Lo et al., 1997). Hence,
filamentous fungi can be used to study the role of pathogen PCD
in plant and animal diseases.

In plants, the manipulation of the host apoptotic response,
either enhancement (by necrotrophic pathogens) or suppression
(by biotrophic pathogens) of PCD, is a common strategy used by
fungi to weaken the host (Sharon and Finkelshtein, 2009). This
phenomenon was demonstrated in transgenic plants expressing
anti-apoptotic genes, which suppressed PCD and enhanced or
reduced plants’ susceptibility to either biotrophic or necrotrophic
pathogens, respectively (Dickman et al., 2001; Huckelhoven et al.,
2001, 2003; del Pozo and Lam, 2003; Eichmann et al., 2004). A
number of studies demonstrated limited necrosis and restricted
spreading of the model necrotrophic pathogen Botrytis cinerea
in plants that over-express anti-apoptotic genes or in hypersensi-
tive response (HR)-deficient mutant plants that do not produce
ROS, whereas accelerated cell death mutant plants are more sus-
ceptible to this pathogen (Govrin and Levine, 2000; Imani et al.,
2006; Van Baarlen et al., 2007). Dihydrosphingosine-induced cell
death was shown to mediate phytotoxicity of AAL toxin. This
toxin is produced by the necrotrophic pathogen Alternaria alter-
nata and belongs to a class of host-selective fungal mycotoxins that
are structurally related to sphinganine, a precursor in plant sph-
ingolipid biosynthesis. AAL toxin kills the cells of sensitive host
plants by inducing PCD (Brandwagt et al., 2000). Administration
of AAL toxin to sensitive tissues blocks sphingolipid biosynthesis
and leads to accumulation of dihydrosphingosine. AAL-insensitive
plants contain the ASC-1 resistance gene, a homolog of the yeast
longevity assurance gene (LAC1). Asc1p modifies sphingolipid
metabolism in AAL-treated cells, thereby preventing accumulation
of dihydrosphingosine and induction of apoptosis (Brandwagt
et al., 2000; Spassieva et al., 2002).

Several studies documented fungal cell death during infection
and showed that it was essential for completion of pathogenic life
cycle (Howard et al., 1991; Thines et al., 2000; Veneault-Fourrey
et al., 2006). In contrast, Barhoom and Sharon (2007) reported on
hyper virulence of a cell death-protected Colletotrichum gloeospo-
rioides strain, over-expressing human Bcl-2. These studies hint
to a link between fungal PCD and disease. Early studies showed
that some plant compounds, for example the tobacco pathogen-
esis related protein osmotin, can induce PCD in S. cerevisiae
(Narasimhan et al., 2001). Additional antifungal peptides from
other organisms were found, which can induce PCD in different
fungi (Ramsdale, 2008), however the relevance of these results to
pathogenesis remains unclear. More recent studies provided new
and more direct evidences that plant defense compounds induce
PCD in fungi during plant colonization. The saponin α-tomatine,
a sesquiterpene glycoside produced by tomato, has antifungal
activity. Initially, α-tomatine was considered to promote fungal
death by disruption of membrane integrity (Friedman, 2002).
A more recent study showed that α-tomatine induces PCD in
the plant pathogen Fusarium oxysporum. Moreover, PCD was
found necessary for antifungal activity of the compound (Ito
et al., 2007). Treatment with either ROS scavengers (ascorbic
acid and dimethylthiourea) or a caspase inhibitor (Z-VAD-FMK)
reduced fungal cell death in a dose-dependent manner, suggest-
ing that α-tomatine-induced cell death in F. oxysporum is ROS
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and caspase-dependent. In addition, the fungicidal action of α-
tomatine was suppressed by the mitochondrial electron transport
inhibitor oligomycin, suggesting a role for mitochondria in the
process.

A more recent example demonstrated the role of PCD in
pathogenicity of B. cinerea. Camalexin, the major phytoalexin
produced in Arabidopsis, belongs to a group of secondary metabo-
lites with anti-microbial activity that are produced in plants upon
microbial attack (collectively called phytoalexins) and form a
line of defense against potential pathogens (Kliebenstein et al.,
2005; Lazniewska et al., 2010). Similar to other phytoalexins,
camalexin has growth inhibiting activity against a wide range
of microorganisms (Ferrari et al., 2003; Kliebenstein et al., 2005;
Rowe et al., 2010). Micromolar concentrations of camalexin were
found to induce PCD in B. cinerea, but at higher concentrations of
camalexin the apoptotic markers were reduced, indicating that at
these concentrations necrotic cell death was induced (Finkelshtein
et al., 2011; Shlezinger et al., 2011b). Similar results were also
observed following treatment of B. cinerea with hexanoic acid,
another plant defense compound (Finkelshtein et al., 2011). These
results suggest that when exposed to plant defense molecules dur-
ing the early phase of infection, B. cinerea might be subjected to
host-induced PCD. In this event, fungal anti-apoptotic machin-
ery might be necessary for survival and pathogenicity. In order to
investigate this possibility, Shlezinger et al. (2011b) tested the role
of B. cinerea anti-apoptotic BcBir1 protein in disease. This study
revealed that following germination and formation of first con-
tact with the plant, the fungus undergoes massive PCD [between
30 and 48 h post-inoculation (PI)], and then fully recovers at
72 h PI, when spreading lesions start to develop. PCD-modified
strains were produced by manipulation of the BcBIR1 gene; over-
expression strains were less sensitive, and knockdown strains were
hypersensitive to apoptosis induction, respectively. Plant infec-
tion assays showed enhanced and reduced virulence of the BcBIR1
over-expression and knockdown strains, respectively. Importantly,
the levels of PCD in BcBIR1 over-expression strains was markedly
reduced between 30 and 48 h PI compared to almost complete
elimination of the wild-type cells at this time point. In contrast,
in the knockdown strain there was early and intense PCD and it
remained high also at 72 h PI, when the wild-type cells showed
complete recovery. On Arabidopsis thaliana mutant plants that are
impaired in defense responses and are hypersensitive to B. cinerea,
PCD levels were reduce in all strains, confirming that the amount
of fungal PCD is negatively correlated with plant susceptibility to
the fungus. Specifically, the phytoalexin-deficient pad3 mutant,
which does not produce camalexin, was highly susceptible to B.
cinerea, and disease was produced on this line also following infec-
tion with the Bcbir1 knockdown strain. As pointed out, camalexin
induced PCD in B. cinerea wild-type strain in vitro. In accordance
with the PCD-promoting effect of camalexin, the BcBIR1 over-
expression and knockdown strains showed reduced or enhanced
sensitivity to camalexin, respectively, along with reduced PCD on
the pad3 plants.

PCD IN CELL–CELL INTERACTIONS: HETEROKARYON INCOMPATIBILITY
In filamentous fungi, vegetative hyphae commonly fuse. These
hyphal fusions occur during colony formation as well as between

hyphae of different strains as part of parasexual reproduction
(Saupe et al., 2000; Glass and Kaneko, 2003; Glass and Dementhon,
2006). The fusion between hyphae from different strains leads to
formation of a heterokaryon, a situation in which cells contain
nuclei of different genetic background. Specific heterokaryon-
incompatibility (HI) loci determine fusion compatibility between
hyphae from different strains (Leslie and Zeller, 1996; Glass et al.,
2000). When hyphae that are not vegetative compatible fuse,
a rapid, localized cell death is activated that specifically kills
the fusion cell and prevents heterokaryon formation (Glass and
Kaneko, 2003).

In many ways, HI resembles the HR in plants, during which
localized PCD prevents pathogen spreading (Lam et al., 2001).
Both HI and HR are accompanied by classical apoptotic markers
and have been widely studied (del Pozo and Lam, 1998; Jacobson
et al., 1998; Glass et al., 2000; Saupe et al., 2000; Marek et al., 2003;
Glass and Dementhon, 2006; Paoletti and Clave, 2007; Williams
and Dickman, 2008). During HI, the fusion hyphae undergo
a series of apoptosis-associated morphological changes, includ-
ing cytoplasm condensation, vacuolization, and shrinkage of the
plasma membrane (Glass and Kaneko, 2003; Marek et al., 2003;
Glass and Dementhon, 2006). Nuclear fragmentation and positive
TUNEL staining have also been documented. Data from whole
genome microarrays of Neurospora crassa showed that ROS, phos-
phatidylinositol and calcium signaling, are all involved in HI and
PCD. However, homologs of apoptotic genes, such as caspases
(metacaspases) and AIF were not required for HI in N. crassa
(Hutchison et al., 2009).

Severin and Hyman (2002) showed that in the absence of an
appropriate mating partner, exposure of yeast cells to pheromones
of the opposite mating type leads to ROS accumulation, DNA
degradation, and cell death. It should be noted however that
pheromone-induced cell death was observed at pheromone con-
centrations that were 10-fold higher than physiological concentra-
tions; no cell death was induced by physiological concentrations
of the mating pheromone. Unlike the case of yeast pheromones,
PCD is a general phenomenon of HI and occurs naturally. The
widespread occurrence and high number of HI loci in filamen-
tous fungi argues for their importance. Therefore, HI represents
an important process in which PCD plays major role. This system
can be used in functional and mechanistic studies of heterologous
apoptotic proteins and has several advantages over other systems,
including budding yeasts. Mainly, the induction of PCD during HI
is very rapid and it does not require application of exogenous sub-
stances (Garnjobst and Wilson, 1956; Biella et al., 2002; Glass and
Kaneko, 2003; Sbrana et al., 2007). Thus, apoptosis can be studied
under natural conditions in a short time period, in contrast to
PCD induced by aging or starvation.

ANTIFUNGAL DRUGS AND PCD
Recognition in the importance of PCD in fungi has led to re-
evaluation of the mode of action of leading antifungal drugs.
Surprisingly, it was found that a range of well-known antifungal
compounds induce PCD in fungi. For many years amphotericin
B (AmB) has been the most common drug used to treat fungal
infections (Brajtburg et al., 1990). Similar to other polyene antibi-
otics, AmB has high affinity to sterols, particularly ergosterol.
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The antifungal activity of AmB was attributed to formation of
pores in the cell membrane and hence distortion of the fungal
cell integrity (Liao et al., 1999). More recently it was found that
AmB induces PCD in fungi, including the human pathogens C.
albicans and A. fumigatus (Phillips et al., 2003; Mousavi and Rob-
son, 2004). Notably, at concentrations of 1 mg/ml AmB or higher,
cell death shifted from apoptotic to necrotic, as determined by
increased and decrease propidium iodine- and TUNEL-positive
cells, respectively. Similar to HI PCD, appearance of apoptotic
markers could not be blocked or reduced by caspase inhibitors,
nor were any changes recorded in caspase activity, suggesting
a caspase-independent process. Additional antifungal drugs of
different chemical groups have been reported to induce PCD
in fungi, suggesting that induced PCD might be a common
mode of action for many antifungal compounds (Ramsdale,
2008). The induction of apoptosis by AmB might be mediated
by sphingolipids that are released from the plasma membrane.
Sphingolipid metabolism is associated with a wide range of cellu-
lar activities, including stress response, apoptosis, inflammation,
cell-cycle regulation, and cancer development (Dickson, 1998;
Kolesnick and Krönke, 1998; Hannun and Luberto, 2000; Hannun
et al., 2001). Two major sphingoid bases of fungi – dihydrosphin-
gosine and phosphosphingosine, induced ROS accumulation and
cell death with typical markers of apoptosis in Aspergillus nidulans
(Cheng et al., 2003).

Greater understanding of PCD in pathogenic fungi may offer
a chance of exploiting the fungal death machinery to control fun-
gal infections. Clearly identifiable differences between the death
machineries of pathogens and their hosts make this a feasible task.

THE FUNGAL PCD MACHINERY
As pointed out earlier, the complete extrinsic apoptosis pathway
and major signaling components upstream of the mitochondria
(intrinsic) pathway, are not found in fungal genomes. This raises
the question if there are functional homologs of these proteins,
which do not share sequence similarity. A number of studies
showed that expression of Bcl-2 protein members triggers (e.g.,
Bax) or prevents (e.g., Bcl-2) PCD in fungi (Longo et al., 1997;
Fröhlich and Madeo, 2000; Polcic and Forte, 2003; Barhoom and
Sharon, 2007). Thus, despite the lack of Bcl-2 homologs, proteins
of the Bcl-2 family are recognized in fungi and specifically acti-
vate (pro-apoptotic members) or block (anti-apoptotic members)
PCD. Studies in B. cinerea revealed a number of proteins that inter-
act with the human Bcl-2 protein and might mediate the effect of
this protein in the fungus. Moreover, a yeast two-hybrid screen
of a B. cinerea expression library that was performed with some
of these candidates led to identification of proteins that inter-
act with the same Bcl-2-interacting proteins (Oren-Young and
Sharon, unpublished results).

Filamentous fungi have larger genomes and more complex
development programs compared to S. cerevisiae. It is therefore
intuitive to assume that PCD pathways in filamentous species will
include a larger number of proteins and would be more complex
compared with S. cerevisiae. Indeed, a few homologs of animal
apoptotic proteins that are not found in S. cerevisiae can be iden-
tified in genomes of filamentous species using a simple BLAST
search. Some processes, such as the HI response are restricted to

filamentous species and therefore genes that are involved in regula-
tion of these processes are not present in unicellular species. More
than 50 putative human and mouse apoptosis-associated genes
that are not found in S. cerevisiae were described in Aspergillus
and represent a potentially filamentous-specific PCD regulators
(Fedorova et al., 2005). In addition to protein homologs of com-
ponents of the metazoan apoptotic machinery, this list includes
many fungal-specific genes, such as het loci, and species-specific
protein families. Functional analyses were performed only on a
small number of candidates, and therefore it is unclear how many
proteins on this list are true regulators of PCD.

Neurospora crassa HET-C2 is probably the best characterized
HI gene. HET-C2 orthologs were identified in genomes of all
filamentous species and are also present in many animals and
plants, but they are not found in S. cerevisiae or in the fission yeast
Schizosaccharomyces pombe. The high level of conservation among
Het-C2 family members is consistent with the important role of
these proteins in glycosphingolipid and sphingosine metabolism,
and possibly in regulation of cellular stress responses. Het-C2
shows significant similarity to human Gltp (Rao et al., 2004)
and A. thaliana Acd11 (Brodersen et al., 2002), which catalyze
intermembrane transfer of glycosphingolipids and sphingosines,
respectively. P. anserina Het-C2 was proposed to act as a glycol-
ipid metabolite sensor in addition to its role in glycolipid transfer,
regulation of ascospore maturation, and triggering of HI (Saupe
et al., 1994; Mattjus et al., 2002). The high level of sequence con-
servation in this family, suggests that the role of Het-C2 orthologs
in Aspergilli PCD is likely similar.

Interestingly, many of the identified PCD-related proteins from
Aspergillus, such as Amid, Bir1, HtrA,and CulA,are more similar to
their human counterparts than to the yeast homologs. Moreover, a
small number of animal apoptotic proteins, including PARP, have
homologs in filamentous fungi but are not found in S. cerevisiae.
PARPs catalyze the NAD(+)-dependent modification of proteins
with poly (ADP-ribose), which play key roles in a plethora of pro-
cesses including DNA repair, tumor progression, and aging. PARP
is one of the known target proteins inactivated by caspase degra-
dation in animal cells (Schlegel et al., 1996). A. nidulans PARP-like
protein is broken down by caspase activity during sporulation-
induced PCD (Thrane et al., 2004). P. anserina genome encodes
a single protein with a PARP catalytic domain. Over-expression
of the gene caused increased sensitivity to apoptosis inducers,
impaired growth and pigmentation, sterility, and a shorter lifespan
(Müller-Ohldach et al., 2011).

The availability of a large number of fungal genomes pro-
vides new opportunities to search for additional PCD-associated
fungal genes. In many cases, homology with the entire animal
ortholog is rather low or restricted to a specific domain and
hence simple BLAST searches might not be sensitive enough
to recognize the homology. In order to obtain a deeper cover-
age of the putative fungal PCD orthologs, a computer-guided
approach was developed, which enables automatic searches of
all available fungal genomes for presence of homologs of apop-
totic proteins or domains (Shlezinger et al., 2011a). Using this
approach, it is possible to identify all the fungal genes that are
putative homologs of known apoptotic genes or that contain a
putative apoptotic domain. Searches conducted with this program
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revealed that except for BIR, all other conserved apoptotic domains
were absent from fungal genomes, including Bcl-2 homology (BH)
domains (BH1–4), caspase recruitment domain (CARD), cellular
apoptosis-susceptibility (CAS) protein, death domain (DD), death
effector domain (DED),CIDE [cell death-inducing DNA fragmen-
tation factor 45 kDa α (DFFA)-like effector], or death receptors.
Likewise, homologs of many central apoptosis regulators, such as
P53, Flip, Smac/Diablo, Apaf1, and even caspases are not read-
ily found in fungi. It should be noted that putative homologs for
some of these proteins have been reported in filamentous species,
including P53 (Katz et al., 2006) and PARP (Fuchs and Steller,
2011). However in most instances homology centers around parts
of the proteins that are associated with general functions, such as
protein interaction, while the domain known to mediate apopto-
sis is usually absent. A unique exception is the S. cerevisiae Bxi1, a
homolog of the human lifeguard 4 protein. Similar to all members
of the lifeguard family of proteins, Bxi1 contains a Bax inhibitor 1
(BI-1)-like domain, and therefore was assumed to represent a yeast
homolog of BI-1 (Chae et al., 2003; Cebulski et al., 2011). How-
ever, recent work has shown that this protein contains a BH3-like
signature at the carboxy part of the protein. Remarkably, func-
tional analyses confirmed a pro-apoptotic activity in these residues
(Buttner et al., 2011). Search of fungal genomes using the domain-
centered approach revealed a single homolog of lifeguard 4/Bxi1
in all fungi. However, in filamentous species members of the
subkingdom Dikarya (Ascomycetes and Basidiomycetes), a true
homolog of plant and human BI-1 was also found (Goldfinger
and Sharon, unpublished). These new findings indicate that addi-
tional “missing” fungal homologs of animal apoptotic proteins
and domains might be found using more robust bioinformatic
approaches.

SUMMARY
The realization in the early 1990s that yeast cells contain a sui-
cide mechanism led to intense research of PCD in S. cerevisiae.
The PCD response was characterized in great detail, S. cerevisiae
homologs of mammalian apoptotic genes were identified, and the

relevant proteins analyzed. Based on these studies it is now gen-
erally accepted that yeast cells contain a PCD machinery, which
resembles the animal apoptosis machinery. Studies of PCD in
additional fungi lagged behind the work in budding yeasts, and
a more intense research was initiated only in the past decade.
As expected, the machinery is similar to the one found in S.
cerevisiae, however some differences were also revealed. Most
significantly, it was realized that PCD is important for fungal
pathogenicity and multicellular-level development. Furthermore,
filamentous species contain more PCD-related genes, including
a few homologs of animal apoptosis proteins, which are absent
in yeasts, and some that are fungal specific, such as the HI pro-
teins encoding genes. The expansion of the research to additional
species also led to better mapping of apoptosis networks in fungi.
Using robust bioinformatics, it was possible to not only identify
more components of the PCD apparatus in fungi, but also to
exclusively show what parts of the animal machinery are missing
or significantly altered. From such analyses it is now clear that
the entire death receptors-mediated extrinsic pathway is missing
in the fungal kingdom. Further, the main regulators of the intrin-
sic pathway that are responsible to initiate mitochondria-related
apoptosis also seem to be largely absent in fungi. These discov-
eries put fungal PCD in a new light; while the pioneering studies
in S. cerevisiae uncovered the presence of PCD machinery that is
highly similar to animal apoptosis, the expansion of the research
to additional fungal species shows that the molecular machinery
bears significant differences compared with the animal apoptotic
machinery. These differences probably also reflect differences in
the execution and role of PCD in fungi compared to animals. We
expect that research of fungal PCD will intensify and extend to an
even wider range of species, leading to a deeper understanding of
the regulation of this process and the physiological roles that it has
in fungal life cycles.
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