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Summary

� Genetic load can reduce fitness and hinder adaptation. While its genetic underpinnings are

well established, the influence of environmental variation on genetic load is less well charac-

terized, as is the relationship between genetic load and putatively adaptive genetic variation.

This study examines the interplay among climate, species range dynamics, adaptive variation,

and mutational load – a genomic measure of genetic load – in Vitis arizonica, a wild grape

native to the American Southwest.
� We estimated mutational load and identified climate-associated adaptive genetic variants in

162 individuals across the species’ range. Using a random forest model, we analyzed the rela-

tionship between mutational load, climate, and range shifts.
� Our findings linked mutational load to climatic variation, historical dispersion, and hetero-

zygosity. Populations at the leading edge of range expansion harbored higher load and fewer

putatively adaptive alleles associated with climate. Climate projections suggest that V. arizo-

nica will expand its range by the end of the century, accompanied by a slight increase in

mutational load at the population level.
� This study advances understanding of how environmental and geographic factors shape

genetic load and adaptation, highlighting the need to integrate deleterious variation into

broader models of species response to climate change.

Introduction

Mutations provide the raw material for evolutionary change,
impacting fitness in various ways. A small fraction of mutations
confers a fitness advantage, and many are evolutionarily neutral or
nearly neutral. However, the vast majority are deleterious
(Eyre-Walker & Keightley, 2007) and, as a result, are likely to face
selective pressure to be purged. Nevertheless, deleterious mutations
can persist within populations and thus influence evolutionary out-
comes (Hedrick & Kalinowski, 2000; Robinson et al., 2023). Sur-
veying the number, prevalence, and fitness effects of deleterious
mutations is crucial for understanding a wide array of biological
phenomena, including rates of adaptation, the incidence and sever-
ity of genetic diseases (Kryukov et al., 2007), and the conservation
status of wild populations (Kyriazis et al., 2021).

Given their importance and ubiquity, deleterious variants have
been the focus of many theoretical and empirical studies (Robin-
son et al., 2023). These studies have shown that the frequency
and number of deleterious variants within a population are
shaped by several evolutionary parameters, particularly effective
population size (Ne; Charlesworth & Charlesworth, 1998).
Populations with lower Ne tend to accumulate more deleterious
mutations than populations with higher Ne because increased

genetic drift and reduced selection efficacy limit the removal of
deleterious variation (Bertorelle et al., 2022). Accordingly, the
number and frequency of deleterious variants often increase
through population bottlenecks and other demographic events
(Lohmueller, 2014). The accumulation of deleterious variants
also depends on dominance coefficients (Simons et al., 2014), the
distribution of fitness effects, and the duration and timing of a
bottleneck (Brandvain & Wright, 2016; Bortoluzzi et al., 2020).
(In fact, bottlenecks of sufficient duration and severity can purge
highly deleterious, homozygous mutations (Grossen et al., 2020;
Femerling et al., 2023).) Demography helps explain the increased
number and frequencies of deleterious variants in domesticated
species (Renaut & Rieseberg, 2015; Liu et al., 2017; Moyers
et al., 2018) and in small populations of conservation concern
(Femerling et al., 2023). The accumulation of deleterious var-
iants can also be influenced by hitchhiking and gene flow. Gene
flow can either raise or lower genetic load, depending on the bur-
den of deleterious variants carried by introgressed haplotypes
(Kim et al., 2018; Zhang et al., 2020; Xiao et al., 2023).

The evolutionary processes shaping genetic load also vary
across geographic landscapes. Populations at range edges often
experience environmental marginality – approaching the limits
of their ecological tolerance – potentially leading to reduced Ne
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and the accumulation of deleterious variation. However, this pat-
tern can differ between ‘leading’ and ‘trailing’ edges of a range
shift (Angert et al., 2020). Populations at the leading (i.e.
expanding) edge of a range shift are likely to experience serial
founder events, assortative mating, and strong selection pressure
to adapt to new biotic and abiotic environments. Once estab-
lished, deleterious mutations can propagate with an expanding
range front via gene surfing (Travis et al., 2007; Excoffier
et al., 2009). By contrast, populations on trailing edges are more
likely to have had large historical population sizes with high
genetic diversity that can erode as the climate shifts and popula-
tion sizes crash (Hampe & Petit, 2005). Consistent with these
predictions, increased numbers and frequencies of deleterious
variants have been found at range edges in both laboratory
(Weiss-Lehman et al., 2017; Bosshard et al., 2017) and natural
populations (González-Mart́ınez et al., 2017; Willi et al., 2018,
2022; Rougemont et al., 2020; Takou et al., 2021).

Because populations at the leading edge of range expansion often
encounter new or unique environmental challenges, it seems rea-
sonable to posit that the number and frequency of deleterious var-
iants covary with environmental and climatic markers. Yet, there
have been few attempts to relate distributions of deleterious variants
to climatic variation (Willi et al., 2022). We believe that exploring
the connection between deleterious variants and climate is worth-
while for at least two reasons. First, such an exploration is likely to
provide additional insights into the evolutionary processes that
shape the spatial distribution of genetic variation. Second, since
deleterious variants affect fitness, understanding their patterns can
be informative about the probability of population persistence
(Aguirre-Liguori et al., 2021) and adaptation in the context of cli-
mate change (Sánchez-Castro et al., 2022). Recently, substantial
attention has focused on modeling the fate of putatively adaptive
mutations to predict the fate of populations under predicted cli-
mate change (Fitzpatrick & Keller, 2015; Waldvogel et al., 2020;
Capblancq et al., 2020a). Except in the special case of antagonistic
pleiotropy, these approaches typically overlook deleterious variants,
representing a potentially major conceptual gap in the field of cli-
mate genomics (Aguirre-Liguori et al., 2021).

Many of the arguments about population size and edge effects
also apply to adaptive variants, although often with opposite
trends. For example, increased drift in small, edge populations
can counteract selection, leading to the expectations of fewer
adaptive alleles in these populations (Willi et al., 2006). Gene
flow from large, central populations may contribute to this phe-
nomenon by swamping the complement of new adaptive alleles
in edge populations (Sexton et al., 2009). This framework gener-
ally posits that mutational load for small Ne edge populations
should be negatively correlated with the complement of adaptive
variants, perhaps especially at the leading edge of expansion (Sá-
nchez-Castro et al., 2022). However, some have argued that
adaptive alleles are more likely to be found in leading-edge popu-
lations (Macdonald et al., 2017) due to strong selection in mar-
ginal habitats. More generally, the accumulation of adaptive
alleles depends also on factors like the severity of environmental
gradient across the species’ range, the temporal pace of range
expansion, population connectivity, historical Ne, and the

strength of selection (Hedrick & Garcia-Dorado, 2016; Pole-
chová, 2025). Given these complex dynamics, it is not surprising
that the empirical literature is mixed (Willi et al., 2006). Some
studies find fewer putatively adaptive variants in edge populations
(Sánchez-Castro et al., 2022), while others identify more
climate-associated (and putatively adaptive) alleles in edge popu-
lations (Aguirre-Liguori et al., 2017). Still, others find evidence
for increased load in edge populations but without reduced fit-
ness (Willi et al., 2006; Takou et al., 2021). Additional empirical
work that incorporates some of the complexities of time, popula-
tion size, environmental variation, and range shifts may help
establish general relationships that may, in turn, be useful for pre-
dicting the ecological limits of species (Sexton et al., 2009).

Here, we examine the influence of climatic variation and species
range dynamics on deleterious genetic variation in Vitis arizonica
(Engelm.), a perennial crop wild relative (CWR) of domesticated
grapevine (V. vinifera ssp vinifera). Crop wild relatives have multi-
billion dollar impacts on the global economy (Bohra et al., 2022)
and provide agronomically beneficial traits to domesticate as root-
stocks or through hybrid breeding. As such, they are considered to
be of urgent conservation concern (Khoury et al., 2020), particu-
larly as climate change initiates species’ range shifts. Vitis arizonica
is an interesting candidate for study because it is native to a wide
environmental range encompassing Northern Mexico and the
Southwest United States (Heinitz et al., 2019), where extreme heat
and drought are common. It thus has the potential to contribute
adaptations – such as drought tolerance, salinity tolerance, and
pathogen resistance – that may be useful to viticulture. In fact, V.
arizonica segregates for resistance to Xylella fastidiosa (Riaz
et al., 2018, 2020; Morales-Cruz et al., 2023), a plant pathogen
that causes Pierce’s disease (PD) in grapevines and also infects
major crops, such as almonds, olives, and coffee. Consequently, V.
arizonica has already been utilized in breeding programs to intro-
duce PD resistance into V. vinifera varieties (Quinton, 2019).

In this study, we estimated mutational load, a measure of
genetic load, and identified putatively deleterious and adaptive
variants in 162 resequenced V. arizonica individuals. We interro-
gated these variant classes in relation to genomic, geographic, and
bioclimatic factors to address four key questions: (1) How are
putatively deleterious variants distributed among V. arizonica
individuals, and how does this distribution vary across the species’
range? (2) Which aspects of population history and environmen-
tal conditions best predict the spatial distribution of deleterious
variants across the landscape? (3) To what extent are mutational
load and putatively adaptive variants associated, and do their rela-
tionships differ between leading-edge and trailing edge popula-
tions? (4) What insights do predictive climate models yield about
potential trends for deleterious and adaptive variation?

Materials and Methods

Variant calling

Illumina whole-genome sequencing reads from 172 individuals
(Supporting Information Table S1), obtained from NCBI BioPro-
jects PRJNA731597 (Morales-Cruz et al., 2021) and
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PRJNA842753 (Morales-Cruz et al., 2023), were processed using
TRIMMOMATIC v.0.39 (Bolger et al., 2014) to remove adapters and
low-quality sequence using the following arguments: ‘ILLUMINA-
CLIP:’$ADAPTERSPE‘:2:30:10 LEADING:3 TRAILING:3 SLI-
DINGWINDOW:4:20 MINLEN:60’. Processed reads were then
mapped to the Vitis arizonica (Engelm.) B40-14 v.2.0 genome
assembly (Morales-Cruz et al., 2023) with BWA-MEM 0.7.12r1039
(Li, 2013) using the default parameters. Sequence Alignment/Map
format (SAM) alignments were sorted and converted to indexed
Binary Alignment/Map (BAM) using SAMTOOLS 1.17 (Danecek
et al., 2021). Sequencing duplicates were marked in the alignments
using the picard MarkDuplicates module included in GATK

v.4.2.6.1 (Van der Auwera & O’Connor, 2020).
Single-nucleotide polymorphisms (SNPs) were called per sam-

ple using GATK HaplotypeCaller in GVCF mode followed by
joint calling across all samples with GenotypeGVCFs. BCFTOOLS

v.1.17 (Danecek et al., 2021) was used to filter SNPs, keeping
only biallelic SNPs with quality of 20 or greater that also passed
the GATK ‘best practices’ hard filters: excluding sites with ‘QD
< 2 | FS > 60 | SOR > 3 | MQ < 40 | MQRankSum < �12.5 |
ReadPosRankSum < �8.0’. Sites with minor allele frequency
< 0.01, with site depth greater than the mean plus SD of depth
across all sites, and sites that had > 5% missing calls between
individuals were filtered. Annotation for predicted SNP effects
was done with SIFT-4G (Vaser et al., 2016) using a custom data-
base based on the Vitis arizonica (Engelm.) B40-14 v.2.0 genome
assembly and annotation (Morales-Cruz et al., 2023). SNPs were
polarized by including six outgroup samples: three individuals
each from Vitis girdiana (Munson) (individuals SC11, SC33,
and SC51) and Vitis monticola (Buckley) (individuals C20-93A,
T_03-02_S01, and T40) in the call set. These outgroup samples
were mapped to the reference genome and jointly genotyped with
the focal samples. Subsequent analyses were based on sites that
had no missing data across outgroup samples and were also con-
sistently homozygous in the outgroups; for sites that fit these cri-
teria, the outgroup genotype was assigned as the ancestral state.

As a final filtering step, principal component analysis (PCA)
on SNPs was done using only the V. arizonica samples using
PLINK v.2.0 (Chang et al., 2015). Variants were pruned for link-
age disequilibrium in 50 variant windows, with a step size of 10,
and R2 threshold of 0.20 before the PCA. Based on the 1.5 inter-
quartile range rule, 10 samples were in the extremes of PC1 and
visibly distinct from the remainder of the samples (Fig. S1).
Upon further examination, several of the 10 samples were col-
lected from disjunct geographic locales, raising concerns about
their provenance. Furthermore, all 10 samples differed from the
remaining samples by containing evidence of admixture from
multiple other Vitis species, based on preliminary analyses of an
unpublished, multispecies dataset. As a result, these 10 samples
were removed from the dataset, leaving 162 individuals that
represent much of the predicted species distribution (Fig. 1).

Estimation of mutational load

Mutational load (loadM) was estimated for each individual similarly
to Willi et al. (2018), but focusing on single individuals and

considering counts of alleles instead of counts of homozygous sites.
Briefly, loadM was calculated as Pn= Pn þ Psð Þ, where Pn corre-
sponded to the proportion of derived alleles across all nonsynon-
ymous sites and Ps corresponded to the proportion of derived alleles
across all synonymous sites. A complementary measure of muta-
tional load based on the subset of nonsynonymous SNPs (nSNPs)
predicted to be putatively deleterious by SIFT-4G was also calculated
as: Pd = Pn þ Psð Þ, where Pd was the proportion of derived deleter-
ious alleles across all putatively deleterious sites. Sites with missing
data for an individual were excluded from the calculations of Pn, Ps ,
and Pd , effectively making these statistics relative rates of nonsynon-
ymous, synonymous, and deleterious mutations, respectively.

Species distribution modeling

Species distribution models (SDMs) for V. arizonica were calcu-
lated for both the present and the Last Glacial Maximum (LGM)
following the procedure described in Aguirre-Liguori et al. (2022).
To assemble the data for constructing the SDMs, the WorldClim
2 bioclimatic variables (mean of observations from 1970 to 2000)
(Fick & Hijmans, 2017) (Table S2) were extracted at 2.5 min reso-
lution for all available geographic references of V. arizonica from
the Global Biodiversity Information Facility (GBIF) (Occdown-
load Gbif.Org, 2020) (accessed 6 July 2022) and for the sampling
locations (Table S1) using the RASTER 3.6–26 R package (Hij-
mans, 2023). The COORDINATECLEANER v.3.0.1 R package (Zizka
et al., 2019) was used to remove duplicate references; outliers
(references that were in the top 5% of mean distance to all other
locations); records in bodies of water, records at GBIF headquar-
ters facilities, and records near country centroids or capitals.

To build SDMs, the correlated bioclimatic variables were first
pruned based on variance inflation factor, retaining variables with
R< 0.8. Next, the background area was set by selecting the over-
lap between the pruned occurrence records and the terrestrial
ecoregions defined by (Olson et al., 2001). The model was then
built using the BIOMOD2 4.2–4 R package (Thuiller et al., 2009)
and the Maxent algorithm (Phillips et al., 2006; Phillips &
Dudı́k, 2008) using 20 bootstrap replicates, utilizing 70% of
occurrences as the training data and retaining 30% as a test data-
set. The final distribution model was selected by evaluating true
skill statistics among 10-fold internal cross-validation. To esti-
mate how the distribution of V. arizonica has changed from the
past to the present and evaluate how it will change from the pre-
sent to the future, the SDM was projected using the same set of
bioclimatic variables for the LGM layer (c. 22 000 years ago) and
to the future bioclimatic layers described below. For all SDM
models, all range areas were calculated using the expanse function
from the TERRA 1.7–55 R package (Hijmans, 2024), and the dis-
tance between centroids was calculated using the distHaversine
function from the GEOSPHERE 1.5–18 R package (Hijmans, 2022).

Calculation of features for predictions

The features for statistical modeling consisted of 24 variables and
are summarized in Table 1; Fig. S2. The 19 WorldClim 2
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bioclimatic variables (Fick & Hijmans, 2017) were extracted for
each individual by collection site coordinate using the RASTER

3.6–26 R package (Hijmans, 2023). Observed heterozygosity
(Ho) was calculated from variable sites after pruning for linkage

disequilibrium (50 SNP windows, 10 SNP step size, and R2

threshold 0.20) using PLINK 2.0 (Chang et al., 2015). The SDMs
were used to generate the remaining features. The geographic
centroid was defined as the median coordinate of the present
SDM. For each of the samples, the distance to the geographic
centroid was then calculated as the Euclidean distance between
each sampling location and the centroid. The distance to geo-
graphic range edge was calculated between each sampling loca-
tion and the nearest edge of the species range using the distGeo
function from the GEOSPHERE 1.5–18 R package (Hijmans, 2022).
The range boundaries were defined using the boundaries function
implemented in the TERRA 1.7–55 R package (Hijmans, 2024).
The distance to the niche centroid for each individual was calcu-
lated following the approximation of Lira-Noriega & Man-
they (2014). Briefly, the 19 WorldClim 2 bioclimatic variables
(Fick & Hijmans, 2017) were extracted for all pixels in the pre-
sent SDM. Next, a PCA of the bioclimatic data was performed
and the first six principal components (PCs) (explaining 95% of
the variation in the dataset) were retained. The niche centroid
was defined as the mean value among all observations along the
six PCs. Finally, the distance to the niche centroid was then cal-
culated as the Euclidean distance in multidimensional PC space

Table 1 Summary of features used in modeling mutational load in Vitis

arizonica.

Feature Class Description

Ho Genetic Observed heterozygosity for each individual
based on SNPs detected across the entire
sample

bio1–bio19 Bioclimatic WorldClim bioclimatic variables
dgeo Geography Distance from geographic centroid based on

species distribution modeling (SDM)
dedge Geography Distance to nearest species distribution edge

based on SDM
dniche Bioclimatic Distance from the centroid of a bioclimatic

PCA
ddispersal Dispersal Retroactive predicted dispersal distance

between SDMs (e.g. from Last Glacial
Maximum to the present)

Fig. 1 Site frequency spectra and mutational
load in Vitis arizonica. (a) The derived allele
frequency for three SNP classes: dSNPs
(deleterious), nSNPs (nonsynonymous) and
sSNPs (synonymous). (b) The species distribution
model in the present (green) based on
WorldClim data that summarize bioclimatic
averages from 1970 to 2000 and GBIF species
occurrence data. The points represent sampling
locations for individuals used in genetic analyses
and are colored according to the loadM estimate
per individual calculated with nonsynonymous
variants. The black asterisk indicates the
geographic centroid of the predicted range.
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between the niche centroid and the observation for each indivi-
dual.

The final predictor was the estimated dispersal distance from
the LGM to the present. The assumption of this calculation
was that individuals with collection sites in the present but
not past range must have dispersed to their present locations
since the last epoch, while individuals present in the overlap-
ping range did not necessarily need to disperse to their present
location (dispersal= 0). As such, the geographic dispersal dis-
tance for each individual was calculated using the distGeo func-
tion from the GEOSPHERE 1.5–18 R package (Hijmans, 2022)
between the collection site and the closest boundary of the
past distribution.

Statistical modeling

Random forest (RF) regression models (Breiman, 2001) were
built using the TIDYMODELS 1.1.1 framework (Kuhn & Wick-
ham, 2020) utilizing the RANGER 0.16.0 engine (Wright & Zieg-
ler, 2017) running in the R programming environment (R Core
Team, 2023). The dataset was split, allocating 75% of sample
observations to training and reserving 25% for testing. Hyper-
parameter optimization for mtry (the number of randomly
sampled predictors used to split the decision trees), min_n (the
number of observations required for a tree node to be split again
after segmentation), and trees (the number of decision trees to be
included in the ensemble) was conducted over the respective
ranges of 1–20, 1–10, and 500–1000 through Latin hypercube
sampling, selecting 100 unique combinations for evaluation.
Optimal hyperparameters were determined via 10-fold
cross-validation on the training data and were used for the final
model fits (Fig. S3). The permutation approach was used to cal-
culate predictor importance.

The transformation to reduce collinearity among variables fol-
lowed Johnson’s method (Johnson, 2000). An orthogonal
approximation (Z) of the original data matrix (X) was generated
and used to train the RF model. The resulting model coefficients
(i.e. variable importance) were then transformed back into the
original data space for interpretation. Specifically, the training
data were first centered and scaled by subtracting the mean and
dividing by the SD so that each variable had a mean of 0 and a
SD of 1. After standardization, singular value decomposition
(SVD) was performed on the dataset. The data were then ortho-
gonally approximated by the following transformation: Z= P
QT, where P and Q represent the left and right singular vectors
from the SVD, respectively. A transformation matrix, λ, was then
calculated as: λ=Q D QT, with D being a diagonal matrix con-
taining the singular values from the SVD. After the RF model
was fitted using the orthogonalized data, the resulting importance
values were approximated back into the original data space (i.e.
the original predictors) by multiplying λ2 by the matrix of
importance values. To use the models trained on orthogonally
approximated data for predictions, test data (X1) were first scaled
using the column means and SD of the original training dataset
before being projected into the SVD space using the following
formula: Ztest= X1 scaled Q D�1 QT.

Associations between loadM and each independent variable
were calculated using univariate linear mixed models fit using the
lmekin function from the COXME 2.2–18.1 R package (Ther-
neau, 2022). All predictors were scaled using the base::scale func-
tion in R (R Core Team, 2023) before model fitting. A
standardized relatedness matrix was calculated with GEMMA

0.98.5 (Zhou & Stephens, 2012) and included as a random effect
in the linear mixed models.

Projections of climate and mutational load in 2100

The future SDMs were built using the bioclimatic data for four
Earth System Models (ESMs) (IPSL-CM6A-LR, MPI-ESM1-2-
HR, MRI-ESM2-0, and UKESM1-0-LL) and four shared socio-
economic pathways (SSPs) (SSP126, SSP245, SSP370, and
SSP585) for the period 2081–2100, downloaded from the
CMIP6 project (Eyring et al., 2016). These SSPs represent alter-
native greenhouse gas trajectories, ranging from low emissions
and strong mitigation (SSP126) to high emissions and continued
fossil fuel use (SSP585; Riahi et al., 2017). The distance to geo-
graphic centroids and the distance to range edge for each model
were calculated as described previously. To calculate forecasted
dispersal, each sampling location was first assessed to determine
whether it fell within the present range and was predicted to
remain within the forecasted range. If so, the future dispersal dis-
tance was set to zero. If not, the geographic distance to the nearest
forecasted range edge was estimated from the current location.
Bioclimatic data were then extracted for all individuals using the
present sampling coordinates or the nearest forecasted range edge
(for individuals predicted to disperse by 2100).

The RF models trained with present-day bioclimatic data were
used for all projections of loadM in the future. As the indepen-
dent variables, WORLDCLIM 2.1 bioclimatic variable projections
for 2081–2100 (2.5-min resolution) (Fick & Hijmans, 2017) for
all 16 ESM:SSP combinations were used, along with the projec-
tions of future geographic centroids, distance to geographic range
edges, and distance to niche centroid. For consistency in the
model, dispersal was calculated from the LGM to the future as
the sum of predicted dispersal from LGM to present and pre-
dicted dispersal from present to future. Observed heterozygosity
was kept constant.

Identifying adaptive alleles and performing GF projections

Climate-associated SNPs were identified for each of the 19 biocli-
matic variables using latent factor mixed models (LFMMs)
broadly following the methods described in Morales-Cruz
et al. (2023). Missing genotypes were imputed using the LEA
3.10.2 R package (Frichot & François, 2015) by first estimating
the K ancestral populations in the dataset (K= 6) using the snmf
function and then using the impute function to set the missing
genotype to the most common genotype of the individual’s
assigned ancestral population. We selected K= 6 based on a
PCA of all SNPs and a scree plot of the latent factor variance; we
also confirmed that results with K= 6 were conservative because
they identified fewer SNPs that were a subset of those identified
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with lower K values (e.g. K= 4). SNPs with minor allele frequen-
cies below 0.05 were filtered from subsequent analysis, leaving
1012 352 SNPs. Latent factor mixed models were fit using the
LFMM 1.1 R package (Caye et al., 2019). In the LFMM, popula-
tion structure was accounted for using K= 6 latent factors, a
ridge penalty was applied to prevent overfitting, and test statistic
inflation was controlled for using a genomic inflation factor.
Finally, SNPs with Bonferroni-adjusted P< 0.05 were consid-
ered to be associated with climate and putatively adaptive.

To estimate the number of adaptive SNPs per individual
(NG), ordinal logistic regression (OLR) models were fit for each
putatively adaptive SNP using the polr function from the MASS

7.3-60 R package (Venables & Ripley, 2002). Each OLR mod-
eled genotype (encoded 0, 0.5, and 1 for 0, 1, and 2 alternative
alleles, respectively) as a function of the respective associated bio-
climatic variable. P-values were calculated from z-values of each
OLR, and SNPs were considered for further analysis if they had a
Bonferroni-corrected P< 0.05. SNPs in which the genotype pre-
dicted from the model matched the observed genotype were con-
sidered as adaptive and added to the adaptive genotype count
(NG). If a SNP was associated with multiple bioclimatic variables,
it was only counted once toward NG. Similar results were
obtained when using a less stringent set of fitted SNPs, such as
the complete set of putatively adaptive SNPs, with NG highly
correlated (Pearson’s r> 0.980, P< 0.001; Fig. S4) between the
two treatments.

Finally, the genetic turnover of individuals across the pre-
sent landscape was modeled using gradient forest (GF) models
implemented in the GRADIENTFOREST 0.1–37 R package (Ellis
et al., 2012; Fitzpatrick & Keller, 2015). In the GF models,
the unique set of SNPs identified as outliers by LFMM, repre-
senting putatively selected loci, was used as the response. The
bioclimatic variables were used as the independent variables,
and we performed 500 bootstrap iterations of GF analyses.
The fitted GF model was then used to predict the expected
genomic composition of individuals in the 16 future climate
models. No migration was assumed for individuals present in
both present and forecasted range (according to the SDM),
while individuals expected to disperse by 2100 were considered
to have migrated to the nearest predicted range edge, as
described previously.

The genetic offset for each individual in each future climate
scenario was calculated as the Euclidean distance between the
present and future expected genetic composition (Fitzpatrick &
Keller, 2015). Since the genetic offsets per individual were found
to be highly correlated for the 16 climatic models (Spearman’s
rho > 0.7), the mean genetic offset per individual was reported
and used for subsequent analyses.

Phenotypic analyses

Linear mixed models to detect associations between phenotype
and loadM were built using the lmekin function from the COXME

2.2–18.1 R package (Therneau, 2022) using a standardized relat-
edness matrix calculated with GEMMA 0.98.5 (Zhou & Stephens,
2012) as a random effect as described previously. The

likelihood-ratio pseudo R2 was estimated using the r.squaredLR
function from the MUMIN 1.48.4 R package (Bartoń, 2024).

Results

Mutational load estimates across the landscape

We called variants in a cohort of 172 resequenced individuals
sampled across much of the native range of V. arizonica
(Morales-Cruz et al., 2023) (Table S1). After site and sample fil-
tering (see the Materials and Methods section; Fig. S1), the final
dataset represented genotypes for 162 individuals across 1320
747 biallelic SNPs with a minor allele frequency of 1% or greater.
The filtered dataset had low levels of missing data, averaging
0.39% missing calls both per site and per sample. We annotated
these SNPs for predicted effects on protein function, identifying
140 801 synonymous SNPs (sSNPs) and 146 830 nSNPs. The
latter included 40 145 putatively deleterious SNPs (dSNPs), as
predicted by SIFT-4G (Vaser et al., 2016). We polarized sSNPs,
nSNPs, and dSNPs using six individuals from two congeneric
species (V. girdiana and V. monticola). After applying our polariz-
ing criteria (see the Materials and Methods section), we assigned
ancestral and derived alleles for 53.02% (74 656/140 801) of
sSNPs, 54.01% (79 301/146 830) of nSNPs, and 55.89%
(22 436/40 145) of dSNPs.

We expected both nSNPs and dSNPs to have been subjected
to purifying selection and thus segregate at lower frequencies than
sSNPs. We tested this hypothesis by calculating the site frequency
spectrum (SFS) for each SNP class across the entire sample
(Fig. 1a). As expected, the SFS for nSNPs was significantly differ-
ent than that of sSNPs (Kolmogorov–Smirnov test, D= 0.047,
P< 2.2e�16), reflecting an enrichment for low-frequency-
derived nSNP alleles (chi-squared test, χ2= 367.96, df= 1,
P< 2.2 × 10�16). The SFS for dSNPs was also significantly dif-
ferent than the SFS for nSNPs (Kolmogorov–Smirnov test,
D= 0.033, P= 6.66 × 10�16), with an even greater enrichment
of low-frequency variation than of nSNPs (chi-squared test,
χ2= 96.03, df= 1, P< 2.2 × 10�16). Thus, nSNPs and dSNPs
segregated as expected, with the SFS dominated by
low-frequency variants.

We next calculated the proportion of derived alleles at either
deleterious or nonsynonymous sites, which we called Pd and Pn
(see the Materials and Methods section). These measures are ana-
logous to counts of the number of derived dSNPs or nSNPs per
genome, corrected for missing data. Similar measures have been
used commonly to approximate mutational load because they
can be insensitive to demographic history under some conditions
(Simons et al., 2014). Pd and Pn were highly correlated across the
162 individuals (Pearson R2= 0.99; P< 0.001), with the highest
values clustered in the southernmost part of the species’ range
(Fig. S5). While this pattern suggests a higher mutational load in
these samples, the proportion of derived synonymous alleles (Ps)
was also elevated in the South (Fig. S6) and strongly correlated
with both Pn (R2= 0.99; P< 0.001) and Pd (R2= 0.97;
P< 0.001). Since Ps likely reflects segregating neutral genetic var-
iation – and thus is unlikely to be an accurate measure of the load
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of deleterious variants – we interpreted the strong correlations
among Pd, Pn, and Ps as reflecting the distribution of genetic
diversity across samples rather than mutational load per se.

We therefore turned to an alternative measure of mutational
load (loadM), based on previous work (Willi et al., 2018). Briefly,
loadM was estimated as Pn= Pn þ Psð Þ. This measure is concep-
tually similar to well-used measures of selection like dn/ds or πn/πs
that are normalized by presumably neutral genetic variation.
LoadM varied by 11% among individuals and was unevenly dis-
tributed across sampling locations, with higher values concen-
trated in the northernmost part of the predicted species range
(Fig. 1b; Table S1). To complement loadM, we also calculated an
analogous measure (i.e. Pd = Pn þ Psð Þ based on dSNPs. The two
measures were highly correlated (R2= 0.73, P< 2.2 × 10�16;
Fig. S7) and produced qualitatively identical results in down-
stream analyses. Therefore, for simplicity and consistency with
previous work (Willi et al., 2018), we report loadM based on
nSNPs while briefly mentioning results from dSNPs, Pd and Pn
where applicable.

Compilation of features to predict loadM

One of our goals was to evaluate the relative contributions of
genetic diversity, the environment, and species’ range dynamics
to loadM. With this objective in mind, we compiled a set of 24
features related to genomic diversity, climatic diversity, and spe-
cies’ range for each individual (Table 1; Fig. S2). The climatic
features included the 19 WorldClim 2 bioclimatic variables,
which summarize historical climate variation from 1970 to 2000
(Fick & Hijmans, 2017) at each collection site. To represent
genomic variation, we estimated observed heterozygosity (Ho) for
each individual, reasoning that this measure reflects aspects of
historical Ne (Crow & Kimura, 1970). The remaining four geo-
graphic features were related to the estimated species’ range and
relied on SDMs. One SDM estimated species’ range in the pre-
sent based on species occurrence data (Occdownload Gbi-
f.Org, 2020) and recent (averaged from 1970 to 2000)
bioclimatic data. This present-day SDM was used to calculate the
minimum geographic distance of each individual to the nearest
range edge (dedge), measured in kilometers, and the Euclidean
distance to the geographic (dgeo) and niche (dniche) centroids
(Table S1).

We also calculated a fourth geographic parameter: the distance
of potential historical dispersion events (ddispersal). To do so, we
constructed an SDM from the LGM, reflecting climatic condi-
tions c. 22 000 years ago. By comparing the present-day SDM to
the LGM SDM, we determined whether the sampling site of an
individual remained within the species’ geographic niche over
time or required migration since the LGM. The two SDMs sug-
gested that the species distribution moved and expanded over
geologic time, with a shift in the geographic centroid by 736 km
(34 degrees west of north) and a 40.71% expansion by area from
the LGM to the present (Fig. 2a). However, the two SDMs over-
lapped for only 28.08% of the estimated present range, suggest-
ing a substantial history of migration and dispersal. To estimate
ddispersal, we calculated the minimum distance from the

present-day sampling location to the LGM SDM range edge (see
the Materials and Methods section). For individuals collected at
locations that were present in both SDMs, we made the simplify-
ing assumption that ddispersal was 0.0 km. Using this approach, 84
sampling locations represented potential historical dispersions
since the LGM, with a median distance of 89.97 km. ddispersal was
particularly pronounced for individuals sampled in more north-
ern latitudes, suggesting that this region represents a leading edge
of range expansion.

The collection of 24 genetic, geographic, and climatic features
constitutes a multivariate dataset that can be used to predict
loadM. As is common with such datasets, however, the features
exhibited a complex pattern of correlated relationships (Figs 2b,
S8). For example, bioclimatic variables related to temperature
(e.g. bio1, bio5, bio6, bio8, bio9, bio10, and bio11; definitions
for each bioclimatic variable are provided in Table S2) were posi-
tively correlated with each other, as were precipitation variables
(e.g. bio13, bio17, and bio18). Other bioclimatic variables had
negative correlations, including temperature variability (bio4 and
bio7) relative to precipitation measures. Geographic measures
also exhibited complex relationships; for example, the dispersal
distance and the distances to geographic and niche centroids were
significantly correlated with one another but negatively correlated
with most precipitation variables. In short, few of the features
were statistically independent, and thus, evaluation of potential
predictors of loadM must account for complex correlative rela-
tionships.

Using random forest regression models to predict loadM in
the present

We built RF regression models to predict loadM using the
genetic, bioclimatic and geographic features as predictors. We
chose RF for its ability to infer nonlinear relationships between
predictors and response variables, recognizing both that the use
of linear models has been criticized in these contexts (Benestan
et al., 2016; Fouqueau et al., 2024) and that nonlinear relation-
ships are commonly inferred between climatic and genetic varia-
tion (Aguirre-Liguori et al., 2017; Capblancq & Forester, 2021).
Random forest also provides a straightforward measure of each
feature’s importance to the model’s predictive performance.
However, correlations between predictors can distort these
importance scores. For instance, if two features are perfectly cor-
related, the importance attributed to their shared information is
assigned to only one, making the other appear irrelevant since it
does not contribute additional information to the model (Brei-
man, 2001). Consequently, complex correlative relationships
between features make it difficult to infer each feature’s relevance
to the response from importance scores.

Since our goal was to interpret the biological relevance of fea-
tures for predicting loadM, we mitigated this challenge by apply-
ing Johnson’s relative weights (Johnson, 2000) to RF regression
models (see the Materials and Methods section). Johnson’s
method accounts for the correlation structure among predictors
by transforming the features into uncorrelated PCs via SVD. The
RF model is then trained using these PCs as features, generating
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importance scores for each PC. Johnson’s weightings subse-
quently transform the importance scores back into the original
feature space (see the Materials and Methods section). The result-
ing relative weighted importance of each original feature there-
fore should reflect its biological relevance to loadM while
controlling for correlations between features.

Our RF model to predict loadM yielded an ‘out of bag’ R2 esti-
mate of 0.59 and an R2 of 0.61 on the withheld test dataset, slightly
below the 10-fold cross-validation interval of R2= 0.70� 0.08
(SE) (Fig. 3a). After transformation, 90% of the cumulative relative
weighted importance was explained by 15 predictors (Fig. 3b).
Notably, > 50% of the relative cumulative importance was
explained by the combination of the mean temperature of wettest
quarter (bio8) and dgeo. Ho and ddispersal were also important pre-
dictors of loadM. Similar results were obtained using other mea-
sures of load, such as Pd, Pn or loadM based on dSNPs (Fig. S9).
For example, the model to predict Pn inferred bio8 (mean tempera-
ture of wettest quarter; Table S2) as the most important variable,
with the top 10 variables again, including Ho, dgeo, and ddispersal. In
addition to bio8, precipitation in the driest quarter (bio17) was
important across RF models; indeed, it was the most important
variable when Pd was used as the dependent variable. Altogether,
RF modeling identified a consistent set of important variables to

predict load, including climatic variables (e.g. bio8 and bio17) and
predictors commonly thought to be important based on population
genetic theory (e.g. Ho and dgeo).

One concern is that the RF models do not explicitly account
for the nonindependence of observations due to relatedness
between individuals (i.e. population structure). We addressed this
by fitting univariate linear mixed models that included a kinship
matrix to account for population structure. In total, 54.2%
(13/24) of features were significantly associated with loadM in the
linear mixed models (Bonferroni-adjusted P< 0.05; Table S3).
The 13 associated features included 11 of 14 (78.6%) of the most
important features from the RF model. Although it is clear that
linear models often do not adequately capture relationships across
landscapes (Aguirre-Liguori et al., 2017; Capblancq & Fores-
ter, 2021), the two modeling frameworks (i.e. RF and linear
modeling) were complementary with respect to identifying expla-
natory features, even when genetic relatedness was taken into
account.

Species range and loadM at the end of the century

Given the RF models’ ability to predict loadM in the present cli-
mate, we next applied the trained model to forecast changes in

Fig. 2 Sample dispersal and feature correlations. (a) Projected species distribution models (SDM) for Vitis arizonica during the Last Glacial Maximum
(LGM, c. 22 Kya, brown), for the present (green), and for the overlap between the two SDMs (greenish brown). The dark brown region within the present-
day Gulf of Mexico represents areas where the SDM for the LGM overlaps with land that was exposed due to lower sea levels. Each point on the landscape
represents the sampling location for an individual and is colored according to predicted dispersal from the LGM to the present, with more distantly
dispersed individuals in warmer colors. The asterisk indicates the geographic centroid in the present, while the X indicates geographic centroid during the
LGM. (b) Spearman’s correlations between pairs of features used in the random forest (RF) model, as well as between loadM and each individual feature. In
addition to the 19 WorldClim bioclimatic variables, the features include distance from the present-day SDM edge (dist. edge), observed heterozygosity
(Ho), the estimated dispersal distance shown in Panel a (dispersal), the distance from the present-day geographic centroid (dist. geo), and the distance from
the present-day niche centroid (dist. niche). Only correlation tests with P< 0.05 are filled, with the color demonstrating both the magnitude and direction
of each correlation (ρ). See also Supporting Information Fig. S8.
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loadM by the end of the century. To account for uncertainty
in future climates, we evaluated 16 potential climate trajectories,
combining four ESMs with four SSP scenarios, using forecasted
climate averages from 2080 to 2100.

Overall, the future SDMs predicted that the potential species
range is likely to shift northward and expand in size by 2100.
Even under the most optimistic emissions scenario (i.e. SSP126,
sustainability), the geographic centroid is predicted to move
87.80 to 226.45 km from the present centroid, with the degree of
range shift dependent on the ESM (Fig. 4a). Increasing emissions
were associated with a greater degree of range shift, ranging from
160.91 to 348.57 km for SSP245, 238.01 to 510.44 km for
SSP370, and 226.53 to 697.69 km for SSP585 (Fig. S10). Poten-
tial species range area was predicted to increase under all scenarios
except for the MPI-ESM1-2-HR ESM at SSP126 and SSP245.
The change in range area was greater under increased emissions,
with predicted changes of �10.8 to 53.8% by area for SSP126,
�10.2 to 84.5% for SSP245, 5.87 to 146% for SSP370, and
17.8 to 209% for SSP585 (Fig. 4b). The predicted range shifts
included losses to the present range, particularly in the southern-
most extreme. The southern extremes likely contain trailing edge
populations that are at risk of extinction.

By comparing the current and projected SDMs, we estimated
the minimum dispersal distance (ddispersal) for each sample by
2100. As with our previous analysis, we only calculated dispersal
for samples collected in regions occupying present but not future
predicted range (e.g. we assumed that samples collected in over-
lapping regions need not migrate). Across the 16 climate models,
we estimated that the lineages of between 1 (MRI-ESM2-0,
SSP585) and 17 (UKESM1-0-LL, SSP585) locations will need
to disperse by 2100, with a minimum predicted migration
between 2.41 and 306.55 km (median, 6.19 km). Finally, we
used the trained RF model to predict how loadM might change
by 2100. As input to the model, we used the forecasted biocli-
matic data along with species’ range features (e.g. dgeo, dniche, and
ddispersal) predicted by future SDMs. In these analyses, we kept
Ho constant, because we had no basis to predict its values into
the future, representing a limitation to our approach. The RF
models yielded two primary insights about loadM in 2100: First,

loadM was generally predicted to increase for the majority of indi-
viduals and, second, variation in loadM was forecast to decrease
markedly, with outliers regressing toward the mean (Fig. 4c).
Specifically, loadM was predicted to change by �5.16 to 3.33%
per individual, with samples at more northern latitudes (latitude
> 36) predicted to have reduced loadM, while individuals closer
to the present range centroid expected to have increased loadM
(Fig. S11; Table S4).

Measuring the complement of putatively adaptive alleles

To date, most projections of genetic diversity in future climates
have focused on alleles that putatively contribute to local adapta-
tion (Palumbi et al., 2014; Bay et al., 2018; Capblancq
et al., 2020a), based on methods like GF (Fitzpatrick & Kel-
ler, 2015). These methods ignore most genetic diversity within
populations, much of which may be pertinent for predicting the
fate of species and populations (Aguirre-Liguori et al., 2021). In
this section, we explicitly compare mutational load to the com-
plement of putatively adaptive alleles across V. arizonica indivi-
duals.

We identified putatively adaptive SNP variants by first using
LFMM2 (Caye et al., 2019) to test associations between SNPs
and each of the 19 bioclimatic variables. One bioclimatic variable
(bio2, mean diurnal temperature range) had no associated SNPs
and was discarded from further analysis. The remaining 18 vari-
ables had between two (bio5, max temperature of warmest
month) and 770 (bio4, temperature seasonality) associated SNPs,
altogether yielding a total of 3225 unique putatively
climate-adapted SNPs (Table S5). Although these SNPs were
putatively adaptive, it remained unclear which genotypic state
was adaptive (or maladaptive) across the climatic range. To
further filter for adaptive SNPs and to identify adaptive states for
each, we applied OLR. Each regression compared the genotypes
at a SNP site to the associated climatic variable (see the Materials
and Methods section); this step not only further confirmed
genotype–climate associations, but it allowed us to identify geno-
types that were adaptive – that is within their expected climate as
defined by OLR. After filtering SNPs that were not correlated

(a) (b)

Fig. 3 Random forest (RF) regression models to
predict loadM. (a) The performance of the RF
model compares the predictions (y-axis) to the
observed (x-axis) values. The red line indicates
the linear model fit, and the slope (R2= 0.61)
was highly significant (P= 1.8 × 10�9). (b) The
inferred feature importance used to predict
loadM. The features are ranked by their inferred
importance. The distance-related metrics are
defined in Table 1; bio8 is the mean temperature
in the wettest quarter, and definitions for the
remaining bioclimatic variables are provided in
Supporting Information Table S2.
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with climate via OLR, we retained 2162 unique SNPs. For these,
we counted the number of sites with putatively adaptive geno-
types (NG) across all sites within an individual. NG varied by as
much as 186% among individuals (range: 756–2162) and was
markedly lower in the northern ranges of V. arizonica (Fig. 5a)
than in the samples in the southern extremes (range:
2109–2162). In fact, mean NG (mean= 1464.94; SD= 338.59)
for the 36 northernmost individuals, representing potential lead-
ing edges, was significantly lower than that of the 36 southern-
most individuals from trailing edges (mean= 2152.08;
SD= 12.03; t= –12.169, df= 35.09, P< 0.001). Furthermore,
NG and loadM were significantly negatively correlated across indi-
viduals (R2= 0.53; P< 0.001; Fig. 5b), and NG was also nega-
tively correlated with geographic measures, most markedly
ddispersal (R

2= 0.80; P< 0.001; Fig. S12). In other words, indivi-
duals with a history of dispersal had fewer adaptive genotypes,
while central and trailing edge samples tended to have higher NG

than leading-edge samples.
Finally, we used GF to measure genetic offsets (go) based on

the set of putatively adaptive SNPs and the set of 16 end-of-
century climate models used to project loadM (as mentioned in
the previous section). Higher go values reflect individuals that
may be more vulnerable to climate change because they require

more turnover of adaptive alleles (Fitzpatrick & Keller, 2015;
Capblancq et al., 2020a; Gain et al., 2023). We estimated a single
go for each individual by averaging across SNPs and across the 16
climate models. The go estimates were positively correlated with
loadM (R2= 0.34, P< 0.001, Fig. 5c) and negatively correlated
with NG (R2= 0.58, P< 0.001, Fig. 5d). It is important to note
that correlations between loadM and either NG or go do not
appear to be due principally to overlapping SNPs between data-
sets. For example, of the 3225 SNPs identified as putatively adap-
tive, only 12.3% (396) overlapped with nSNPs and 3.6% (115)
overlapped with dSNPs.

LoadM and NG are associated with a key phenotype

One limitation of genomic studies is that they must assume that
measures like loadM and go are related to fitness. These assump-
tions are rarely tested (but see Mezmouk & Ross-Ibarra, 2014;
Sánchez-Castro et al., 2022), calling into question whether the
measures have any relevance. We cannot test fitness directly in V.
arizonica yet, but our accessions have been phenotyped in the
glasshouse for two agronomic traits that may contribute to fitness
in the wild: chloride exclusion, a measure of salt tolerance (Hei-
nitz et al., 2020), and quantitative resistance to Xylella fastidiosa

Fig. 4 Predicted species distribution models (SDM) and loadM in 2100. (a) Predicted SDMs for Vitis arizonica in 2100 under Shared Socioeconomic
Pathway (SSPs) SSP126 (a sustainability-focused scenario with global warming limited to < 2°C above preindustrial levels) are shown for four Earth
Systems Models (ESMs) – IPSL-CM6A (red), MPI-ESM1 (blue), MRI-ESM2 (gold), and UKESM1-0 (purple) – compared to the present-day SDM (green). In
each map, the predicted future geographic centroid is denoted by a plus (+), while the present geographic centroid is represented by an asterisk (*).
Predicted SDMs for additional SSPs are shown in Supporting Information Fig. S10. (b) The predicted area of each SDM in 2100 compared with the present
(left), shown for all combinations of ESM and SSP. The height of each bar indicates the total predicted area subdivided by new areas that were not part of
the present SDM (top), overlapping area between the predicted future and present SDM (middle), and the area of the present range predicted to be lost
(green outline, negative values). (c) The distribution of loadM in the present (left) compared to the predicted distributions in 2100 for each combination of
ESM and SSP, as projected by the random forest model. In each beeswarm, the diamond represents the median values per group.
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(Riaz et al., 2020; Morales-Cruz et al., 2021, 2023), the causative
agent of PD. We contrasted these quantitative phenotypes to
loadM and NG, finding no evidence that either is related to chlor-
ide exclusion phenotypes. However, loadM was positively asso-
ciated with assayed concentrations of X. fastidiosa postinfection
(P= 1.5 × 10�4, R2LR= 0.33, Fig. S13), while NG was nega-
tively associated (P= 3.6 × 10�7, R2LR= 0.38). These results are
consistent with the negative correlation between loadM and NG.
Thus, plants with higher loadM and fewer adaptive alleles are
more susceptible to PD.

Discussion

Understanding the relationship between climatic and genetic var-
iation is essential for predicting which populations will thrive,
persist, or face extinction in the future. Historically, the probabil-
ity of persistence has been evaluated by estimating SDMs, but
they have an important limitation: They ignore the ability for a
species to evolve (Garzón et al., 2019; Collart et al., 2020).
Newer methods have worked toward incorporating the potential
for evolutionary change by using population genomic informa-
tion in concert with climate predictions (Fitzpatrick & Kel-
ler, 2015; Exposito-Alonso et al., 2019; Waldvogel et al., 2020;
Capblancq et al., 2020a). The GF method typically relies first on

identifying mutations that likely contribute to local adaptation
and then on inferring the relationship between bioclimatic vari-
ables and the frequency of adaptive variants (Fitzpatrick & Kel-
ler, 2015). The inferred relationship can then be used to predict
the genetic offset (go), providing a quantitative measure of prea-
daptation to climate shifts. This and similar approaches have
been applied to evaluate the potential persistence of wild popula-
tions from several species (reviewed in Capblancq et al., 2020a)
and also to assess agronomic suitability of specific genotypes in
projected climates (Rhoné et al., 2020; Aguirre-Liguori
et al., 2022). These approaches do not, however, incorporate evo-
lutionary processes beyond local adaptation, such that they lar-
gely ignore genetic drift, gene flow, migration, and dispersal
(Waldvogel et al., 2020). Another major limitation is that they
usually (although not always; Bay et al., 2018; Ruegg et al., 2018;
Rhoné et al., 2020; Booker et al., 2020) focus on a tiny subset of
genetic variants – that is putatively adaptive variants associated
with climatic measures. They thus ignore most genetic informa-
tion, including the deleterious variants that contribute to
mutational load.

A key challenge is integrating additional categories of genetic
variation into climate models and assessing their predictive value
for species’ persistence amid climate change. Here, we take a step
toward this goal by studying relationships among putatively

Fig. 5 Adaptive genotypes on the landscape. (a)
As in Fig. 1(b), green represents the species
distribution model for V. arizonica in the present-
day based on WorldClim (bioclimatic averages
from 1970 to 2000) and GBIF species occurrence
data, with the black asterisk indicating the
geographic centroid of the predicted range. The
points represent sampling locations for
individuals used in genetic analyses and are
colored according to the number of adaptive
genotypes (NG) estimated per individual, with
cooler colors reflecting lower NG. (b) The
relationship between observed loadM and NG

across all individuals. (c) The relationship
between loadM and genetic offsets. (d) The
relationship between NG and genetic offsets. In
(b–d), red lines indicate the fit of linear models; in
each case, the slope is highly significant, as
reflected by the P-value and R2.
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deleterious variants, mutational load, species’ range dynamics,
climate-associated adaptive SNPs, and climate in Vitis arizonica,
a wild grape species endemic to the American Southwest. Our
investigations are relevant not only for evaluating potential popu-
lation persistence but also for a number of questions in evolution-
ary biology, such as differences between edge and nonedge
populations (Vucetich & Waite, 2003), relationships between
genetic diversity and range centroids (Eckert et al., 2008; Lira-
Noriega & Manthey, 2014), and dissimilarities between leading
vs trailing edges during range shifts.

Mutational load is predictable and elevated at
leading edges

We estimated mutational load (loadM), as the proportion of exo-
nic SNPs that were predicted to be nonsynonymous and then
related loadM to various bioclimatic and geographic variables.
The geographic variables were estimated from SDMs that used
recent data (averaged from 1970 to 2000), data from the LGM
and bioclimatic projections to 2100. Comparing the LGM to the
present day reveals that some of our sampling locations likely
represent historical dispersal events, particularly samples from the
North that represent a leading edge of expansion (Fig. 2A). Spe-
cies distribution models also indicate that the range of V. arizo-
nica has expanded over the last c. 22 000 yr and is likely to
continue to expand into the future, principally by continuing
to move northward (Figs 4a, S10).

We found that loadM was generally elevated in Northern sam-
ples (Fig. 1B), consistent with previous studies reporting
increased load and/or reduced Ne in leading-edge populations
(Willi et al., 2018, 2022; Takou et al., 2021; Sánchez-Castro
et al., 2022; Cisternas-Fuentes & Koski, 2023). These observa-
tions are consistent with the concept of ‘expansion load’, where
alleles that are normally purged by selection can ‘surf’ to high fre-
quency at range fronts due to repeated bottlenecks and drift,
thereby reducing fitness at the expansion margin (Travis
et al., 2007; Excoffier et al., 2009). By contrast, trailing and cen-
tral populations tended to have lower loadM, perhaps reflecting
longer term, historical stability.

To investigate potential causes of these patterns, we used RF
models to determine which of 24 potentially informative features
– including four geographic descriptors, one genetic descriptor,
and 19 bioclimatic variables – contribute to predicting loadM.
This analysis led to at least two key conclusions. First, although
mutational load is expected to be shaped primarily by stochastic
genetic drift, it was nonetheless highly predictable. The RF mod-
els yielded R2> 0.60 on withheld test data (Fig. 3a). Second, bio-
climatic variables were among the top-ranked predictors
(Fig. 3b). We do not conclude from these analyses that climate
affects mutational load directly. Instead, we propose that the bio-
climatic variables represent ecological conditions that affect
population size, population density, or perhaps additional aspects
of population history that are not fully captured by our set of
genetic and geographic predictors (Willi et al., 2018). Consistent
with this view, different genetic and geographic summaries, such
as ddispersal, Ho, and dgeo, were also among the important

predictors of loadM, suggesting that no single genomic metric
aptly summarizes the complexities of range expansion and popu-
lation dynamics. Not all genomic summaries were valuable, how-
ever, because two additional geographic measures – dniche and
dedge – had generally low predictive importance. Although both
have been used extensively to study landscape dynamics (Lira-
Noriega & Manthey, 2014), we suspect they are poor predictors
because they do not indicate directionality – for example if the
niche spans a cold-to-warm gradient, samples at either extreme
can have identical values for dniche.

Our RF models are, of course, subject to caveats and assump-
tions. One concern is that the reported feature importance may
not accurately reflect biological significance due to correlations
between predictors – an issue often overlooked in the literature.
We address this problem by applying Johnson’s relative weights,
originally developed to adjust beta values from multiple linear
regression (Johnson, 2000), to RFs. Johnson’s method has been
utilized widely across scientific fields but rarely, as far as we know,
applied to multifaceted biological and genomic data (e.g. Core
et al., 2014; Chen et al., 2018; Ghanipoor-Samami et al., 2018;
Shen & Chen, 2020; Li et al., 2022). Another caveat is that we
relied on loadM as a measure of mutational load under the
assumption it reflects genetic load. Measuring genetic load
directly is notoriously difficult because it is a theoretical construct
related to the unmeasurable (i.e. a decline in fitness relative to a
theoretical fitness optimum) (Crow, 1958). To be thorough, we
also explored other well-known measures of mutational load,
such as the proportion of deleterious variants (Pd or Pn) per gen-
ome. Although the measures differed in their distributions across
geographic space (Figs 1, S5, S6), they led to similar inferences
with respect to predictability and the relative importance of pre-
dictors. Needless to say, all of these measures of load share limita-
tions – that is, they are strictly additive, assume that each
putatively deleterious allele has the same effect on fitness, and do
not account for potential dominance relationships between
alleles. A final concern is that individual features may have been
predictive because they covary with (and may merely reflect)
genetic relatedness. We tested this idea by applying univariate lin-
ear mixed models that include genetic relatedness as a cofactor.
These results generally confirmed our RF inferences; for example,
bio8 was still a highly significant (P= 2.40 × 10�13; Table S3)
predictor after correcting for genetic relatedness.

Forecasting future mutational load and adaptive variation

The ability to model loadM in the present is important because it
offers insights into the relative importance of factors that contri-
bute to the accumulation of deleterious genetic variation. It also
provides a foundation for projecting loadM into the future. Such
projections may seem ill-considered, given that mutational load
is largely shaped by random genetic drift and hence likely to be
inherently difficult (or even impossible) to predict with precision.
Nonetheless, adaptive variants have been widely modeled as a
product of the deterministic process of selection despite the fact
that adaptive allele frequencies are often influenced by genetic
drift (Fitzpatrick & Keller, 2015; Capblancq et al., 2020b; Gain
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et al., 2023). We predicted loadM into the future using data from
16 climate projections that represent different levels of global
greenhouse gas emissions for the year 2100. These predictions
led to consistently higher mean values but decreasing variance
across samples (Fig. 4c). The lower variance may reflect that our
predictive models do not fully incorporate the evolutionary pro-
cesses (like drift) that likely contribute to variance in loadM; addi-
tional work is necessary to build on this initial effort.
Nonetheless, the projection of load is interesting because leading-
edge populations are generally predicted to have decreased loadM
in the future, while trailing edge and central populations have
increased loadM. These projections match the predicted species’
dynamics in which leading-edge populations become more cen-
tralized, with the potential for commensurately larger population
sizes, but trailing edge populations experience increasingly mar-
ginal habitat, fragmentation, and the potential for genetic erosion
(Hampe & Petit, 2005; Aitken et al., 2008; Hannah, 2022).

We also studied the relationship between current and pre-
dicted loadM to measure adaptation in the present (NG) and the
future (go). NG was negatively correlated with loadM, as is
expected when (for example) small Ne leads to the accumulation
of deleterious variants and less efficacious selection for adaptive
variants (Willi et al., 2006). The negative correlation between NG

and loadM represents a potentially potent combination to fuel
genetic erosion or extinction. Both NG and loadM were also
strongly correlated with ddispersal, suggesting again that dispersal
history contributes directly or indirectly to mutational load, as
shown for deleterious variants in humans after serial bottlenecks
(Henn et al., 2016). The significantly positive relationship
between go and loadM is further evidence of a strong
relationship among adaptation, climate, and mutational load,
because it implies that individuals that will be more vulnerable to
climate change, as measured by go, may have lower fitness due to
mutational load. The fate of edge populations is of particular
interest in these relationships. Our observations of low NG in
leading-edge populations contravene the argument that adaptive
alleles are more likely to be found in leading-edge populations
(Macdonald et al., 2017) but are consistent with previous empiri-
cal studies suggesting fewer adaptive alleles in leading-edge popu-
lations (Willi et al., 2018; Takou et al., 2021). Interestingly,
because southern populations harbor more adaptive alleles (i.e.
higher NG) for higher temperatures, they could serve as sources
of adaptive variation as temperatures rise in northern regions if
gene flow is sufficient.

Lessons for V. arizonica and beyond

Superficially, the future looks bright for V. arizonica, because it is
atypical among CWRs by having a potentially expanding habitat.
By contrast, a recent SDM-based study found that c. 85% of 600
North American CWRs are either vulnerable or endangered due
to shifting climates and shrinking niches (Khoury et al., 2020).
We also project only minor increases in loadM over time and
many populations have low go values, suggesting that they are
relatively well situated to adapt in the face of climate change.
Moreover, the fact that loadM and NG are correlated with at least

one phenotype, resistance to PD (Fig. S13), suggests that our
population genomic measures could have relevance for interpret-
ing phenotypes and perhaps even fitness. All of these observations
do not mean, however, that V. arizonica will thrive in the future.
Much of the projected expansion of the niche is to the North,
where leading-edge samples already exhibit higher loadM (Fig. 1)
and lower adaptive complements (NG, Fig. 5). If these same
populations are the source for continued northward expansion,
these extant effects are likely to be exacerbated by dispersal.

These arguments assume that V. arizonica can disperse at all.
There is historical precedence to make this assumption because
our LGM results suggest the species expanded northward since
the LGM. But will it be able to do so in the future? Dispersion is
difficult to predict across heterogeneous landscapes; it is an
important topic that needs further study and modeling (Razgour
et al., 2019; Aguirre-Liguori et al., 2021). Vitis arizonica has
potential advantages and disadvantages with respect to dispersal.
One advantage is that its berries are consumed by birds and
mammals that can, in theory, disperse seed. Another is that it
readily hybridizes with other Vitis species, which can fuel rapid
adaptation in new habitats (Pease et al., 2016; Morales-Cruz
et al., 2021). Note, however, that our work suggests the pace of
shifts in the species’ range has changed dramatically. As one
example, we have estimated that the geographic centroid is esti-
mated to have moved 736 km over the last c. 22 000 yr (c.
3.35 km every 100 yr), but it is predicted to move anywhere from
87 to 226 km by 2100 depending on the climate model. Based
on this simple heuristic, movement in this century is predicted to
be c. 26- to 67.5-fold faster than the average rate in the past, rais-
ing questions about whether dispersal and rates of adaptation can
keep up with the pace. These results complement studies predict-
ing that adaptation over the next century needs to greatly exceed
historical rates of dispersal and adaptation (e.g. Quintero &
Wiens, 2013; Cang et al., 2016).

One key consideration for range expansion is that it may favor a
shift to a selfing mating system in edge populations, which likely
bolsters reproductive success at low population densities (Koski
et al., 2019). This implies that species with flexible mating systems
are better equipped to expand their range. Vitis species possess a
highly conserved, dioecious sex determination system. While
a simple recombination event can produce hermaphrodites, her-
maphrodites are not observed in nature, suggesting that they are
strongly selected against (Massonnet et al., 2020). Will the con-
straints of this dioecious mating system limit the potential for
range expansion for V. arizonica and, indeed, for other obligately
outcrossing plants? The answer is not yet clear. Simulations of edge
populations have shown that, under a wide range of conditions,
range expansion promotes the evolution of selfing in marginal
populations (Encinas-Viso et al., 2020). However, an empirical
study of Arabidopsis lyrata found no effects on the self-
incompatibility system in edge populations, despite accumulated
load in these populations (Takou et al., 2021). One useful exten-
sion of our RF approaches may be to add genomic measures
related to selfing rates – such as the fraction of the genome encom-
passed in runs of homozygosity – as a predictor when studying spe-
cies like A. lyrata that exhibit variation in selfing rates across
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populations (Mable et al., 2005; Perrier et al., 2022). Further stu-
dies that compare empirical results across mating systems and dis-
persal histories are likely to help establish general trends.

It remains a substantial challenge to project species persistence.
One heuristic is the FOLDs model (Aguirre-Liguori et al., 2021),
which layers types of information to find populations that seem
particularly well (or poorly) suited to persist given climate projec-
tions. For V. arizonica, the layers of information amassed in this
study include SDM-based geography, mutational load, adaptive
variants, and even phenotypes, but the layers are sometimes con-
flicting. For example, the location of leading-edge Northern sam-
ples is projected to become more centrally located within the
species’ niche as it shifts northward, potentially positioning them
reasonably well to face climate change. However, these samples
also exhibit higher mutational load, fewer adaptive variants, and
reduced resistance to a key pathogen, suggesting that they may be
poorly equipped for successful dispersal and persistence under
future conditions. Additionally, while our analyses have largely
identified interesting features in individuals at the leading edge of
expansion, one must also be concerned about trailing edges, where
a suitable niche is disappearing. In V. arizonica, the individuals
from trailing locations seem unremarkable with respect to genomic
measures, but their habitat is likely to become increasingly frag-
mented. For these populations, the key for persistence also likely
resides in their ability (or not) to disperse northward (Bell, 2017)
and the potential for evolutionary rescue via gene flow.
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González-Mart́ınez SC, Ridout K, Pannell JR. 2017. Range expansion

compromises adaptive evolution in an outcrossing plant. Current Biology 27:
2544–2551.

Grossen C, Guillaume F, Keller LF, Croll D. 2020. Purging of highly deleterious

mutations through severe bottlenecks in Alpine ibex. Nature Communications
11: 1001.

Hampe A, Petit RJ. 2005. Conserving biodiversity under climate change: the rear

edge matters: rear edges and climate change. Ecology Letters 8: 461–467.
Hannah L. 2022. Ecological, evolutionary, and biogeographic implications of

climate change. In: Climate change biology. London, UK: Elsevier, 77–94.
Hedrick PW, Garcia-Dorado A. 2016. Understanding inbreeding depression,

purging, and genetic rescue. Trends in Ecology & Evolution 31: 940–952.
Hedrick PW, Kalinowski ST. 2000. Inbreeding depression in conservation

biology. Annual Review of Ecology, Evolution, and Systematics 31: 139–162.
Heinitz CC, Riaz S, Tenscher AC, Romero N, Walker MA. 2020. Survey of

chloride exclusion in grape germplasm from the southwestern United States

and Mexico. Crop Science 60: 1946–1956.
Heinitz CC, Uretsky J, Dodson Peterson JC, Huerta-Acosta KG, Walker MA.

2019. Crop wild relatives of grape (Vitis vinifera L.) throughout North

America. In: Greene SL, Williams KA, Khoury CK, Kantar MB, Marek LF,

eds. North American crop wild relatives, Vol. 2: important species. Cham,

Switzerland: Springer International Publishing, 329–351.
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