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Abstract: Background: Determination of the number of abrasive particles embedded in the zirconia
surface after variable parameters of treatment. Methods: One hundred thirty cylindrical disks made
from zirconia were divided into 7 groups (n = 10): one control and six test groups treated by air
abrasion using Al2O3 or SiC with grain sizes: 60, 110, 250 µm with a working pressure of 0.2 or
0.35 MPa. The SEM images were observed in BSE and BSE 3D. The chemical composition was
determined by means of X-ray microanalysis with EDS. The surface was determined by quantitative
metallography methods. Surfaces (%) depending on the particle type were compared using the
Mann-Whitney test, depending on the pressure were compared using the Mann-Whitney test,
and depending on the grain size were compared using the Kruskal-Wallis test as well as the
Jonckheere-Terpstra trend test as well as the Dunn post-hoc testA probability. Value of p < 0.05
was deemed significant, while a p-value of p < 0.01 was regarded as highly significant. Results:
After blasting aluminium and silicon particles were embedded in zirconia surface. When blasted
with Al2O3, the average amount of embedded grain was higher, while in the case of SiC. Highly
significant differences were observed in the surface share of the abrasive depending on the grain size.
At a pressure of 0.20 MPa the quantity of embedded abrasive amounted to 6.63, and at the pressure of
0.35 MPa rose to 7.17. Most particles of abrasive material became embedded when sandblasting with
grain size 60 µm grain. No significant difference was observed in the surface share of the abrasive
depending on the pressure. Conclusion: The quantity of embedded abrasive depends on its type and
grain size, and the pressure applied.

Keywords: air abrasion; abrasive particles; zirconia

1. Introduction

Air-borne particle abrasion is widely used in dental technology. Its main function is to remove
excess material, provide shape to the treated elements and create a suitable surface in dentures.
This form of treatment utilises the kinetic energy of abrasive grains in a stream of compressed gas
(usually air). The accelerated abrasive grains strike the surface of the treated element and this process
results in abrasive grain particles micro-cutting the substrate, which, as a consequence, results in loss of
material. This process is often referred to as abrasion and the treatment is known as abrasive blasting.

Abrasive blasting is already applied in the initial stages of preparing prosthetic restorations with
the aim of cleaning dental alloy castings. It is also a routine method for preparing the surface
of metal alloys prior to ceramic firing. Its purpose is to expand the surface and change such
physicochemical properties as, e.g., the electrostatic potential and free surface energy [1]. Changes
in the surface lead to an increase in the bonding strength between the metal and ceramic through
the creation of surface roughness by mechanical means, which later allows liquid ceramic to attach
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and penetrate. Abrasive blasting treatment also improves bonding strength by removing weakly
attached overhangs and metal flakes formed during the grinding process, which ensures better
anchoring and increases wettability [2,3]. Moreover, in the case of certain connection systems,
e.g., titanium-ceramic, this method is practically the only possible way of increasing bond strength
owing to titanium’s properties.

The use of air abrasion to treat zirconium dioxide (3 TPZ-Y) surfaces is a highly debatable issue.
Its extreme hardness (12.17–13.7 GPa) impedes surface expansion and makes it difficult to prepare
the surface properly for ceramic firing [4–6]. Many scientific studies deny that air abrasion has any
significant effect on improving bonding with veneering ceramic, regardless of the grain size [7,8].
Moreover, other studies demonstrate the negative influence of air abrasion on the structure of zirconium
dioxide [9]. However, the majority of authors show that air abrasion improves the quality of the bond
with veneering ceramic and should be recommended [10–13].

Air abrasion is known to cause an unfavourable tetragonal-to-monoclinic phase transformation
in material, which consequently results in surface tension [14]. In the opinion of certain authors,
this transformation makes the material more susceptible to damage, which in turn may cause surface
ageing as the grain crumbles, microcracks appear, and the strength of the material is reduced [15–17].
According to other researchers, the thickness of the layer in which the transformation occurs is
insufficient to cause microcracking and reduce flexural strength [18].

What is certain is that during blasting abrasive particles with high kinetic energy become
embedded in the treated material. It is not entirely known whether this phenomenon has negative or
positive effects. The particles left in the material reduce the surface smoothness [19,20]. When porcelain
is fired on air-borne particles abraded surfaces the role of embedded particles is not entirely clear.
On the one hand, they expand the treated surface, which may improve the quality of the bond.
On the other, they are accompanied by phase destabilisation and the breaking of the grains, and they
may also initiate fracturing of ceramic when prosthetic restorations are worn [21]. Also not without
importance is the possibility that embedded abrasive grains may react with the fired ceramic. It is thus
of key importance to determine the quantity of grains that become embedded as different blasting
parameters are applied. This may be important for establishing the appropriate blasting parameters
for zirconium dioxide. This is because, in spite of the claims of many studies, this bond is still the
weakest point of prosthetic restorations and results in chipping and fracturing.

The objective of this study was to examine the influence of selected abrasive blasting parameters
on the quantity of Al2O3 and SiC abrasives embedded on the surface of zirconium dioxide (3 TPZ-Y).

2. Materials and Methods

A total of 130 cylindrical specimens of 3Y-TZP (Ceramill Zi; Amann Girrbach AG, Koblach,
Austria) were sintered in a furnace (Ceramill Therm; Amann Girrbach AG) by using a universal
program (8 ◦C per minute from 200 ◦C to 1450 ◦C, 2 h at a fixed temperature of 1450 ◦C, and the
correct cooling time). The sintering process lasted approximately 10 h. Material shrinkage amounted
to approximately 21%. After sintering, the specimens had a diameter of 9 mm and height of 5 mm.

To make the surface uniform before airborne-particle abrasion, the disks were ground on a rotary
grinder (Metasinex; Metasinex Row, Poland) with SiC abrasive paper with a grit size of 220, 400, 600,
and 800 under water cooling, washed in an ultrasonic washer (Quantrex 90 WT, L&R Manufacturing,
Inc., Kearny, NJ. USA) in ethyl alcohol for 10 min and dried with compressed air (Tornado 4,
Durr Dental AG, Bietigheim-Bissingen, Germany). An oil-free air compressor with a particulate
filter was used.

Ten samples were left after grinding to serve as a control group. The rest of the specimens
were treated with an airborne-particle abrasion process (Mikroblast Duo; Prodento-Optimed, Warsaw,
Poland) using Aluminum oxide (Al2O3) or silicon carbide (SiC). A fixed angle of 45 degrees and
a distance of 10 mm from the airborne-particle abrasion nozzle (Mikroblast Duo; Prodento-Optimed)
were chosen for further experiments. The abrasion time of the specimens was established at 10 s.
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The variable parameters were as follows:

• size of grain: 60, 110, 250 µm,
• working pressure: 0.2, 0.35 MPa.

Figure 1 shows images of aluminium oxide grains. Grains marked 60 µm are typically between
53 and 75 µm in size. Grains marked 110 µm are typically between 106 and 125 µm in size. Grains
marked 250 µm are typically between 238 and 275 µm in size.
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Figure 1. Selected of SE images of aluminium oxide grains. (A) 60 µm; (B) 110 µm; (C) 250 µm.

After abrasive blasting the samples were cleaned with pressurised steam, washed in deionized
water in an ultrasonic washer for 8 min, after which they were dried with compressed air.
The specimens were examined with an electron scanning microscope (SEM S-3000N; Hitachi
High-Technologies Corp, Tokyo, Japan). Depending on the type of registered signal emitted by
the specimen (after being stimulated by electron beams), 2 types of images were registered in SE
secondary electrons (surface topography) and retrospectively in backscattered BSE electrons (so-called
material contrast). Figure 2 shows selected SEM images obtained with back-scattered electrons (BSE)
(“material contrast”) and BSE 3D (surface topography) after grinding and blasting with Al2O3 and SiC
110 µm particles under pressure of 0.2 MPa.

Dark areas were visible on the surfaces of the samples following abrasive blasting, indicating
differences in the chemical composition of these areas in relation to the treated substrate. The chemical
composition of the samples was determined on the basis of an X-ray microanalysis with an energy
dispersive spectrometry EDS, using a microanalysis attachment produced by Thermo Noran in
combination with SEM. Sample EDS spectrograms are shown in Figure 3.

EDS spectrograms of treated samples showed, besides signals of zirconia (Zr) and oxygen (O)
coming from the base of the samples, signals from additional elements. An additional signal from
aluminium in a sample blasted with aluminium oxide (Al2O3) as well as from silicon in a sample
blasted with silicon carbide (SiC) indicates they originate in the abrasive material. To identify and
determine which areas (dark or light) observed under a microscope originate from abrasive material,
additional observations were made of samples under SEM at 800× magnification, together with
spectrograms of dark and light areas. In addition, a surface distribution map was prepared of elements
in the observed areas. Sample SEM images following Al2O3 and SiC treatment are presented in
Figures 4A and 5A as well as an EDS analysis are presented in Figures 4B, 5B,C and 6C. The surface
distribution maps of elements are set out in Figure 6.
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Figure 2. Results of SEM examination (original magnification 500×) obtained with BSE and BSE 3D
on zirconia surfaces: (A) after grinding (BSE); (B) after grinding (BSE 3D); (C) after blasting with
Al2O3110 µm particles under pressure of 0.2 MPa (BSE); (D) after blasting with Al2O3 110 µm particles
under pressure of 0.2 MPa (BSE 3D); (E) after blasting with SiC 110 µm particles under pressure of
0.2 MPa (BSE); (F) after blasting with SiC 110 µm particles under pressure of 0.2 MPa (BSE 3D).
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Figure 6. Results SEM examination (original magnification 800×) and distribution of elements
on sample surfaces: (A) SEM examination on zirconia surface after blasting with Al2O3;
(B) SEM examination on zirconia surface after blasting with SiC; (C,D) surface distribution of zirconium;
(E) surface distribution of aluminium; (F) surface distribution of silicon.
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The dark elements visible in the microscope image and shown in Figure 4A contain aluminium,
while the dark elements presented in Figure 5A contain silicon.

This shows unequivocally that they are embedded abrasive particles. The analysis confirmed the
presence of Al in samples following blasting with Al2O3 and Si following blasting with SiC in relation
to the original sample (without blasting).

Then, with the aim of showing and determining the number of grains embedded in the treated
surfaces, 10 images were taken at each of a number of randomly selected sites based on SEM microscope
images with back-scattered electrons (material contrast). Exemplary images of samples are presented
in Figure 7.
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Figure 7. Selected results of SEM examination (original magnification 500×) on zirconia surfaces
(backscattered electrons BSE): after blasting with Al2O3 with pressure 0.35 MPa and the following
grain sizes: (A) 60 µm; (B) 110 µm; (C) 250 µm after blasting with SiC with pressure 0.35 MPa and the
following grain sizes: (D) 60 µm; (E) 110 µm; (F) 250 µm.

Then, the surface coverage of the abrasive material particles was determined with quantitative
metallography methods using Metillo software [22–27]. The process was as follows:

1. Microscope image loaded into Metillo programme (Figure 8A).
2. Shadow correction.
3. Normalisation of grey level histogram (Figure 8B).
4. Manual binarization of image.
5. Calculation of surface share–in percentage terms–of dark (red) areas, as a share of abrasive

elements embedded in the surface of a sample.
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(for calculation purposes).

Statistical Analyses

Statistical analyses of the results were conducted using PQStat statistical software version 1.6.4.122.
Surfaces [%] depending on the particle type were compared using the Mann-Whitney test.

Surfaces [%] depending on the pressure were compared using the Mann-Whitney test.
Surfaces [%] depending on the grain size were compared using the Kruskal-Wallis test as well as

the Jonckheere-Terpstra trend test as well as the Dunn post-hoc testA probability value of p < 0.05 was
deemed significant, while a p-value of p < 0.01 was regarded as highly significant.

3. Results

The results of the study, which calculated the number of embedded grains, are presented in
Tables 1 and 2. Figures 9–11 show its in graphic form.

Table 1. Surface share of abrasive depending on type of particle, pressure and size of grain-Dunn’s test.

Descriptive Statistics
Particles Pressure (Mpa) Grain Size (µm)

Al2O3 SiC 0.2 0.35 250 110 60

Arithmetic mean 7.10 3.29 4.56 5.83 4.99 4.51 6.085

Median 7.02 2.84 4.35 5.91 3.17 4.10 6.385

Standard deviation 2.34 1.59 2.06 3.21 3.62 2.78 1.0344

Minimum 2.93 1.21 1.63 1.21 1.86 1.21 4.19

Maximum 11.86 7.01 7.94 11.86 11.86 8.57 7.94

Lower Quartile < 0 6.38 1.96 2.52 3.08 2.84 1.80 5.1175

Upper quartile 7.91 4.75 6.61 7.79 5.49 7.14 6.945

Test statistics Z = 7.9545 Z = 1.9525 H = 9.8445

p p < 0.0001 p = 0.0509 p = 0.0073

Dunn’s test
(post-hoc) Grain size (µm)

250 0.7237 0.0116

110 0.7237 0.0040

60 0.0116 0.0040

Highly significant (p < 0.0001) differences were observed in the surface share of an n abrasive,
depending on the particle type. In the case of Al2O3 the results were in general higher than in the case
of SiC.

No significant difference was observed in the surface share of the abrasive (p = 0.0509) depending
on the pressure.
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Highly significant differences were observed in the surface share of the abrasive (p = 0.0073)
depending on the grain size. The Jonckheere-Terpstra trend test indicates a highly significant
(Z = 3.5418, p = 0.0004) trend, i.e., the smaller the grain the higher the surface share of the abrasive.
In the post-hoc analysis the results for the size 60 grain differ significantly (p < 0.05) from the results
for grain sizes 110 and 250 µm, between which there no significant differences (p < 0.05).

Figure 9 surface share of abrasion according to particle type.

Table 2. Surface share of abrasive depending on type of particle, pressure and size of grain: Dunn’s test
with Bonferroni and, Sidak corrections as well as the Conover-Iman test.

Post-Hoc Grain Size (µm)
Grain Size (µm)

250 110 60

Dunn-Bonferroni correction (post-hoc)
250 10,000 0.0349
110 10,000 0.0121
60 0.0349 0.0121

Dunn-Sidak correction (post-hoc)
250 0.9789 0.0345
110 0.9789 0.0120
60 0.0345 0.0120

Conover-Iman test (post-hoc)
250 0.7150 0.0102
110 0.7150 0.0035
60 0.0102 0.0035

As the analysis shows, the conclusions are the same as in the case of Dunn’s test.
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Figure 11. Surface share of abrasion according to grain size.

The analysed results revealed highly significant differences, depending on the abrasive type.
In the case of Al2O3 the arithmetic mean of embedded grain from blasting was 7.10, while the average
arithmetic mean in the case of SiC was 3.29.

The size of the grain was another highly significant factor impacting on the results obtained.
The average amount of embedded abrasive in the case of a grain 250 µm in size is 4.99, compared
with 4.51 recorded for a 110 µm grain, and 6.08 for a 60 µm grain. The amount of embedded 60 µm
grain is significantly higher than when the material is blasted with 110 µm grain or 250 µm grain µm.
No significant differences were observed with regard to the amount of pressure.
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No significant difference was observed in the surface share of the abrasive (p = 0.0509) depending
on the pressure.

4. Discussion

Microscopy observations (in back-scattered electrons) of sample surfaces following abrasive
blasting treatment reveal the presence of a phase diverging from the 3TPZ-Y substrate. An exemplary
analysis of the chemical composition of sample surfaces (Figures 4A and 5A) performed under
a scanning microscope demonstrated that particles of abrasive material–aluminium oxide or silicon
carbide–remain on zirconia surfaces following abrasive blasting treatment.

Microscopic analysis already clearly reveals that—when comparing the surfaces of samples
treated with grain of identical size (Figure 2)—the influence that the kind of abrasion particle and
its gradation and applied pressure have on the state of the surface. More embedded abrasives were
observed following treatment with Al2O3 grain than SiC treatment. This may be a consequence of
differences in their hardness (Al2O3 14–18 GPa, SiC 18–25 GPa). Perhaps because it is harder and more
fragile SiC grains are more susceptible to crumbling on impact with the treated surface and thus fewer
become embedded. This may especially be the case with small particles. The highest quantity of AI
embedded in the surface of zirconium dioxide occurred with grains 60 µm in size.

The larger grains have themselves a larger surface area, i.e., the same numer of embedded grains
should give a greater surface share, but there is still the possibility of grains crumbling and larger
grains have a greater tendency to crumble. Besides this, larger graines could also be more weakly
embedded in the surface, and as a consequence, due to their very weak connection, they could become
detached during cleaning. This is probably the reason why of the three granularities tested we achieved
the maximum with the 60 µm grain. This is confirmed by earlier studies [28].

An analysis of the quantity of embedded abrasive particles reveals the existence of a relationship
between the type of grain and its size, but no between the amount of pressure applied. No significant
difference was observed in the surface share of the abrasive depending on the pressure

In summing up the study it should be pointed out that during the course of the blasting treatment
abrasive particles became embedded in the treated surface. Embedded elements may have a positive
or negative impact on the treated surface of zirconium dioxide as well as on the quality of the bond
with the veneering ceramic.

5. Conclusions

1. Following abrasive blasting treatment aluminium oxide and silicon particles were observed
embedded in the treated surface of the zirconia.

2. A larger quantity of embedded abrasive was observed after blasting with Al2O3 than after
blasting with SiC.

3. Most particles of abrasive material became embedded when blasting with size 110 grain.
4. No significant difference was observed in the surface share of the abrasive depending on

the pressure.
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