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ABSTRACT To better understand the evolution of virulence we are interested in identifying the genetic basis
of this trait in pathogenic fungi and in developing tools for the rapid characterization of variation in virulence
among populations associated with epidemics. Fusarium oxysporum f. sp. vasinfectum (FOV) is a haploid
fungus that causes devastating outbreaks of Fusariumwilt of cotton wherever it is grown. In the United States,
six nominal races and eleven genotypes of FOV have been characterized based on the translation elongation
factor (EF-1a) gene and intergenic spacer region (IGS), but it is unclear how race or genotype based on these
regions relates to population structure or virulence.We used genotyping-by-sequencing to identify SNPs and
determine genetic diversity and population structure among 86 diverse FOV isolates. Six individuals of
Fusarium oxysporum closely related to FOV were genotyped and included in some analyses. Between
193 and 354 SNPs were identified and included in the analyses depending on the pipeline and filtering
criteria used. Phylogenetic trees, minimum spanning networks (MSNs), principal components analysis (PCA),
and discriminant analysis of principal components (DAPC) demonstrated that races and genotypes of FOV
are generally not structured by EF-1a genotype, nor are theymonophyletic groups with the exception of race
4 isolates, which are distinct. Furthermore, DAPC identified between 11 and 14 genetically distinct clusters of
FOV, whereas only eight EF-1a genotypes were represented among isolates; suggesting that FOV, especially
isolates within the widely distributed and common race 1 genotype, is more genetically diverse than currently
recognized.

KEYWORDS

fungi
races
FOV
genotyping-by-
sequencing

population
genetics

plant pathology

Fusarium oxysporum (Fo) is an agriculturally important fungus that
causes disease on over 120 plant hosts (Edel-Hermann and Lecomte
2019). Fo is subcategorized into formae speciales (ff. spp.), with each
forma specialis (f. sp.) defined by the host on which it can cause disease.
Most formae speciales of Fo are soilborne plant pathogens that cause
vascular wilt diseases. Examples include: Fusarium oxysporum f. sp.
niveum, which causes the globally important Fusarium wilt of water-
melon (Martyn 2014); and Fusarium oxysporum f. sp. cubense, which
causes the devastating Panama disease of banana (Ploetz 1994).

Interestingly, the formae speciales of Fo are often polyphyletic. Based on
sequence similarity for the translation elongation factor (EF-1a) gene
and the intergenic spacer region (IGS), individuals from different
formae speciales may be more closely related to each other than
individuals in the same forma specialis, suggesting that pathogenicity
to certain plant hosts has independently arisen multiple times from
distinct lineages (O’Donnell et al. 2009). This most likely resulted from
the horizontal transfer of lineage-specific pathogenicity chromosomes,
also called accessory chromosomes (Ma et al. 2010). Fusarium oxy-
sporum is characterized by the presence of lineage-specific (LS) chro-
mosomes, which are enriched with transposable elements (TE’s) and
genes for small secreted proteins. The LS chromosomes are also highly
divergent among different formae speciales, suggesting that they play a
role in host-specialization (Ma et al. 2010; de Sain and Rep 2015). Fo is
haploid, and considered asexual since it reproduces clonally, sexual
reproduction has never been observed, and is not known to undergo
meiotic recombination (Kang et al. 2014).

FOV, the forma specialis that causes Fusarium wilt of cotton, has
recently re-emerged in the southeastern United States (Atkinson 1892;
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Whitaker et al. 2016). In the southeastern U.S., Fusarium wilt of cotton
was historically a relatively minor disease problem because effective
disease management practices - especially the management of plant-
pathogenic nematodes which aggravate Fusarium wilt symptoms -
were used (Jorgenson et al. 1978; Garber et al. 1979). In the past decade,
despite the same disease management practices being followed, Fusa-
riumwilt has become increasingly prevalent in the southeasternUnited
States, with some outbreaks occurring early in the cotton-growing
season and causing severe damage to seedlings (Collins et al. 2013;
Whitaker et al. 2016).

FOV has been studied for over a century, but there are still
knowledge gaps in the pathogen’s genetic diversity (Atkinson 1892).
Eight pathogenic races of FOV were reported between 1958 and 1985,
and although these races are widely regarded as invalid (Armstrong and
Armstrong 1958; Armstrong and Armstrong 1960; Ibrahim 1966;
Armstrong and Armstrong 1978; Chen et al. 1985; Davis et al.
2006; Bell et al. 2017), they are widely used in the cotton industry
for characterizing FOV. In plant pathology, a race refers to a pathogen’s
ability to cause disease on its host and implies a gene-for-gene in-
teraction between host and pathogen (Anderson et al. 2010). A set of
differential host cultivars with unique combinations of resistance genes
are frequently used to discriminate pathogenic races. The races of FOV,
however, were characterized based on isolates’ virulence not only on a
differential set of cotton cultivars, but also on many non-host plants
including tobacco, soybean, and okra (Armstrong and Armstrong
1960; Armstrong and Armstrong 1978; Chen et al. 1985). Additionally,
many of the cotton cultivars that were originally used to differentiate
races of FOV have not been maintained, and differential virulence
reactions are not reproducible on modern cotton cultivars (Davis et al.
2006; Holmes et al. 2009; Bell et al. 2017;). Furthermore, multigene
genealogies, pathogenicity tests, and other bioassays demonstrated that
races 3 and 5, as well as 4 and 7, are genetically and phenotypically
indistinguishable and should therefore be recognized as single groups
(Nirenberg et al. 1994; Hering et al. 1999; Skovgaard et al. 2001). As a
result, only six races of FOV are recognized today.

Each race of FOV is associated with a unique sequence at the
EF-1a locus, with the exception of races 1 and 6, but race 6 is
apparently limited to South America; EF-1a sequence is the primary
tool used to characterize races of FOV today (Skovgaard et al. 2001;
Kim et al. 2005; Cianchetta et al. 2015). “Genotype” would be a
more valid term than “race” to describe these polymorphisms, but
the term “race” is still used nominally in the United States cotton
industry (Davis et al. 2006). In addition to the six nominal races,
there are four other genotypes of FOV characterized by unique EF-1a
sequences, referred to as LA108, LA110, LA112, and LA127; and one
genotype, MDS-12, that is identical to FOV race 4 in EF-1a sequence
but unique in intergenic spacer region (IGS) sequence (Holmes et al.
2009; Bennett et al. 2013).

Although housekeeping gene sequences, especially EF-1a, have
been used to characterize FOV isolates in the United States, there is
some evidence that these polymorphisms do not fully explain the
genetic diversity and evolutionary history of FOV. For example, a
phylogeny generated from EF-1a, mitochondrial small subunit ri-
bosomal DNA (mtSSU rDNA), nitrate reductase (NIR), and phos-
phate permease-like protein (PHO) sequences, showed race 2 to be a
polyphyletic group (Skovgaard et al. 2001). A separate phylogeny
generated from IGS, PHO, EF-1a, and beta-tubulin (BT), showed that
MDS-12 is also polyphyletic (Cianchetta et al. 2015). Given that FOV
is considered a highly diverse pathogen, there may be other poly-
morphisms being overlooked in characterizations based on house-
keeping gene sequences.

Genotyping-by-sequencing (GBS) is a formof reduced-representation
genome sequencing in which genomic DNA is digested with a re-
striction enzyme, and short fragments are amplified and sequenced via
next-generation sequencing (Elshire et al. 2011; Andrews et al. 2016).
Depending on coverage, this approach allows for the identification of
hundreds to thousands of single nucleotide polymorphisms (SNPs)
among a large sample of individuals, thus providing high resolution of
genetic differences among individuals. GBS has previously been used in
population analyses of plant pathogens to identify novel genetic
diversity in high-diversity organisms, identify cryptic sexual recombi-
nation among clonal pathogens, and conduct genome-wide-association-
studies (GWAS) linking quantitative trait nucleotides (QTNs) with
pathogen virulence and mycotoxin production (Milgroom et al. 2014;
Hansen et al. 2016; Talas et al. 2016).

The goal of this study was to characterize the genetic diversity,
evolutionary history, and population structure of FOV using GBS to
identify SNPs among diverse isolates of FOV. Additionally, we
wanted to replicate our GBS data processing pipeline using two
different reference genomes - one publicly available annotated ref-
erence genome, and one reference assembled de novo from the raw
GBS data - to assess the effect of the reference on population analyses.

MATERIALS AND METHODS

Isolate collection
One-hundred-and-fourteen single- spore cultures of FOV were iso-
lated from symptomatic plants throughout Georgia cotton fields
(Table S1), following the protocol described by da Silva et al.
(2019). Isolates were genotyped for FOV race type based on their
translation elongation factor (EF-1a) sequence, using the primers
EF1 and EF2 (O’Donnell et al. 1998; Cianchetta et al. 2015). Each
PCR reaction consisted of 1.25 ml 2.5 mM each dNTP’s, 1.25 ml 10·
ExTaq buffer (Takara Bio USA), 0.56 ml of each 10 mMprimer, 0.3 ml
ExTaq (Takara Bio USA), and 1 ml of genomic DNA (10 - 300 ng/ml).
Amplification was conducted in a thermal cycler (PTC-100; MJ
Research, Watertown, MA) under the following conditions: 95�
for 1 min; 40 cycles of 95� for 30 sec, 55� for 30 sec, and 72� for
1 min; and a final extension of 72� for 5 min (Cianchetta et al. 2015).
Amplification of the EF-1a locus was confirmed by 1% agarose gel
electrophoresis, and PCR products were purified with an ExoSAP-IT
kit (Thermo Fisher Scientific, Waltham, MA) per manufacturer
instructions. A 320-ng sample of DNA combined with 4 ml of
10 mM primers were sent to EuroFins (Louisville, KY) for Sanger
sequencing. Sequences were aligned to the publicly available race and
genotype references used by Cianchetta et al. (2015). Alignments
were performed with Geneious R11 using a global alignment with free
end gaps and a 70% BLOSUM cost matrix (Kearse et al. 2012). EF-1a
sequence was insufficient to distinguish FOV race 4 and MDS-12
isolates (Bennett et al. 2013); to differentiate between race 4 and
MDS-12, the intergenic spacer region was sequenced following the
protocol described by Cianchetta et al. (2015). Additionally, EF-1a
sequence cannot distinguish races 1 and 6 (Skovgaard et al. 2001).
However, reports of race 6 are limited to South America so isolates
with an EF-1a sequence indicative of race 1 or 6 were assumed to be
race 1 (Amstrong and Armstrong 1978; Cianchetta et al. 2015).To
maximize genetic, temporal, and geographic diversity, 54 Fusarium
oxysporum isolates were obtained from collections of J. Coleman
(Auburn University), R.M. Davis (University of California Davis),
and J. Liu (USDA-ARS Southern Plains Agricultural Research Cen-
ter), as well as the USDA-ARS Northern Regional Research Labo-
ratory (NRRL) culture collection. Forty-eight of the isolates were
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FOV and 6 were other formae speciales of Fusarium oxysporum -
Fusarium oxysporum f. sp. lycopersici (Fol, NRRL36464; ‘NRRL39),
Fusarium oxysporum f. sp. radicis-lycopersici (NRRL26379 and
NRRL26570; ‘NRRL1’ and ‘NRRL2’, respectively), Fusarium oxy-
sporum f. sp. cubense (NRRL25609; ‘NRRL4’, and Fusarium oxy-
sporum f. sp. dianthi (NRRL26960 and NRRL26961; ‘NRRL59 and
‘NRRL6’, respectively) – all of which are closely related to FOV
(O’Donnell et al. 2009).

Genomic DNA extraction and genotyping-by-
sequencing (GBS)
Genomic DNA was extracted from a total of 168 single-spore
Fusarium oxysporum isolates. Isolates were grown on potato dextrose
agar (PDA) overlain with sterile cellophane for 6-7 days, after which
time mycelia were harvested and lyophilized (Milgroom et al. 2014).
Approximately 50 milligrams of lyophilized mycelia were frozen in
liquid nitrogen and macerated in 2-ml tubes with glass beads in a
Geno/Grinder (SPEX SamplePrep, Metuchen, NJ). DNA was extract-
ed using a DNeasy Plant Mini kit (QIAGEN, Valencia, CA) according
to manufacturer protocols with the following modification: in the
final step of the protocol, samples were eluted in 25 ml AE buffer to
increase the final concentration of DNA. Concentration and quality
of the DNA were determined using a Nanodrop spectrophotometer
ND-1000 (Nanodrop Technologies, Wilmington, DE) and by 0.7%
agarose gel electrophoresis, respectively.

Genotyping-by-sequencing was performed following the protocol
described by Elshire et al. (2011) at the Georgia Genomics and
Bioinformatics Core (Athens, GA). Briefly, samples of $100 ng
genomic DNA were digested with the restriction endonuclease
ApeKI, ligated with combinatorial barcode adapters, pooled, PCR-
amplified, and purified. Samples were then sequenced on an Illumina
NextSeq PE150 high output flowcell using 150-bp paired end reads
(Illumina, San Diego, CA).

SNP calling and data filtering
Single nucleotide polymorphisms (SNPs) were identified and called
using two modified versions of the uGbS-Flex pipeline (Qi et al.
2018). In the first pipeline, SNP calling was performed using a
reference-based alignment; in the second, a de novo reference was
generated from GBS reads following the protocol described by Qi
et al. (2018) and SNP calling was based on alignment to the de novo
reference. The rationale for using two separate data analysis pipelines
was that the reference genome used in data processing and SNP
calling could impact the results of population genetic analyses.

For reference-based SNP calling, quality control was performed
using FastQC and raw sequence data were sorted using the process_
radtags command in Stacks version 2.0 (Andrews 2010; Catchen et al.
2013). Processed reads were trimmed to 120 base pairs and aligned to
an annotated reference genome of FOV race 4/7 (NRRL 25433, Broad
Institute) using FASTX Trimmer and bowtie2, respectively (Hannon
2010; Langmead and Salzberg 2012). Aligned reads were processed,
validated, and sorted using SAMtools and Picard (Broad Institute; Li
et al. 2009). SNPs were called using GATK HaplotypeCaller, with a
ploidy of 1 specified, and GenotypeGVCFs (Van der Auwera et al.
2013). SNPs were filtered to retain only biallelic sites, and the
resulting VCF file was further filtered for read depth of at least 25,
a minimum Phred quality score of 20, and a maximum of 20%
missing information per site (Danecek et al. 2011).

The de novo GBS reference was assembled following the protocol
described by Qi et al. (2018). Briefly, reads were made equal lengths
using FASTX Trimmer, overlapping forward and reverse reads were

merged in FLASH, non-overlapping forward and reverse reads were
artificially joined and made equal lengths using the in-house python
script EL.1.4.py, reads within each sample were clustered using the
ustacks function in Stacks version 2.0, and a consensus set of tags
from the population was generated with cstacks (Hannon 2010;
Catchen et al. 2011; Magoc and Salzberg 2011; Qi et al. 2018).
GBS reads were processed, aligned to the de novo reference, and
filtered as described above.

Population genetic analyses
Filtered VCF files were analyzed in R version 3.5.1 with the packages
vcfR, poppr 2.0, and adegenet (Jombart and Ahmed 2011; Kamvar
et al. 2015; Knaus and Grünwald 2017; R Core Team 2018;). A
genotype accumulation curve was generated to demonstrate the
number of unique SNP genotypes in the population, as well as
the minimum number of SNP loci needed to distinguish unique
genotypes (Grünwald et al. 2003; Kamvar et al. 2015). Bitwise genetic
distance was calculated and used to construct a minimum spanning
network (MSN) with the poppr.msn function, to show the relation-
ships among all individuals in the population (Kamvar et al. 2015).
Isolates in the minimum spanning network were color-coded accord-
ing to their race (as inferred from EF-1a genotype, and IGS genotype
for race 4 and MDS-12) to observe potential clustering patterns by
race. Principal component analysis (PCA) was conducted to de-
termine whether isolates of particular races were distinct. PCA
was run using the glPca command in adegenet, and results were
plotted using the R package ggplot2 (Jolliffe 2002; Jombart and
Ahmed 2011; Wickham 2016). Discriminant analysis of principal
components (DAPC), or K-means hierarchical clustering, was con-
ducted using the find.clusters command in adegenet in order to
determine the optimal number of genetically differentiated clusters
across all FOV isolates (Jombart et al. 2010).

Additionally, maximum likelihood trees were constructed in
MEGA7, using the HKY substitution model with 500 bootstrap
replicates (Hasegawa et al. 1985; Kumar et al. 2016). All analyses
were performed on the VCF files generated from the reference-based
alignment, and replicated using the VCF file generated from the de
novo-based alignment to test for differences in results obtained using
the two processing methods.

Data availability
Strains are available upon request. All raw sequence data has been
deposited in the NCBI Short Read Archive with project accession
number PRJNA632933 and the associated short read accession
numbers SRR11792269 – SRR11792418. The supplemental Table
S1 lists the isolates included in the population genetic analyses. The
supplemental figures show the results of the population genetic
analyses using the de novo-based SNP dataset: Figure S1 contains
the genotype accumulation curve generated from this dataset, Figure S2
contains the maximum likelihood trees, Figure S3 contains the min-
imum spanning network (MSN) and principal components analysis
(PCA), and Figure S4 contains the groups identified through discrim-
inant analysis of principal components (DAPC). Supplemental mate-
rial available at figshare: https://doi.org/10.25387/g3.12660074.

RESULTS

SNP calling, data filtering, and genetic diversity
The unfiltered VCF file based on alignment to the annotated reference
genome of NRRL 25433 (Broad Institute) contained 229,338 SNPs.
After filtering for read depth, quality, and missing information
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193 SNPs remained, and 84 FOV (Table S1) and 6 other Fusarium
oxysporum isolates were retained for population genetic analyses.
Across the 84 FOV isolates that were retained, 76 multilocus genotypes
(MLGs) were identified (Figure 1). The genotype accumulation curve
generated in poppr never fully plateaued, but the upper end of the 95%
confidence interval reached the 100% genotype accumulation curve at
approximately 114 SNP loci (Figure 1). The unfiltered VCF file based
on alignment to the de novo reference contained 1,273 SNPs. The GBS
de novo reference is very useful for identifying SNP variants, but it is so
fragmented that it is not informative in and of itself like the reference
genome of NRRL 25433. Since it was generated with GBS reads that are
associated with sets of restriction enzymes, the de novo assembly
consists of 742,892 contigs with A’s added to the end of all reads to
make them the same length of approximately 220 bp. After filtering,
374 SNPs, 80 FOV isolates, and 6 other Fusarium oxysporum isolates
were retained for analyses. All 80 FOV isolates were considered unique
MLGs, and the genotype accumulation curve associated with this
dataset plateaued at approximately 210 loci (Figure S1).

Phylogenetic analyses and evolutionary relationships
In theML trees generated from the reference-based SNPs, race 4 isolates
were the only FOV to form a monophyletic group according to race or
genotype (Figure 2A). The remaining isolates did not cluster by race or
EF-1a genotype, althoughmost LA127 isolates were placed in the same
clade, as were most race 8 isolates. When other formae speciales of Fo
were included in the tree, they did not form an outgroup or mono-
phyletic clade, although two of these Fo isolates (‘NRRL2’ and ‘NRRL39,
which correspond to F. oxysporum f. sp. radicis-lycopersiciNRRL26570
and F. oxysporum f. sp. lycopersiciNRRL36464, respectively) did cluster
together on a branch with bootstrap support of 76 (Figure 2B). TheML

tree based on alignment to the de novo reference was similar but not
identical to the tree described above: FOV race 4 isolates still clustered
together on a branch with high bootstrap support, but there were no
phylogenetically informative differences displayed among the race
4 isolates (Figure S2A; Figure S2B). Additionally, more clustering by
race was observed in the de novo-based trees, regardless of whether
other Fo isolates were included in the analysis. In addition to the LA127
isolates and race 8 isolates generally grouping together as before, four
LA108 isolates formed amonophyletic group, and all four race 2 isolates
were placed in the same clade; however, the bootstrap support for these
new groups was below 50 (Figure S2A; Figure S2B).

Population structure
In the minimum spanning network (MSN) constructed from the
reference-based SNP dataset, isolates did not cluster neatly by race or
genotype (Figure 3A). Other formae speciales of Fo were included in
the MSN, and while all non-FOV isolates were distantly related from
most individuals in the population, they did not cluster together
(Figure 3A). The PCA analysis demonstrated a similar pattern as the
MSN but showed a clear grouping of race 4 isolates, which were
separated frommost other isolates in the population by PC1 and PC2
(Figure 3B). Most isolates in the population overlapped each other in
the lower left-hand quadrant.

The MSN constructed from the de novo-based SNP dataset showed
more clustering by race than the reference-based dataset, with most
race 2 isolates and LA127 isolates clustering together (Figure S3A).
Additionally, all race 4 isolates formed a single, undifferentiated cluster
in the de novo-based MSN (Figure S3A). The de novo-based PCA was
highly similar to the reference-based analysis, but race 4 isolates were
more dispersed and overlapped with a race 1 isolate (Figure S3B).

Figure 1 Genotype accumulation curve con-
structed in poppr (version 2.0), showing the
number of uniquemultilocus genotypes (MLGs)
identified in the population of FOV, and the
minimum number of SNPs needed to distin-
guish each MLG.
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Using the reference-based SNPs, DAPC identified an optimum of
k = 12 genetically distinct clusters (Figure 4). All individuals had a
100%membership probability to the group which they were assigned.
All clusters contained between one and six individuals, except for
group 4 which contained 46 individuals. There were 20 SNPs within
the first 6 PC that played the largest role in DAPC group determi-
nation. Some clusters contained isolates of a single race or EF-1a
genotype; for example, group 1 contained only race 1 isolates, group
10 contained only race 2 isolates, and groups 11 and 12 contained
only race 4 isolates. However, some races spanned multiple groups
and, conversely, some groups contained individuals of multiple races
and genotypes. For example, race 1 and LA108 isolates were both
present in five of the twelve groups identified; and group 4 included
isolates spanning race 1, LA110, LA108, and MDS-12.

When DAPC was run on the de novo-based SNPs, an optimum of
k = 9 clusters were identified (Figure S4). As with the reference-based
analysis, all individuals were assigned to groups with 100% member-
ship probability. Some groups identified in this analysis were identical
to those identified in the reference-based DAPC analysis. For exam-
ple, group 1 was the same across both analyses, and group 5 in the
reference-based analysis was identical to group 7 in the reference-
based analysis. Some groups identified in the de novo-based analysis
were analogous, although not quite identical, to groups identified in
the reference-based analysis: an example of this is group 4, which
contained 51 individuals spanning five races and genotypes in the de
novo-based analysis.

DISCUSSION
Using a genotyping-by-sequencing (GBS) approach, we identi-
fied novel genetic diversity in the cotton wilt pathogen Fusarium

oxysporum f. sp. vasinfectum (FOV). In our reference-based data
processing pipeline, we identified 193 SNPs and 76 unique multilocus
genotypes (MLGs) of FOV, and found that greater than 193 SNPs are
most likely needed to fully distinguish unique genotypes of FOV in
the population. However, the upper end of the 95% confidence
interval did not plateau in this analysis, demonstrating that 193 SNPs
are insufficient to distinguish the full genetic diversity of FOV,
although 114 SNPs are sufficient to capture at least 95% of the
population’s diversity. In the de novo-based analysis, we identified
374 SNPs and 80 MLGs, and found that 210 SNP loci were needed to
distinguish unique genotypes. The results of the reference-based and
de novo-based analyses complement each other, and suggest that
210 is a realistic minimum number of SNPs needed to conduct high-
resolution population genetic analyses of FOV. However, some of the
SNPs identified in the de novo-based data analysis pipeline may be
redundant, as the UGbS-Flex pipeline neither assessed redundancy
nor removed redundant SNPs (Qi et al. 2018). Additionally, MLGs
are not straightforward to interpret in the context of datasets with
hundreds to thousands of SNPs - some of the unique MLGs identified
in our study were different only by one or a few SNPs, which may not
warrant classification as different genotypes (Grünwald et al. 2016).
The concept that MLGs are problematic for SNP genotypes is further
demonstrated by the fact that all 80 individuals were considered
unique MLGs in the de novo-based genotype accumulation curve,
which was based on a larger number of SNPs than the reference-based
genotype accumulation curve. Although the exact number of MLGs
in the population is unclear, our genotype accumulation curves
suggest that using one or a few housekeeping genes does not provide
enough resolution for population analyses of FOV, and that such an
approach is likely to overlook genetic diversity. Our DAPC results

Figure 2 Maximum likelihood (ML) trees constructed in MEGA7 showing the phylogenetic relationships among Fusarium oxysporum isolates. The
colored circles represent isolates’ EF-1a-based races and genotypes, and the numbers on branches represent bootstrap values. (A) Only FOV
isolates are included in the ML tree. (B) Six additional (non-FOV) Fo isolates are included.
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provide additional evidence that FOV is more genetically diverse than
its races and EF-1a genotypes: only eight races and EF-1a genotypes
were represented among the isolates analyzed by DAPC, but an
optimum of k = 12 and k = 9 genetically distinct groups of FOV were
identified using reference-based SNPs and de novo-based SNPs,
respectively. Although our population genetic analyses provide
new evidence that FOV is more diverse than its races and EF-1a
genotypes, we are not the first to suggest this. The U.S. cotton industry
uses races and genotypes based on EF-1a sequence to characterize
FOV isolates, but FOV can also be classified into vegetative com-
patibility groups (VCGs) (Bell et al. 2017). Vegetative compatibility is
defined by the ability of isolates to undergo anastomosis, or hyphal
fusion, and isolates are able to undergo anastomosis if they have
identical alleles at several vic loci (Leslie 1993). Because individuals in
the same VCG must possess several identical alleles, vegetative com-
patibility is thought to be a good indication of isolates’ relatedness

(Puhalla 1985). Additionally, Bell et al. (2017) reported that individuals
in the same VCG typically possess the same disease phenotype on
cotton, suggesting that VCG is an ideal way to characterize FOV
isolates as it is indicative of both genetic relationship and disease
phenotype. Twenty distinct VCG’s have been identified in FOV
(Fernandez et al. 1994; Davis et al. 1996; Bell et al. 2017), but our
study identified a maximum of twelve genetically distinct groups of
FOV.One possible explanation for this is that someVCG’s are rare - for
example, between 1994 and 2017 only one isolate belonging to the VCG
known as 0111 had been identified (Fernandez et al. 1994; Bell et al.
2017) - and therefore were not represented among the isolates analyzed
in our study. Additionally, it is possible that some FOV isolates differ at
vic alleles which govern vegetative compatibility but are otherwise
genetically similar, resulting in individuals of different VCGs being
placed in the same DAPC group in our study. Although VCG typing is
quite useful for identifying and characterizing genetic diversity within

Figure 4 Twelve genetically distinct groups of
FOV identified through K-means hierarchical
clustering.

Figure 3 Population genetic structure. (A) Minimum-spanning network (MSN) constructed in poppr (version 2.0). Six additional (non-FOV) Fo
isolates are included in this figure. (B) Principal component analysis (PCA) was conducted using poppr (version 2.0).
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FOV, it is labor-intensive and not conducive to rapid characterization
of genetic diversity in larger populations.

Our results also demonstrated that FOV race 4 isolates comprise a
genetically distinct group, whereas the relationships among all other
FOV isolates are not explained by their race or EF-1a genotype. This
was demonstrated in maximum likelihood trees in which race
4 isolates formed a monophyletic group on a longer branch with
high bootstrap support in both analyses, while the other races and
genotypes of FOV were not monophyletic and their depicted rela-
tionships generally had bootstrap support below 50. The lack of race
or EF-1a genotype explaining overall genetic relatedness among
populations of FOV was also demonstrated in the minimum span-
ning network (MSN) and principal components analysis (PCA),
which showed a clear clustering of race 4 isolates, but little or
incomplete clustering of other races or genotypes. Additionally,
the clusters identified by DAPC were also not structured by race
or EF-1a genotype. Some clusters contained individuals of multiple
races or genotypes, such as group 4 in the reference-based analysis,
which contained 46 individuals spanning race 1, LA108, LA110, and
MDS-12; this suggests that isolates with different EF-1a genotypes
can possess a high degree of genetic similarity. Conversely, some races
or genotypes based on EF-1a sequence were present in multiple
genetic clusters: in the reference-based analysis, race 1 isolates were
present in five of twelve clusters, showing that individuals sharing the
same EF-1a sequence are not necessarily closely related. Taken
together, our population analyses provide compelling evidence that
race or EF-1a genotype is not reflective of FOV isolates’ genetic
relatedness, with the exception of race 4.

The finding that race or EF-1a sequence is generally not indicative
of isolates’ genetic relatedness leads to the question of whether EF-1a
genotypes are biologically meaningful. In previous studies, certain
EF-1a genotypes have been associated with disease phenotypes. FOV
race 4, for example, is considered the most virulent race and is
associated with early-season damage and vascular discoloration of the
taproot (Kim et al. 2005; Cianchetta et al. 2015). Races 1 and 2 have
been described as generally mild, and characterizations of MDS-12
isolates range from non-virulent to highly aggressive (Cianchetta
et al. 2015; Bell et al. 2017). Since EF-1a genotypes do not reflect the
full genetic diversity or population structure of FOV, their reported
disease phenotypes should be further investigated to determine if
there is any biological meaning associated with EF-1a genotypes. The
SNPs identified in this study should also be evaluated for association
with disease phenotype, to determine if FOV would be better
characterized by SNP genotype than EF-1a-based race or genotype.

Finally, this study is the first that we know of to assess the effect of
the reference genome used in sequence alignment on the results of
population analyses. Using the same SNP-calling and filtering pa-
rameters in both our reference-based and de novo-based data pro-
cessing pipelines, more SNPs were retained for population genetic
analyses using the de novo-based approach: 374 SNPs were retained
using this approach, as compared to only 193 SNPs with the
reference-based approach. This may suggest that using a consensus
reference leads to more robust population analyses, especially for a
high-diversity species like FOV, although it is currently unclear if any
of the SNPs identified in our de novo-based reference are redundant.
However, a major limitation of the de novo assembled reference
genome was that the unfiltered SNP dataset based on this reference
only contained 1,273 SNPs, whereas the unfiltered SNP dataset based
on the race 4 reference genome contained 229,338 SNPs. It is unclear
why the unfiltered de novo-based SNP dataset contained so few SNPs;
this could be a result of the parameters that were used to construct the

de novo reference. While we used the UGbs-Flex protocol to assemble
a consensus reference de novo from the raw GBS reads, a consensus
reference can also be constructed by mapping consensus reads to a
reference genome (Li et al. 2009); this approach might result in more
SNPs being yielded in the unfiltered SNP dataset. Another important
distinction between the two data-analysis pipelines was that the
reference-based population genetic analyses, especially the minimum
spanning network, showed increased differentiation of FOV race
4 isolates, which comprised only 8% of isolates analyzed, but less
differentiation among the most prevalent races and genotypes in the
population (race 1, LA108, and LA110); while the de novo-based
population genetic analyses showed more differentiation among
common races and less differentiation among race 4 isolates. The
differences we observed between the two pipelines may be the result
of the reference genome being a race 4/7 isolate, which we have found
to be genetically distinct from other FOV races using both methods.
Importantly, both the reference-based and de novo-based analyses
showed similar results; their main distinction was the amount of
differentiation observed among race 1, race 4, LA108, and LA110
isolates. These slight but important differences could mean that in
population genomic analyses of high-diversity species, results are
skewed toward increased differentiation of isolates that are genetically
similar to the reference genome used for alignment and SNP calling.

CONCLUSIONS
In summary, we demonstrated through population genetic analyses
that FOV is not structured by EF-1a genotype, which is currently
used to assign isolates to race and make assumptions about their
virulence.We also found new evidence supporting the hypothesis that
FOV is more genetically diverse than what is reported based on race
or EF-1a genotype. Furthermore, we found that the reference genome
used in sequence alignment and SNP calling influences the results of
population genomic analyses: for a high-diversity organism like FOV,
using a consensus reference seems to yield more high-quality SNPs
with which to conduct population analyses, and results in increased
differentiation of the most prevalent genotypes in the population. It is
currently unclear how the genetic diversity and population structure
of FOV relate to the pathogen’s disease phenotypes; this should be
investigated in order to characterize FOV in a biologically meaningful
way and improve Fusarium wilt management.
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