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The aim of this study was to obtain the candidate genes and biomarkers that are significantly related to cardioembolic stroke (CS)
by applying bioinformatics analysis. In accordance with the results of the weighted gene coexpression network analysis (WGCNA)
in the GSE58294 dataset, 11 CS-related coexpression network modules were identified in this study. Correlation analysis showed
that the black and pink modules are significantly associated with CS. A total of 18 core genes in the black module and one core
gene in the pink module were determined. We then identified differentially expressed genes (DEGs) of CS at 3 h, 5 h, and 24 h
postonset. After performing intersection, it was found that 311 genes were coexpressed at these three time points. These genes
were majorly enriched in positive regulation of transferase activity and regulation of peptidase activity. The abovementioned
coexpressed DEGs were subjected to protein-protein interaction analysis and subnetwork module analysis. Subsequently, we
used cytoHubba to obtain 11 key genes from DEGs. The intersection of the core genes screened from WGCNA and the key
genes selected from DEGs yielded the MAPK14 gene. The expression level of MAPK14 on the receiver operating characteristic
(ROC) curves of CS at 3 h, 5 h, and 24 h showed that the area under the ROC curve (AUC) was 0.923, 0.934, and 0.941,
respectively. In a nutshell, MAPK14 screened out by using WGCNA showed differential expression in CS. We conclude that
MAPK14 can be used as a potential biological marker of CS and exhibits potential to predict the physiopathological condition of
CS patients.

1. Introduction

Stroke is still a devastating neurological disease, the second
leading cause of death and the leading cause of severe disabil-
ity and physical impairment around the world [1]. The global
burden of stroke has been exacerbating year by year [2].
According to the TOAST criteria, stroke can be mainly
divided into large artery atherosclerosis (LAA), small-artery
occlusion (SAO), cardioembolism (CE), stroke of other
demonstrated etiology (SOE), and stroke of other undemon-
strated etiology (SUE) [3]. The accurate etiological classifica-
tion of stroke can help determine the optimal, systematic,
and individualized diagnosis and therapeutic plan, thereby
achieving early diagnosis, early treatment, early rehabilita-
tion, and early prevention of relapse. Therefore, it is of critical
relevance to improve the treatment effect and prognosis of
patients with stroke.

Cardioembolic stroke (CS) patients account for around
20% of all patients with acute ischemic stroke [4]. Atrial
fibrillation (AF) is the most common risk factor that contrib-
utes to CS and makes up to about 50% of CS events [5].
Moreover, as the global population continue to age, the pro-
portion of patients with CS is likely to increase further,
imposing an increasingly heavy burden on the individual,
medical care, and socioeconomic levels [6]. A fraction of CS
patients can improve their prognosis and prevent the
recurrence of stroke by undergoing anticoagulation therapy
[7]. However, less than one-third of these CS patients with
indications for anticoagulation have received the correct
treatment [8].

The diagnosis of some CS patients proves difficult,
requiring further selection and improvement of a series of
auxiliary examinations to figure out the evidence for etiology
[9]. Some inspection items are expensive and require long
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appointment lead time and therefore are not broadly allo-
cated in hospitals at all levels [10]. The patients cannot com-
plete the tests within a short time after admission, so it is hard
to perform early diagnosis and classification of stroke based
on TOAST etiology, consequently leading to augmented pro-
portion of unknown causes and compromised the efficacy of
early guidance on the clinical treatment [10]. Therefore, CS
patients pose a daunting challenge to the treatment of acute
ischemic stroke. Finding the accurate biomarkers and clarify-
ing the potential biological mechanisms are of critical impor-
tance for the early diagnosis and effective therapeutic
intervention of CS. Studies have identified the correlation
between natriuretic peptides and cardiac stroke and that
LP-PLA2 level has been found to be associated with greater
severity and risk in large artery atherosclerosis stroke [11,
12]. However, the accurate biomarkers approved for diagno-
sis and treatment of CS have not been well defined.

Thanks to the swift advance of biotechnology in recent
years, especially the development of next-generation
sequencing technology, the amount of biological data has
been growing at an explosive rate, making it less practicable
to analyze these data by employing traditional data analysis
methods [13]. The emergence and development of high-
throughput sequencing technology has revolutionized bio-
logical research, ushering in the biological network analysis
methods developed on the basis of the complex network the-
ory of high-throughput data [14]. These methods can be used
to systematically describe and analyze these high-throughput
data. Among them, the gene coexpression network plays a
critical role in biological research, and one of the representa-
tive method is the weighted gene coexpression network anal-
ysis (WGCNA) [15].

WGCNA has been broadly used in various disciplines of
biological research, such as development and disease [16, 17].
However, the use of WGCNA to construct a scale-free net-
work based on the gene expression pattern of CS remains
scarce. In the current study, WGCNA was used to analyze
the CS expression profile data in the public database, in an
attempt to identify the CS-related gene modules. Further-
more, the core genes in the module were excavated to ascer-
tain the biomarkers highly correlated with the diagnosis of
CS. Moreover, functional enrichment analysis and other bio-
informatics methods were combined to provide new ideas
and methods for the diagnosis and intervention of CS.

2. Material and Methods

2.1. Microarray. To our certain knowledge, GEO is the largest
public gene expression database developed by NCBI [18].
The gene annotation file and the gene matrix text file in the
CS-related gene chip GSE58294 were obtained from the
NCBI GEO database. The samples in this series can be subdi-
vided into four categories, including 23 healthy samples, 23
CS samples of 3 hours postonset, 23 CS samples of 5 hours
postonset, and 23 CS samples of 24 hours postonset. The
genomic annotation platform for GSE58294 is GPL570
(Affymetrix Human Genome U133 Plus 2.0 Array; Affyme-
trix, Santa Clara, CA, USA). The probes in the obtained gene
expression profile were converted into gene symbols through

the annotation files on the platform GPL570. The probes that
correspond to multiple genes were removed from the study;
for the gene with multiple probes, the expression value of
such gene was averaged based on these probes.

2.2. Construction of Coexpression Network.WGCNA package
in R was used to perform the coexpression network analysis.
For starters, we conducted a cluster analysis on the expres-
sion data in the samples and deleted the outliers. Subse-
quently, the pickSoftThreshold function was applied to
select an appropriate soft threshold power β, which is a crite-
rion based on the scale-free topology. The scale-free topolog-
ical exponential curve fitting became flatter after reaching
peak, indicating that the selected soft threshold needs greater
average connectivity.

The pairwise correlation matrix of each group of genes
was calculated, and then, the soft threshold was referred to
convert the similarity matrix into an adjacency matrix. After-
wards, the hierarchical clustering tree was drawn to unmask
the hierarchical clustering. Given that the branches of the
hierarchical clustering tree are densely interconnected, the
dynamic tree cut method was used to cut the branches and
to divide the genes into different modules. The thresholds
for the sizes of minimum module and merged module were
set to 30 and 0.25, respectively. Those which were poorly
connected with other genes would be assigned into the grey
module and not used for the subsequent analysis.

2.3. Correlation Analysis and Identification of CS-Related
Modules. The genes were divided into different modules
based on the results of the WGCNA analysis [15], and subse-
quently, we calculated the correlation coefficients between
different modules. A heat map was plotted to visualize the
correlation. In order to detect the significant modules associ-
ated with CS, the correlation between clinical factors of CS
and the modules was evaluated using the WGCNA package
in R. Module eigengenes (MEs) were the major component
of each module and represent the overall expression level of
the corresponding gene. Modules with high correlation were
screened out by assessing the correlation coefficient between
MEs and clinical traits (disease status and onset time)
(p < 0:05). Gene significance (GS) was defined to determine
the association of gene expression with external traits, while
module membership (MM) was adopted to evaluate the cor-
relation between each intramodular gene and ME. The mod-
ules proved most susceptible to CS were further verified by
analyzing the correlation between GS and MM. Then, GS
and MM were used to identify the hub genes in CS-related
modules.

2.4. Differentially Expressed Gene (DEG) Screening. In light of
the microarray data of healthy individuals and CS patients in
GSE58294, we screened these genes for DEGs within 3 h, 5 h,
and 24h after onset of CS by using GEO2R. The screening
conditions were adj. p:val < 0:05 and ∣log2 FC ∣ >1. A Venn
diagram was plotted to screen out the common DEGs after
different hours of CS onset.

2.5. The Identification of Key Genes in DEGs. The functional
enrichment analysis of these common DEGs was conducted
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by using the Metascape database [19]. Subsequently, these
obtained common DEGs were employed to construct the
protein-protein interaction (PPI) network by using the
STRING database, followed by visual analysis by using
Cytoscape 3.7.2 [20]. The MCODE plug-in (parameters:
degree cutoff: 2, node score cutoff: 0.2, K-core: 2, and max.
depth: 100) was used to display the modules in the PPI net-
work. Afterwards, we used the five algorithms in the Cytos-
cape plugin cytoHubba to screen out the hub genes [21].

2.6. Statistics. Statistical analysis of gene expression data was
conducted by using GraphPad Prism 8.3.0 or R 3.7.2. Mean-
while, both two software were used for image plotting. The t
-test was used to analyze the difference in the mean value
between the two groups. The receiver operating characteristic
curve (ROC) was schemed to evaluate the diagnostic accu-
racy of genes. The sensitivity and specificity of genes were
investigated by using AUC. For all analyses, p < 0:05 was
considered to indicate statistical significance.

3. Results

3.1. Construction of Coexpression Network. The expression
data files of the GSE58294 dataset and the annotation file of
GLP570 were downloaded from the NCBI GEO database.
To establish the coexpression network, the expression data
of CS patients and healthy controls were extracted from
GSE58294, and the probes in the original expression data file
were converted into 21,654 genes. Afterwards, the SD value
of each gene was quantified, and then, the genes were ranked
in a descending order. The top 25% on the list, including
5,414 genes, were enrolled for subsequent WGCNA analysis.

To detect the possible outlier samples, a cluster tree con-
sisting of 92 samples was constructed by using flashClust
package in R (Figure 1(a)). As a result, no outlier was found
in the samples included in the WGCNA analysis. To better
build a scale-free network distribution, the pickSoftThres-
hold function was applied to determine the appropriate soft
threshold (β) in WGCNA. 1-20 thresholds were selected for
each sample included in theWGCNA analysis, so as to calcu-
late the scale-free topology index separately (Figure 1(b)). In
the event of β = 4, the square of the correlation coefficient of
log ðkÞ and log ðpðkÞÞ became greater than 0.85 (Figure 1(c)).
Meanwhile, the average network connectivity corresponding
to this threshold was close to zero, indicating that the net-
work connectivity at that time was rather low, approaching
to the condition of a scale-free network. Therefore, β = 4
was selected as the soft threshold to construct the gene coex-
pression network.

3.2. Visualization of Gene Modules. The value of soft thresh-
old β was set to 4, and then, we constructed a hierarchical
clustering tree to identify the gene coexpression network fol-
lowing the procedures of WGCNA. In the current study, we
used the dynamic tree cut to identify the gene modules, and
the minimum number of genes in the module was set to 30.
The modules were ranked based on the number of variables
contained in the modules. 15 corresponding modules were
initially obtained, as shown in Figure 1(d). Different colors

represent different modules. Among them, the genes in the
grey modules are the ones that have not been housed to any
other modules.

To assess the coexpression similarity of the module, the
characteristic genes of each module were calculated and clus-
tered in accordance with their respective correlation coeffi-
cients. The threshold of mergeCutHeight was set to 0.25
(Figure 2(a)). After merging the modules, the diagram of
gene tree was plotted again. The original colors of the mod-
ules and the colors of the merged modules were indicated
in the diagram (Figure 2(b)).

3.3. Identification of CS-Related Key Modules. To further
investigate the correlation between various gene modules,
we calculated the correlation coefficients between the mod-
ules. Subsequently, the clustering tree and the heat map were
schemed to visualize the association between the modules
(Figure 2(c)). These modules clustered into the same general
category showed a similar expression with respect to the
genes.

In order to ascertain the genetic modules that are related
to CS, we extracted the clinical information of the sample
from GSE58294. Subsequently, the correlations between the
specific modules, which were labeled by with different colors,
and two clinical characteristics (disease status and onset
time) were investigated. The analysis results showed that
the black module and pink module are the two gene modules
significantly related to CS (Figure 2(d)). The correlation coef-
ficient of the black module and CS was 0.8, indicating that the
genes in this module are likely to play an important role in
the progression of CS. Moreover, the correlation coefficient
between the pink module and CS being -0.85 indicated that
such module was negatively correlated with the status of
CS. Thus, it was rational to select the black module and pink
module as the key modules of CS. Through more detailed
analysis into the genes in the modules, CS-related core genes
could be verified.

3.4. Screening of CS-Related Core Genes Using WGCNA.
Figure 3(a) illustrated the correlation between the connectiv-
ity and gene significance (GS) within each module. The cor-
relation between module membership (MM) and GS in the
black module and the pink module found that both of the p
values were lower than 0.01, which demonstrates that these
two modules are significantly related to CS. The correlation
between MM and GS in the black module and the pink mod-
ule was depicted in Figures 3(b) and 3(c). Considering the
screening criteria of ∣MM ∣ >0:9 and ∣GS ∣ >0:4, it was deter-
mined that there are 18 core genes in the black module and
one core gene in the pink module.

3.5. Screening of Differentially Expressed Genes (DEGs).
Figures 4(a)–4(c) illustrate the volcano plots of DEGs in
healthy individuals and CS patients at 3 h, 5 h, and 24 h
postonset obtained from the GSE58294 dataset by using
GEO2R. After performing intersection, it was found that
311 genes in total were coexpressed at these three time points
(Figure 4(d)). After conducting enrichment analysis on these
coexpressed differential genes in the Metascape database, we
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scale-free fit index and the mean connectivity based on various soft thresholding powers (β). (c) Histogram of connection distribution and
scale-free topology when β = 4. (d) Clustering dendrograms of genes based on TOM-based dissimilarity.
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found that these genes were enriched in neutrophil activa-
tion, activation of immune response, regulation of peptidase
activity, and JNK/MAPK pathway, and so forth (Figures 5(a)
and 5(b)).

3.6. Screening of Key Genes in DEGs. The abovementioned
311 coexpressed differential genes were subjected to PPI

analysis in the STRING database and were visualized by
using Cytoscape 3.7.2 (Figure 5(c)). The most significant sub-
network module screened out by using MCODE plug-in was
displayed in Figure 5(d).

Subsequently, we used cytoHubba to screen out the hub
genes from the DEGs, which were closely relevant to CS.
The hub genes derived from the 5 algorithms in cytoHubba
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Figure 4: Screening of CS-related DEGs. (a) Volcano plot representing DEGs at 3 h following CS. (b) Volcano plot representing DEGs at 5 h
following CS. (c) Volcano plot representing DEGs at 24 h following CS. (d) Venn diagram of DEGs at different time following CS. CS:
cardioembolic stroke; DEGs: differentially expressed genes.
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were listed in Table 1. The top 20 genes obtained from the 5
algorithms were intersected and 11 key genes were obtained
(Figure 5(e)).

3.7. Hub Genes Associated with CS. The intersection of the
core genes screened from WGCNA, and the key genes
selected from DEGs yielded the mitogen-activated protein
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Figure 5: The identification of key genes in the CS-related DEGs. (a, b) The functional enrichment analysis of DEGs using Metascape. (c)
Visualization of the PPI network of common DEGs by Cytoscape. (d) MCODE identified the most significant module of common DEGs.
(e) Intersecting genes selected as key genes by using five algorithms in cytoHubba. CS: cardioembolic stroke; DEGs: differentially
expressed genes; PPI: protein-protein interaction; MCODE: Molecular Complex Detection.

Table 1: The top 20 genes in the PPI network of coexpressed differentially expressed genes were identified by using the five algorithms in
cytoHubba. MCC: maximal clique centrality; MNC: maximum neighborhood component; EPC: edge percolated component.

Gene name MCC Gene name MNC Gene name Degree Gene name EPC Gene name Closeness

STAT3 1087 MMP9 22 STAT3 26 MMP9 62.732 STAT3 78.1

MMP9 1011 STAT3 21 MMP9 23 STAT3 62.774 MMP9 75.65

CTNNB1 992 CTNNB1 16 CTNNB1 20 CTNNB1 61.907 CTNNB1 73.06667

ESR1 922 MAPK14 13 MAPK14 19 MAPK14 61.571 MAPK14 72.31667

MAPK14 908 SOX9 13 ESR1 16 SOX9 61.536 ESR1 70.43333

SP1 877 ESR1 12 SOX9 15 ESR1 60.606 SOX9 68.06667

SOX9 782 HGF 12 HGF 15 HGF 60.445 SP1 67.35

CD59 735 TLR5 12 SP1 14 TLR5 58.117 MDM2 67.11667

CKAP4 733 SP1 11 TLR5 13 SP1 59.583 HGF 66.31667

CLEC4D 728 THBS1 11 CD59 13 THBS1 58.92 TLR5 64.01667

FCAR 722 CD59 10 MDM2 13 CD59 53.507 THBS1 63.13333

CLEC5A 722 CD163 10 THBS1 12 CD163 55.975 CD163 61.26667

GPR97 720 CKAP4 9 CD19 12 CKAP4 52.89 TJP1 60.9

MCEMP1 720 TIMP2 9 CLEC4D 11 TIMP2 55.794 VIM 60.86667

HGF 159 MDM2 8 CD163 10 MDM2 57.54 CD19 60.75

MDM2 153 CLEC7A 8 CKAP4 10 CLEC7A 53.965 FGF13 60.48333

THBS1 127 FGF13 8 VCAN 10 FGF13 57.717 TXN 60.18333

TLR5 103 ARG1 8 TJP1 10 ARG1 55.686 CLEC7A 59.38333

FGF13 103 SERPINA1 8 TIMP2 9 SERPINA1 54.683 ARG1 59.18333

TIMP2 72 VCAN 7 CLEC7A 9 VCAN 53.968 NOTCH2 58.98333
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kinase 14 (MAPK14) gene, as seen in Figure 6(a). At 3 h, 5 h,
and 24h postonset, MAPK14 was notably upregulated in the
CS patients group, as opposed to those in the normal control
group. This result was indicative of the potential vital role
played by MAPK14 in the progression of CS (Figure 6(b)).

The ROC curve of CS diagnosed by the MAPK 14 expression
level showed that the areas under the curve (AUC) at 3 h, 5 h,
and 24 h postonset were 0.923, 0.934, and 0.941 (Figure 6(c)),
respectively. These data suggested that MAPK14 is a promis-
ing biomarker for CS.
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Figure 6: The identification of MAPK14 as a biomarker for CS. (a). Final overlap ofWGCNA hub genes and DEG hub genes. (b). Violin plots
representing expression of MAPK14 in 3 h, 5 h, and 24 h following CS were all significantly increased compared to normal individuals in
dataset GSE58294. (c). Receiver operating characteristic (ROC) curves for blood MAPK14 in 3 h, 5 h, and 24 h following CS in dataset
GSE58294. MAPK14: mitogen-activated protein kinase 14; CS: cardioembolic stroke; WGCNA: weighted gene coexpression network
analysis; DEGs: differentially expressed genes.
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4. Discussion

In the current study, WGCNA was applied to analyze the
gene expression data of the whole genome of CS blood sam-
ples, and 11 independent gene modules were obtained.
Among these modules, the black module and the pink mod-
ule were closely related to CS. GEO2R analysis revealed that
the MAPK14 expression level was augmented at all three
time points in CS, compared with the normal controlled
group, and that MAPK14 was located in the black module.
The ROC curve of CS based on the expression level of
MAPK14 suggests that MAPK14 may be a potential newer
biomarker that can be applied in the diagnosis of CS.

As a notorious disease, stroke is one of the leading causes
of death and disability in adults [22]. However, the current
preventive measures for stroke remain flawed: the prevention
and treatment stress on stroke events that are mainly caused
by cerebrovascular diseases, yet disregard ischemic stroke
caused by cardiac diseases, such as atrial fibrillation and heart
failure. Previous studies have found that the proportion of
cardioembolic stroke (CS) events accounts for around 20%
in all clinical ischemic stroke events and that its incidence
increased significantly with aging, leading to notably higher
mortality, disability, and recurrence rates than other types
of stroke [6]. The continuous effort to find out the risk factors
of CS is especially important, so are the active prevent and
accurate diagnosis.

Accumulating evidence in recent years found that it is
essential to construct a gene coexpression network within
the framework of the current exploratory research, because
such effort can help identify the important modules and
genes related to disease [23]. The mining of marginal fold
change genes remains challenging for traditional analysis at
the gene level [24]. Nonetheless, the idea of mining genes
by using the WGCNA analysis system provides a benefiting
complement to the gene-level analysis [25]. WGCNA has
been successfully applied in exploring the mechanism under-
lying diseases, diagnosis, prognosis prediction, and so on.
The strong correlations in the results of WGCNA would
remain intact or be less affected after the processing of power
function. Meanwhile, the weak correlations would be mark-
edly reduced power processing". These characteristics jointly
contribute to better restore the entire physiological process
in which the genes are involved. By contrast, the conven-
tional clustering method cannot achieve such effect. There-
fore, the results obtained from WGCNA possess higher
credibility.

After WGCNA coexpression network analysis of CS and
the investigation of hub genes, we found that MAPK14 is the
DEG closely associated with CS. However, the exact mecha-
nism underlying MAPK14 affects the biological behavior of
neural cells in the onset and development of CS has not been
clarified. In the present study, we make efforts to interrogate
the correlation between genes and biology from four aspects,
including the categories of BP, CC, MF, and KEGG signaling
pathway analysis, thereby verifying the significant functional
pathways in CS. Our results suggested that the DEGs of CS is
mainly involved in molecular functions, biological processes,
and signaling pathways, such as inflammatory response,

immune response, cytokine interaction, and JNK pathway,
all of which might be related to the occurrence and develop-
ment of CS.

MAPK14 is a member of the MAP kinase family. As an
integration checkpoint of various biochemical signals, MAP
kinases are implicated in various processes, such as cell
proliferation, differentiation, transcriptional regulation, and
development [26]. Such kinase can be activated by various
environmental stresses and proinflammatory cytokines
[27]. Evidence confirmed that p38/MAPK plays a key role
in the formation of cerebral edema [28, 29]. MAPK14 is
widely present in the brain tissue, hence raises the hypothesis
that it can reflect the degree of change in brain tissue con-
centration by detecting its concentration in the blood.
Since the pathway can be activated by a variety of stress
environments, subsequently damaging the human body
by mediating inflammatory reactions and apoptosis, there
exists a vital link between brain injury and the activation
of p38MAPK pathway.

In the event of acute cerebral infarction, the acute ische-
mic injury in the brain tissue triggers detrimental cascades
such as excitatory amino acid toxicity and inflammatory
response, thereby reinforcing the activation of p38MAPK
pathway in ischemic brain injury [30]. It plays a key part in
the biological process of stress-induced neuronal death and
has been confirmed that inhibition of p38 MAPK in vivo
and in vitro significantly alleviated ischemic injury to brain
tissue. To validate the bioinformatics analysis results
acquired in this study, we plotted the ROC curve to measure
the capacity of MAPK14 in the diagnosis of CS. The results
showed that MAPK14 gene was significantly associated with
the outcome of CS patients.

However, this study is not without certain limitations.
Firstly, only the ROC curve was used to predict the diagnostic
value of MAPK14 gene. Secondly, the sample size in the cur-
rent study was relatively small. Thirdly, validation tests were
not conducted and the severity data of CS were not included.
All these shortcomings warrant further experimental studies
in the future. The clinical efficacy of these biomarkers must
be further explored in patients with CS. Further research is
needed to examine the underlying mechanism and the
related pathways of these genes.

In a nutshell, this study usedWGCNA to screen the mod-
ular genes in the blood samples of CS patients, and the results
showed that the expression level of MAPK14 in CS patients
was notably higher than that in normal people. Such finding
of MAPK14 is expected to shed light on a new diagnostic
marker and therapeutic target for CS and provide theoretical
basis for the molecular mechanism research that follows.

5. Conclusion

In this study, MAPK14 was screened out as the differential
expressed gene in CS by using WGCNA. MAPK14 may par-
ticipate in the pathogenesis of CS through immune regula-
tion, inflammatory response, and JNK signaling pathways.
This study provides promising opportunity to use MAPK14
as the biological marker for the diagnostic of CS.
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