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Introduction

On the last day of the year 2019 a novel Betacoronavirus (2019-nCov), now known

as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and causing the

highly transmissible and lethal pneumonia COVID-19 was first reported in Wuhan,

Hubei Province in Central China (Huang et al., 2020; Fu et al., 2022; Lu and Sun,

2022). Since then ongoing research and long-term studies of the sequelae of SARS-

CoV-2 infection have indicated that post-infection, recovery from COVID-19 and/or

COVID-19 aftermath is associated with long-term physiological and neurological deficits

known generically as “long COVID” (Roy et al., 2021; Ahmad et al., 2022; Baazaoui

and Iqbal, 2022). Multiple independent epidemiological and clinical studies further

indicate that SARS-CoV-2 infection and “long COVID” strongly correlate with the onset

of progressive neurological disturbances that include Alzheimer’s disease (AD), prion

disease (PrD) and other neurodegenerative disorders. These are apparent: (i) especially in

aged and/or senile COVID-19 patients; (ii) in patients experiencing overlapping or inter-

current illnesses that include heart disease, diabetes, hypertension, neuropsychiatric and

other age-related neurological disorders; and (iii) in those COVID-19 patients who have

experienced a particularly virulent and/or a near fatal episode of SARS-CoV-2 infection

(Farheen et al., 2021; Flud et al., 2022; Fu et al., 2022). Conversely, increasing numbers of

epidemiological studies suggest that elderly people with neurological deficits commonly

observed in AD are highly vulnerable to SARS-CoV-2 infection, and especially the

development of more severe forms of COVID-19 disease (Chiricosta et al., 2021; Hsu

et al., 2021; Fu et al., 2022). The recent finding that the SARS-CoV-2 “S1” spike protein

essential for viral infectivity contains prion-like domains associated with immune-

evasion and the promotion of protein aggregation and aggregate “seeding” is particularly

intriguing (Baazaoui and Iqbal, 2022; Bernardini et al., 2022; Tetz and Tetz, 2022).

Based on these and other very recent findings this “Opinion” paper will: (i) address

our current understanding of the emerging role of SARS-CoV-2 infection with “long

COVID” with special reference to AD and PrD; (ii) will review the latest findings of

the SARS-CoV-2 “S1” spike protein and its preferred interaction with the ubiquitous
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angiotensin converting enzyme-2 (ACE2) receptor (ACE2R);

and (iii)will highlight the interplay of the molecular biology and

neuropathology of SARS-CoV-2 with the unusual and immune-

evasive character of prion neurobiology, AD and PrD.

SARS-CoV-2, “long COVID” and
neurological disease

The SARS-CoV-2 virus that causes COVID-19 disease is a

highly contagious pathogen that continues to impact human

health around the globe and is responsible for one of the

worst pandemics in recorded human history. Of the ∼600

million people that have been infected about half of all COVID-

19 patients exhibit the symptomology of “long COVID”

and many experience some type of lingering neurological

complications including, prominently, “brain fog,” confusion,

impaired consciousness, deficits in cognition and memory,

encephalopathy, encephalitis and/or cerebrovascular deficits

(Mao et al., 2020; Roy et al., 2021; Ahmad et al., 2022; Baazaoui

and Iqbal, 2022; Visco et al., 2022; https://www.worldometers.

info/coronavirus/coronavirus-death-toll/; https://www.

science.org/content/article/what-causes-long-covid-three-

leading-theories?cookieSet=1; https://www.forbes.com/sites/

joshuacohen/2022/06/22/dutch-research-on-long-covid-

shows-50-of-study-partic-ipants-have-1-or-more-symptoms-

3-months-after-becoming-infected-with-coronavirus/?sh$=

$45228b705a6a; last accessed 29 August 2022). Up to ∼45% of

COVID-19 patients develop a mild-to-severe encephalopathy

and encephalitis due to complications arising from viral-induced

“cytokine storm,” elevated inflammatory signaling and/or anti-

neural autoimmunity, sometimes referred to as “cytokine storm

syndrome” (Mao et al., 2020; Vigasova et al., 2021; Baazaoui and

Iqbal, 2022; Piekut et al., 2022). As is consistently observed in

AD brain, the pro-inflammatory cytokines interleukin-1beta

(IL-1β), IL-8, IL-18, the interleukin-1 receptor antagonist (IL-

1RA) and serum neurofilament light (NF-L) chain protein, each

a biomarker for all-cause pro-inflammatory neurodegeneration

are positively associated with COVID-19 disease severity

and are predictors of long-term outcome (Mao et al., 2020;

Krey et al., 2021; Zetterberg and Schott, 2022). SARS-CoV-2

infected patients with existing AD are invariably associated

with more severe complications of COVID-19 including

increased morbidity and mortality (Mao et al., 2020; Krey et al.,

2021; Chung et al., 2022; Guasp et al., 2022; Zetterberg and

Schott, 2022). Depending upon COVID-19 disease course and

post-infection severity multiple epidemiological studies indicate

that about ∼30–35% of all COVID-19 patients experience

lasting neurological and neuropsychiatric symptoms ranging

from relatively minor effects such as “brain fog” to more severe

neurological complications. A pre-existing diagnosis of AD

predicts the highest risk of COVID-19 infection yet identified,

with the highest mortality among the most elderly AD patients

(Song et al., 2021; Zhao et al., 2021; Ahmad et al., 2022; Baazaoui

and Iqbal, 2022; Choe et al., 2022; Chung et al., 2022; Flud

et al., 2022; Lingor et al., 2022; Visco et al., 2022). Interestingly,

viral and/or other microbial infections, including SARS-CoV-2

invasion of the human brain and CNS, have long been known

to contribute, intensify, propagate and/or augment the same

neuropathological and pro-inflammatory neurodegenerative

changes as is observed over the entire AD continuum from the

earliest detectable forms of mild cognitive impairment (MCI)

to the more severe terminal stages of AD (see below; Chiricosta

et al., 2021; Ciaccio et al., 2021; Lingor et al., 2022; Lukiw et al.,

2022; Piekut et al., 2022; Sirin et al., 2022; Szabo et al., 2022;

Zhao and Lukiw, 2022).

The SARS-CoV-2 “S1” spike protein,
the ACE2R and amyloidogenesis

The SARS-CoV-2 virus possesses an unusually large,

positive-sense single-stranded RNA (ssRNA) genome of about

∼29,903 nucleotides (nt) packaged into a nucleocapsid core

within a ∼100 nm diameter virion particle that possesses a

compact spherical lipoprotein envelope (SARS-CoV-2 isolate

Wuhan-Hu-1, National Center for Biological Information

(NCBI) GenBank Accession No. NC_045512.2; last accessed

29 August 2022; Ke et al., 2020; Sah et al., 2020; Wu et al.,

2020; Mousavizadeh and Ghasemi, 2021; Zhao and Lukiw,

2022). Extending outward and decorating the surface of the

SARS-CoV-2 lipoprotein envelope are the 672 amino acid

homotrimeric ‘S1’ spike glycoproteins that play essential roles

in ACE2R-recongition, viral attachment, fusion and entry into

host cells to initiate SARS-CoV-2 infection (Duan et al., 2020; Ke

et al., 2020; Zhao and Lukiw, 2022). Interestingly: (i) the ACE2R,

normally a ubiquitously expressed zinc-containing metallo-

carboxypeptidase (EC 3.4.17.23) surface receptor glycoprotein

of the renin-angiotensin system (RAS) that has a role in the

regulation of blood pressure is up-regulated in limbic regions

of AD-affected brain (Ding et al., 2021; Zhao and Lukiw,

2022); (ii) the SARS-CoV-2 ‘S1’ spike protein is absolutely

essential in ACE2R recognition and viral entry (Hill et al.,

2021; Letarov et al., 2021; Palacios-Rápalo et al., 2021); (iii)

the main antigen used as a target in COVID-19 vaccines

is a lipid nanoparticle enclosing an RNA sequence encoding

the full length SARS-CoV-2 ‘S1’ spike protein, since blocking

‘S1’ spike entry into host cells will prevent the initiation of

SARS-CoV-2 infection (Actis et al., 2021; Dai and Gao, 2021);

(iv) variations in the prion-like domains of the ‘S1’ spike

protein differs among SARS-CoV-2 variants thus modulating

‘S1’ affinity for the ACE2R (Shahzad and Willcox, 2022; Tetz

and Tetz, 2022); (v) SARS-CoV-2 ‘S1’ spike protein binds

to the aggregation-prone glycosoaminoglycan heparin and

heparin binding proteins (HBP) including amyloid-beta (Aβ)

peptides, α-synuclein, tau and prion proteins and TDP-43 thus

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2022.1002770
https://www.worldometers.info/coronavirus/coronavirus-death-toll/
https://www.worldometers.info/coronavirus/coronavirus-death-toll/
https://www.science.org/content/article/what-causes-long-covid-three-leading-theories?cookieSet=1
https://www.science.org/content/article/what-causes-long-covid-three-leading-theories?cookieSet=1
https://www.science.org/content/article/what-causes-long-covid-three-leading-theories?cookieSet=1
https://www.forbes.com/sites/joshuacohen/2022/06/22/dutch-research-on-long-covid-shows-50-of-study-partic-ipants-have-1-or-more-symptoms-3-months-after-becoming-infected-with-coronavirus/?sh$=$45228b705a6a
https://www.forbes.com/sites/joshuacohen/2022/06/22/dutch-research-on-long-covid-shows-50-of-study-partic-ipants-have-1-or-more-symptoms-3-months-after-becoming-infected-with-coronavirus/?sh$=$45228b705a6a
https://www.forbes.com/sites/joshuacohen/2022/06/22/dutch-research-on-long-covid-shows-50-of-study-partic-ipants-have-1-or-more-symptoms-3-months-after-becoming-infected-with-coronavirus/?sh$=$45228b705a6a
https://www.forbes.com/sites/joshuacohen/2022/06/22/dutch-research-on-long-covid-shows-50-of-study-partic-ipants-have-1-or-more-symptoms-3-months-after-becoming-infected-with-coronavirus/?sh$=$45228b705a6a
https://www.forbes.com/sites/joshuacohen/2022/06/22/dutch-research-on-long-covid-shows-50-of-study-partic-ipants-have-1-or-more-symptoms-3-months-after-becoming-infected-with-coronavirus/?sh$=$45228b705a6a
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhao et al. 10.3389/fnins.2022.1002770

facilitating viral infection while accelerating the coalescence and

aggregation of multiple pathological amyloidogenic proteins in

the brain and CNS (Idrees and Kumar, 2021; Paiardi et al.,

2022); (vi) targeting the interaction of SARS-CoV-2 ‘S1’ spike

protein with these brain-enriched proteins may be a useful

strategy to reduce pro-inflammatory aggregation processes that

may limit the neurodegenerative disease process in COVID-19

patients (Clausen et al., 2020; Paiardi et al., 2022); and (vii) AD

and COVID-19 infection share several important risk factors

and comorbidities that include gender, aging, oxidative stress,

hypertension, diabetes, APOE4 expression and up-regulation of

the same families of inducible microRNAs (miRNAs), systemic

inflammation and neuro-inflammation and/or the massive

cytokine signaling disruptions referred to as the “cytokine

storm” (Mao et al., 2020; Ciaccio et al., 2021; Vigasova et al.,

2021). Interestingly just as the ACE2R is the most important cell

surface receptor for SARS-CoV-2, elevated ACE2R expression

appears to impose a significant risk factor for SARS-CoV-2

transmission in AD patients resulting in a higher viral load in

AD-affected brain, and this may explain the high prevalence of

SARS-CoV-2 infection among AD patients at any stage of the

disease (Lim et al., 2020; Ding et al., 2021; Hill et al., 2021; Zhao

et al., 2021; Shen et al., 2022; Zhao and Lukiw, 2022; Table 1).

SARS-CoV-2, prion neurobiology
and prion disease

Human prion diseases (PrD) represent an expanding

spectrum of progressive, and fatal neurodegenerative disorders

affecting about one person in every one million per year

worldwide, of which 80–95% are sporadic Creutzfeldt-Jacob

disease (CJD) and the remainder representing genetic and/or

familial CJD cases (Geschwind, 2015; Ayers et al., 2020).

PrD infections are characterized by transmissibility, progressive

neurological deficits caused by the accumulation of and

aggregation of a misfolded “scrapie” isoform (PrPSc) from the

native cellular prion protein (PrPc); and the rapid development

of a progressive systemic inflammation very similar in nature

to AD (Holmes et al., 2010; Ayers et al., 2020). A number

of interesting associations are being made between SARS-

CoV-2 infection and prion neurobiology and PrD: (i) several

recent reports link multiple aspects of the ‘S1’ spike protein

structure and function, immunology and epidemiology with

PrD, prion-like spread and prion neurobiology (Letarov et al.,

2021; Baazaoui and Iqbal, 2022; Paiardi et al., 2022; Shahzad and

Willcox, 2022). Because ‘S1’ spike proteins support heparin and

HBP interacions that promote the aggregation of Aβ peptides,

α-synuclein, tau and prion proteins, SARS-CoV-2 infection

itself may exacerbate the formation of amyloid peptide-enriched

aggregates that support pro-inflammatory neurodegeneration,

neuronal cell death and AD- and/or PrD-type change (Idrees

and Kumar, 2021; Paiardi et al., 2022). ‘S1’ spike proteins

TABLE 1 Human neurological diseases and/or syndromes associated

with ‘long COVID’; recent reports of age-related, progressive, terminal

and/or incapacitating neurological disorders associated with

SARS-CoV-2 infection and COVID-19; the majority of these most

recent reports involve COVID-19 with the neurodegenerative

disorders AD, PrD (primarily Creutzfeldt-Jakob disease; CJD); and/or

the onset of visual system disturbances (alphabetically ordered; Hill

et al., 2021; Hixon et al., 2021; Oldfield et al., 2021; Zhou et al., 2021;

Ahmad et al., 2022; Baazaoui and Iqbal, 2022; Flud et al., 2022; Lukiw,

2022; Piekut et al., 2022; Piras et al., 2022; Visco et al., 2022).

Neurological disorder Reference

Alzheimer’s disease (AD) Hill et al., 2021

Chiricosta et al., 2021

Ciaccio et al., 2021

Ding et al., 2021

Zhao et al., 2021

Shen et al., 2022

Zhao and Lukiw, 2022

Epilepsy Roy et al., 2021

Multiple sclerosis (MS) Muñoz-Jurado et al., 2022

Prion disease (PrD) Bernardini et al., 2022

Ciolac et al., 2021

Kuvandik et al., 2021

Lukiw et al., 2022

Olivo et al., 2022

Shahzad and Willcox, 2022

Szabo et al., 2022

Tayyebi et al., 2022

Tetz and Tetz, 2022

Young et al., 2020

Visual system disturbances Hill et al., 2021

Hixon et al., 2021

Tisdale et al., 2021

Zhao et al., 2021

Lukiw, 2022

Piras et al., 2022

containing ‘prion-like’ domains in free form may also play

a role in systemic amyloidogenesis that in turn supports

systemic inflammation, and the formation of pathogenic pro-

inflammatory lesions in the brain and CNS (Letarov et al.,

2021; Baazaoui and Iqbal, 2022; Shahzad and Willcox, 2022;

Tetz and Tetz, 2022). Prion-like domains are known to self-

associate, aggregate with other prion-like and HBP domains

and amyloids, α-synuclein, tau and other prion proteins and

contribute to protein-misfolding diseases that include AD

and PrD infection (Holmes et al., 2010; Geschwind, 2015;

Ayers et al., 2020); and (ii) there are several recent case

studies of patients developing PrD and or exacerbating the

neuropathology of PrDs such as CJD in conjunction with SARS-

CoV-2 infection. Schmahmann’s laboratory described a 60 yr

old male patient whose first manifestations of CJD occurred in
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tandem with symptomatic onset of COVID-19. Quantification

of a panel of the patient’s systemic inflammatory mediators

and biomarkers (including increased secretion of IL-1 and

TNF) in response to the SARS-CoV-2-mediated-hastening of

CJD pathogenesis suggested a significant relationship between

host immune-responses to SARS-CoV-2 and an acceleration

of inflammatory neurodegenerative cascades characteristic of

CJD infection (Young et al., 2020). Olivo et al. described

the case of a 70-year-old man with seizures and a rapidly

evolving CJD during an acquired SARS-CoV-2 co-infection,

again supporting the concept that CJD during SARS-CoV-

2 infection is characterized by an accelerated progression of

CJD (Olivo et al., 2022). Bernardini et al. (2022) recently

described a ∼40 year old male COVID-19 patient who

developed CJD 2 months after COVID-19 onset with presenting

symptoms of visuospatial deficits, hallucinations, ataxia and

diffuse myoclonus-and their study concluded that the short

interval between SARS-CoV-2 respiratory and CJD neurological

symptoms was indicative of a causal relationship between a

COVID-mediated neuroinflammatory state, protein misfolding

and subsequent aggregation of PrPc into PrPSc, and emphasized

the role of SARS-CoV-2 as an significant viral initiator of

neurodegeneration (Bernardini et al., 2022). These developing

molecularly- and clinically-evidenced associations between

CJD and SARS-CoV-2 infection underscores an overlapping

pathological link between PrD and COVID-19 both involving

a systemic inflammation, a progressive and insidious lethal

neurodegeneration and a potential acceleration of prion-like

protein spread following SARS-CoV-2 viral invasion (Pogue

and Lukiw, 2021; Song et al., 2021; Baazaoui and Iqbal,

2022).

Another interesting link between SARS-CoV-2 infection,

PrD and the development of inflammatory neurodegeneration

are the effects of these infections and their pathophysiological

consequences on the abundance, speciation and complexity of

a small family of inducible pathological microRNAs (miRNAs).

These include, predominantly, the NF-kB (p50/p65)-sensitive

miRNA-146a-5p and miRNA-155-5p and others (Zhao et al.,

2020; Pogue and Lukiw, 2021; Pinacchio et al., 2022). A large

amount of work has focused on the 22 nucleotide brain-

enriched miRNA-146a-5p found to be significantly up-regulated

in 10 known forms of PrD of both rodents and humans

including CJD, in AD and in other sporadic and progressive

age-related neurological disorders, and after infection by at least

18 neurotropic DNA and/or RNA viruses, including SARS-

CoV-2, that infect the human brain, CNS, immune, lymphatic

and hepatic, respiratory and/or circulatory systems (Pogue

and Lukiw, 2021; Roganović, 2021; Pinacchio et al., 2022).

Interestingly, the ACE2R recognized by the SARS-CoV-2 ‘S1’

spike protein is up-regulated by miRNA-146a and the many

types of PrD and viral infections that induce miRNA-146a-

5p and/or miRNA-155 are all associated with a advancing

and insidious systemic inflammation and specific neurological

disease symptoms and/or syndromes that are progressive, age-

related, insidious, incapacitating and invariably fatal. Despite

an apparent lack of nucleic acids in prions, both DNA- and

RNA-containing viruses, along with prions, significantly and

progressively induce miRNA-146a and/or miRNA-155 in the

infected host, but whether this represents part of the host’s

adaptive immunity, innate-immune response or a mechanism

to enable the invading prion or virus a successful infection

remains incompletely understood (Ayers et al., 2020; Carlson

and Prusiner, 2021; Pogue and Lukiw, 2021; Roganović, 2021;

Pinacchio et al., 2022; Zhao and Lukiw, 2022).

The multi-system and neurological
impact of SARS-CoV-2 infection

It is important to emphasize that COVID-19 disease

typically presents as an unusually rapid onset, highly

transmissible viral pneumonia, and that SARS-CoV-2 infection

initially requires a critical interaction between the viral ‘S1’ spike

protein of SARS-CoV-2 and the surface membrane-exposed

ACE2R. Some of the highest ACE2R densities have been found

in the cholesterol- and sphingolipid-enriched lipid raft domains

of multiple epithelial and endothelial cells of the human

respiratory tract, however ACE2R has been identified on every

human host cell type so far analyzed except for enucleated red

blood cells (Hill et al., 2021; Palacios-Rápalo et al., 2021; Zhao

et al., 2021; Kirtipal et al., 2022; Lukiw et al., 2022). ACE2R is

abundantly detected in all cell types of the whole brain, CNS,

neurovasculature, choroid plexus and the visual tracts extending

from the retina to the occipital lobe that involve multiple visual

processing and neuro-ophthalmic signaling pathways (Hill et al.,

2021; Hixon et al., 2021; Zhao et al., 2021; Lukiw, 2022; Piras

et al., 2022). Human vision and visual processing is negatively

impacted by SARS-CoV2 infection (Hill et al., 2021; Hixon

et al., 2021; Tisdale et al., 2021; Lukiw, 2022). Interestingly, the

highest ACE2R expression yet described in the human CNS has

been localized to the neurons of the medulla oblongata and pons

in the brainstem, containing the Botzinger neuron complex and

the brain’s medullary respiratory centers, and this may in part

explain the vulnerability of most SARS-CoV-2 infected patients

to serious respiratory distress (Zhao et al., 2021; Lukiw et al.,

2022; Molina-Molina and Hernández-Argudo, 2022). Besides

the ubiquity and presence of the ACE2R on every human host

cell type, all neural cell and tissue systems are linked together

by a neural syncytium, a continuous intercellular networking

system along which viruses may translocate (Kiyoshi and

Zhou, 2019). Viruses such as SARS-CoV-2 also appear to

utilize exosome- and vesicle-mediated transport mechanisms in

systemic viral proliferation (Saheera et al., 2020; Eymieux et al.,

2021; Visco et al., 2022). Using these various strategies for viral

spread and means of translocation: (i) the SARS-CoV-2 virus

has an enormous potential to infect, damage and/or destroy
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almost every cell, tissue type and organ systemwithin the human

host; and (ii) to induce a serious multi-organ system failure with

highly interactive respiratory, cardiovascular, dermatologic,

endocrine, gastrointestinal, hematologic, immunological,

pulmonary, renal and/or neuro-ophthalmic, neurological or

psychiatric complications across multiple human populations in

diverse global environments (Mercatelli and Giorgi, 2020; Flud

et al., 2022; Kirtipal et al., 2022; Rodriguez-Rivas et al., 2022;

Visco et al., 2022).

Discussion

It has been just over ∼30 months since SARS-CoV-2

viral infection and COVID-19 disease were first described.

SARS-CoV-2 infections are currently responsible for a serious

and disturbing global pandemic in which just under ∼600

million people have been infected and about ∼6.5 million have

died (https://www.worldometers.info/coronavirus/coronavirus-

death-toll/; last accessed 29 August 2022). Over this relatively

brief period of time about 40–60% of all “recovered” COVID-19

patients have experienced some type of ill-defined, wide-ranging

and highly variable neurological complication and exhibit

the symptomology of “long COVID.” Just as is the case for

other incompletely characterized neurotrophic viral infections

there are unexpected, unpredicted and sometimes alarming

neurological and other sequelae to SARS-CoV-2-based viral

infection. These include: (i) a pathological association with

AD and novel onset human PrD; (ii) the recognition of self-

associating prion-like viral domains in the SARS-CoV-2 ‘S1’

spike protein driving amyloidogenesis and neurotoxic aggregate

formation; and (iii) the persistent emergence of novel SARS-

CoV-2 viral strains highly resistant to natural host immune

responses and the anti-‘S1’ spike glycoprotein-based vaccines

and vaccination strategies (Oldfield et al., 2021; Bernardini et al.,

2022; Rodriguez-Rivas et al., 2022; Shahzad and Willcox, 2022).

Existing and ongoing research have uncovered significantly

overlapping pathological neurology and neurochemistry and

the involvement of multiple physiological systems in the

complex and highly interactive disease mechanisms that define

“long COVID,” PrD, neurodegeneration and SARS-CoV-2

neurobiology (Ritchie et al., 2020; Lingor et al., 2022; Lukiw

et al., 2022; Olivo et al., 2022; Shahzad and Willcox, 2022; Visco

et al., 2022). As in global pandemic infections of the past it is

our opinion that we should anticipate additional unexpected

associations of brain and CNS disease-linked mechanisms

and pathways between SARS-CoV-2-mediated viral infection

and other categories of age-related, immune-evasive pro-

inflammatory forms of neurodegeneration. Importantly, the

SARS-CoV-2 ‘S1’ spike proteins contain both self-associating

“prion-like” regions, amyloid peptide-binding and other

domains that appear to play roles in pathological “seeding,”

amyloidogenesis and/or spreading that supports the formation

of pathogenic lesions in the brain and CNS which contribute

to pro-inflammatory neurodegeneration, neural cell atrophy

and/or neuronal cell death (Tavassoly et al., 2020a,b; Lukiw

et al., 2022; Tetz and Tetz, 2022).

The observed association between the more severe forms

of COVID-19 and progressive neurodegenerative disorders

that include AD and PrD at the molecular-genetic level are

fascinating in that: (i) each disorder is a noteworthy example of

a highly virulent, immune-evasive and often lethal neurotropic

entity; and (ii) each of these pathogenic types are difficult

to characterize, diagnose and treat, and possess unexpected

characteristics, persistence and disease modalities (Baazaoui

and Iqbal, 2022; Bernardini et al., 2022). The long-term

effects and impact of COVID-19 disease infection and/or re-

infection with the most recently identified SARS-CoV-2 strains

including the SARS-CoV-2 ‘Omicron stealth variants’ BA.5

and/or B.1.1.529 (https://www.cdc.gov/coronavirus/2019-ncov/

variants/variant-classifications.html; last accessed 29 August

2022) are not yet known. They are however sure to open new

and intriguing chapters in the study of viral neurology, the

epidemiology and neurobiology of these highly transmissible

zoonotic entities, and multiple, highly interactive aspects

of the human neurological and systemic pathophysiology

associated with SARS-CoV-2 infection and neurodegeneration,

especially in cases involving the elderly and in immunologically

compromised human populations.
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