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Abstract

In this study, we perform a full genome-wide association study (GWAS) to identify statistically

significantly associated single nucleotide polymorphisms (SNPs) with three red blood cell

(RBC) components and follow it with two independent PheWASs to examine associations

between phenotypic data (case-control status of diagnoses or disease), significant SNPs, and

RBC component levels. We first identified associations between the three RBC components:

mean platelet volume (MPV), mean corpuscular volume (MCV), and platelet counts (PC), and

the genotypes of approximately 500,000 SNPs on the Illumina Infimum DNA Human OmniEx-

press-24 BeadChip using a single cohort of 4,673 Northern Nevadans. Twenty-one SNPs in

five major genomic regions were found to be statistically significantly associated with MPV, two

regions with MCV, and one region with PC, with p<5x10-8. Twenty-nine SNPs and nine chro-

mosomal regions were identified in 30 previous GWASs, with effect sizes of similar magnitude

and direction as found in our cohort. The two strongest associations were SNP rs1354034 with

MPV (p = 2.4x10-13) and rs855791 with MCV (p = 5.2x10-12). We then examined possible asso-

ciations between these significant SNPs and incidence of 1,488 phenotype groups mapped

from International Classification of Disease version 9 and 10 (ICD9 and ICD10) codes collected

in the extensive electronic health record (EHR) database associated with Healthy Nevada Proj-

ect consented participants. Further leveraging data collected in the EHR, we performed an

additional PheWAS to identify associations between continuous red blood cell (RBC) compo-

nent measures and incidence of specific diagnoses. The first PheWAS illuminated whether

SNPs associated with RBC components in our cohort were linked with other hematologic phe-

notypic diagnoses or diagnoses of other nature. Although no SNPs from our GWAS were iden-

tified as strongly associated to other phenotypic components, a number of associations were

identified with p-values ranging between 1x10-3 and 1x10-4 with traits such as respiratory fail-

ure, sleep disorders, hypoglycemia, hyperglyceridemia, GERD and IBS. The second PheWAS

examined possible phenotypic predictors of abnormal RBC component measures: a number of

hematologic phenotypes such as thrombocytopenia, anemias, hemoglobinopathies and pan-

cytopenia were found to be strongly associated to RBC component measures; additional phe-

notypes such as (morbid) obesity, malaise and fatigue, alcoholism, and cirrhosis were also

identified to be possible predictors of RBC component measures.
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Introduction

The complete blood count (CBC) is a widely used medical diagnostic test that is a compilation

of the number, size, and composition of various components of the hematopoietic system.

Abnormal CBC measures may indicate illness or disease. Mean corpuscular volume (MCV),

platelet count (PC), and mean platelet volume (MPV) are specific CBC characteristics (hereby

called RBC components), and linked to complex disorders such as anemia, alpha thalassemia

and cardiovascular disease [1–5]. Platelets are involved in vascular integrity, wound healing,

immune and inflammatory responses, and tumor metastasis; the role of platelets is also para-

mount in hemostasis and in the pathophysiology of atherothrombosis and cancer [6–12].

Additionally, abnormally high mean platelet volumes (MPV) are considered a predictor of

post event outcome in coronary disease and myocardial infarction [13].

Furthermore, studies have shown that individuals living in higher altitudes have noted dif-

ferences in red blood cell components than at sea level. At approximately 4,400 feet above sea

level, Northern Nevada, where this study is conducted, is considered a high desert in the Sierra

Nevada foothills. Alper showed that mean platelet volume (MPV) is 7.5% higher at altitudes

greater than 4,000 feet than at sea level [14]. Similarly, Hudson showed a notable and statisti-

cally significant positive correlation with platelet counts (PC) and altitude [15], while mean

corpuscular volume (MCV) was recorded as lower at higher altitudes than at sea level [16]. As

RBCs help transport oxygen throughout the entire body, the identification of RBC-related

genotypic mutations, especially in an RBC high-turnover environment is valuable. Lastly, the

identification of genomic regions with roles in megakaryopoiesis and platelet formation, as

well as neoplastic conditions like polycythemia vera and essential thrombocytosis (ET) [17,18],

may help identify those that have a higher risk of certain complex RBC diseases.

Given the importance of these three RBC components, we conducted a study to identify

both genetic and phenotypic associations with all three characteristics via GWASs and Phe-

WASs. Our study begins with the Healthy Nevada Project, a single cohort formed in 2016 to

investigate factors that may contribute to health outcomes in Northern Nevada. Its first phase

provided 10,000 individuals in Northern Nevada with genotyping on the 23andMe 2016 Illu-

mina Human OmniExpress-24 BeadChip platform at no cost. Renown Hospital is the largest

hospital in the area, and 75% of these 10,000 individuals are cross-referenced in its extensive

EHR database.

As noted above, previous GWASs have identified significant genetic links with all three

RBC components we examine in this study, MPV, MCV and PC [13,17–45]. Lin et al. 2007

identified a strong genetic link with MCV in region 11p15 using the Framingham cohort [19];

Kullo et al. 2010 leveraged EHR data from the Mayo Clinic to detect four genes strongly associ-

ated with at least one of the three RBC components [27]. Similarly, a number of regions were

linked with PC in an African American cohort [35] and MPV [35]; Shameer detected five

regions associated with PC and eight with MPV [18].

Our study first performed a genome-wide association study (GWAS) of 4,673 genotyped

Northern Nevadans who have at least one recorded value for one of the three RBC compo-

nents MPV, MCV and PC to examine the genetic component of these components. We found

38 SNPs to be statistically significantly associated (p<5x10-8) to one of the three RBC compo-

nents. Many of these associations were previously reported, yet our study did identify nine

novel SNPs in six different regions. While there were few new associations discovered in our

cohort, we identified several SNPs that fall within genes influencing megakaryocytes matura-

tion, platelet volume, platelet signaling and diseases such as anemia. Further, with extensive

linked electronic medical record (EMR) data, we had the ability to perform a PheWAS of

1,488 standard lab results (phenotypes) against each SNP found to be associated to RBC
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components in the Northern Nevadan cohort to examine pleiotropy. Additionally, we then

examined the RBC components phenotypically, using linked electronic medical record (EMR)

data to determine the relationship between measures of each component and a variety of clini-

cal conditions recorded in patients. Many relevant and strongly statistically significant associa-

tions were identified, especially with hematologic components; other traits not currently

shown to be linked to RBC components, such as obesity, alcoholism and cirrhosis, were also

detected.

Results

Characteristics of cohort

We examined 4,673 genotyped individuals with at least one recorded RBC measure; 4,563 indi-

viduals in the cohort had measures for all three components. Table 1 describes the cohort with

respect to gender, age, ethnic origin, and standardized value of each RBC component. Note that

all values for each component were standardized to the most current lab test administered for

that component via linear transformation. Normalization of test values was necessary as lab

tests were updated across the 13 years of data collection. The normal (healthy) reference values

to which all individual records were standardized are also presented in Table 1. The mean stan-

dardized RBC component values for each individual are available in S1 Table.

GWAS of RBC components

After SNP quality control, there were 498,916 high-quality SNPS and 4,627 participants in the

MCV cohort utilized for associations studies with mean autosomal heterozygosity of 0.321.

The same quality control process yielded 4,564 participants for MPV with the same mean auto-

somal heterozygosity of 0.321. Similarly, the PC cohort consisted of 4,673 participants with

same mean autosomal heterozygosity. Using the average measures of each individual’s MPV,

PC and MCV lab records, a standard GWAS under the additive model with adjustments for

gender, age and the first four principal components was performed using PLINK 1.9. Genomic

Table 1. Cohort characteristics.

Age (years) 47.24 ± 15.82

Male (%) 1328 (28.24)

African American (%) 53 (1.12)

Asian (%) 100 (2.12)

Caucasian (%) 4,175 (89.34)

Latino (%) 138 (2.93)

Native American (%) 30 (0.64)

Pacific Islander (%) 11 (0.23)

Unknown (%) 168 (3.6)

Standardized Component levels Normal Reference Ranges

MPV (fL) 10.58 ± 0.98 [9, 12.9] (fL)

MCV (fL) 91.53 ± 4.40 [81.4, 97.8] (fL)

PC (K/uL) 251.83 ± 61.92 [164, 446] (K/uL)

Table of cohort characteristics. Continuous variables are presented as mean ± SD; categorical variables are presented

as counts and percentages. All values were standardized to the reference ranges of the most recent administered

laboratory test. The median MPV value is 10.49; the median of the MCV values is 91.76; the median PC value is 246.

The IQR of MPV is [9.90, 11.16]; the IQR of MCV is [89.06, 94.30]; the IQR of PC is [209.67, 286.67].

https://doi.org/10.1371/journal.pone.0218078.t001
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inflation coefficients (lambda) were computed for each cohort: 1.031 for MPV, 1.027 for PC,

and 1.045 for MCV.

Any SNP with an association p-value of p<5x10-8 was considered a statistically significant

association, following current standards [28,32,46,47]. The percentage of phenotypic variance

attributed to genetic variation was computed with a combination of PLINK and GCTA [48]:

genetic variance was 35.3% for MCV; 32.2% for MPV; 20.7% for PC. The three individual

GWAS studies identified a total of 38 SNPs that associated with a RBC component with statis-

tical significance. Manhattan plots of the three GWAS results are presented in S1A–S1C Fig).

As an example for the reader, we include in the manuscript (Fig 1), a Manhattan plot for

MCV.

MPV

A GWAS was performed on a cohort of 4,564 genotyped participants with MPV laboratory

measures. We identified 21 SNPs across five different chromosomal regions that reached

genome-wide significance (p< 5x10-8; Table 2). Of these, 13 demonstrated previous associa-

tions in at least one other study, with six associated with RBC components (S2 Table)

[13,17,18,25,28,30,33,35,49–58]. All five significant chromosomal regions were previously

associated with MPV[17,18]. The fifth region 18q22.2, contains three SNPs associated in our

cohort with average p-value p = 3.86x10-9, however none of the individual SNPs have been pre-

viously associated with MPV. Results are presented in Table 2.

MCV

A GWAS was performed on a cohort of 4,627 genotyped participants with MCV laboratory

measures. There were 14 SNPS that were significantly associated with MCV (Table 2). These

SNPs lie in three chromosomal regions: predominantly in 6q23.3 and 22q12.3. These two

regions have detailed annotation and were linked previously with MCV (S2 Table) [20,27,32].

All but four of the SNPs are in non-coding regions. These four SNPs lie in TMPRSS6. The

gene TMPRSS6 codes for the protein matriptase-2, which is part of a signaling pathway that

regulates blood iron levels [31]. The two SNPS rs855791 and rs4820268 showed the strongest

association with MCV (p<1x10-11). These two SNPS also lie in TMPRSS6 and cause a missense

and synonymous mutation, respectively. Results are presented in Table 2.

PC

A GWAS was performed on a cohort of 4,673 genotyped participants with PC laboratory mea-

sures. Three SNPs were identified with statistically significant (p<5x10-8) links to PC values in

our cohort, two of which were previously identified in other studies (S2 Table) [17,25,26,34].

The SNP rs10974808 is in the same cytoband region (9p24.1) as the others but has not been

linked to PC. The three SNPs have different effects on PC: rs385893 and rs423955 have nega-

tive effect size (β = -7.744 and -7.387, respectively), while rs10974808 has a positive effect (β =

11.490). The minor allele frequency of rs10974808 is much rarer (MAF = 11.48%) compared

to 49% for rs385893 and 31.17% for rs423955. Results are presented in Table 2.

Comparison to other GWAS studies

The Northern Nevada cohort had mean standardized MPV values of 10.58 ± 0.98 fL, compara-

ble to levels reported in the Health ABC cohort described in Qayyum (10.9 ± 1.6 fL), and two

European cohorts investigated in Geiger (10.53 ± 1.08, 10.83 ± 0.87) [28,35]. The Nevadan

cohort had MCV values of 91.53 ± 4.5 fL, also comparable to those described in Kullo
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(90.5 ± 4.2 fL) and Ding in the Mayo and Johns Hopkins Group Health Cooperative cohorts

(90.53 ± 4.17 and 91.56 ± 4.49, respectively), as well as several European cohorts in Geiger

(e.g., 91.5 ± 4.2, 91.4 ± 4.41, 91.1 ± 4.44, 92.0 ± 4.3) [27,28,32]. Mean standardized PC values in

the Nevadan cohort (251 ± 62.23 K/uL) were very similar to many of the cohorts examined in

Geiger (e.g., 258.6 ± 63.1, 252 ±71.7, 250.9 ±64.8, 247 ± 64.7) [28].
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Fig 1. MCV GWAS Manhattan plot. Genome-wide association study results for MCV. The x-axis represents the

genomic position of 498,916 SNPs. The y-axis represents -log10-transformed raw p-values of each genotypic

association. The red horizontal line indicates the threshold of significance p = 5x10-8.

https://doi.org/10.1371/journal.pone.0218078.g001
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Our three GWAS results were in close correlation with many of the other studies. For

example, the locus rs7961894 in the WDR66 gene on q24.31 was found associated to MPV in

our cohort and in Meisinger as a top hit [24]. Effect sizes in Meisinger were larger than ours

(1.03 vs. 0.22), but the number of minor alleles predicted an increase in MPV for both studies.

Another SNP, rs342240, was one of our cohort’s top associations with MPV, and was also

Table 2. Statistically significant GWAS SNPs.

rsID Chrom Cyto Region Associated Gene Minor Allele MAF β (SE) GWAS p-value Mutation Classification RBC

rs10274553 chr3 p14.3 ARHGEF3 C 49.74 -0.1198 0.020 3.82x10-9 intron MPV

rs10509186 chr3 p14.3 ARHGEF3 T 45.55 -0.1187 0.021 7.75x10-9 intron MPV

rs10822186 chr7 q22.3 NA G 49.22 -0.1107 0.020 4.38x10-8 unknown MPV

rs11130549 chr7 q22.3 NA C 34.11 -0.1238 0.022 9.94x10-9 unknown MPV

rs12355784 chr7 q22.3 NA A 45.46 -0.1184 0.021 9.32x10-9 unknown MPV

rs1354034 chr7 q22.3 NA T 41.14 0.1546 0.021 2.39x10-13 unknown MPV

rs1788103 chr7 q22.3 NA G 48.18 -0.1261 0.020 5.15x10-10 unknown MPV

rs1790588 chr7 q22.3 NA C 48.01 -0.1273 0.020 3.31x10-10 unknown MPV

rs1790974 chr10 q21.3 JMJD1C T 43.82 -0.1128 0.020 3.32x10-8 intron MPV

rs1935 chr10 q21.3 JMJD1C G 45.58 -0.1135 0.021 3.57x10-8 intron MPV

rs201979226 chr10 q21.3 JMJD1C C 48.78 0.1183 0.020 5.89x10-9 intron, near-gene-5 MPV

rs342240 chr10 q21.3 JMJD1C A 41.36 0.129 0.021 3.49x10-10 intron, untranslated-3 MPV

rs342275 chr10 q21.3 JMJD1C T 41.9 0.1292 0.020 2.96x10-10 intron MPV

rs342293 chr10 q21.3 JMJD1C G 44.31 0.1325 0.020 6.61x10-11 missense MPV

rs342296 chr10 q21.3 REEP3 A 44.03 0.131 0.020 1.04x10-10 intron MPV

rs34818942 chr12 q24.31 WDR66 T 7.29 0.254 0.039 7.77x10-11 intron MPV

rs386614085 chr12 q24.31 RHOF G 45.45 -0.1172 0.021 1.21x10-8 intron MPV

rs4379723 chr18 q22.2 CD226 C 45.45 -0.1172 0.021 1.29x10-8 missense MPV

rs763361 chr18 q22.2 CD226 T 47.24 -0.1273 0.020 3.26x10-10 intron MPV

rs7910927 chr18 q22.2 CD226 G 45.52 -0.1146 0.021 2.68x10-8 intron MPV

rs7961894 chr18 q22.2 DOK6 T 10.24 0.2221 0.033 2.68x10-11 untranslated-3 MPV

rs218237 chr4 q12 NA T 15.19 0.740 0.126 5.07x10-9 unknown MCV

rs9402686 chr6 q23.3 NA A 24.89 0.647 0.104 4.60x10x-10 unknown MCV

rs7776054 chr6 q23.3 NA G 24.28 0.645 0.104 6.65x10-10 unknown MCV

rs9399137 chr6 q23.3 NA C 23.83 0.648 0.105 7.82x10-10 unknown MCV

rs7775698 chr6 q23.3 NA T 24.23 0.642 0.104 8.24x10-10 unknown MCV

rs4895441 chr6 q23.3 NA G 25.08 0.628 0.103 1.27x10-9 unknown MCV

rs111194878 chr6 q23.3 NA A 25.41 0.622 0.103 1.47x10-9 unknown MCV

rs9373124 chr6 q23.3 NA C 26.16 0.599 0.102 5.14x10-9 unknown MCV

rs855791 chr22 q12.3 TMPRSS6 A 44.2 -0.621 0.090 5.23x10-12 missense MCV

rs4820268 chr22 q12.3 TMPRSS6 G 46.56 -0.604 0.090 2.65x10-11 coding-synon MCV

rs5756504 chr22 q12.3 TMPRSS6 T 36.93 0.567 0.092 7.77x10-10 intron MCV

rs130624 chr22 q12.3 NA G 42.77 0.549 0.090 1.13x10-9 unknown MCV

rs5756506 chr22 q12.3 TMPRSS6 C 36.92 0.563 0.092 1.15x10-9 intron MCV

rs386563505 chr22 q12.3 NA A 40.75 0.525 0.091 7.12x10-9 unknown MCV

rs385893 chr9 p24.1 NA T 49 -7.744 1.258 8.04x10-10 unknown PC

rs10974808 chr9 p24.1 RCL1 G 11.48 11.490 1.943 3.53x10-9 intron PC

rs423955 chr9 p24.1 NA C 34.17 -7.387 1.325 2.64x10-8 near-gene-5 PC

This table lists the statistically significant SNPs associated in our cohort with MPV, MCV, and PC. Effect sizes and their standard deviations are presented in fL per each

copy of the minor allele. Raw p-values generated by the GWAS are presented.

https://doi.org/10.1371/journal.pone.0218078.t002
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identified by Shameer and Soranzo as significant links to MPV [17,18]. Similarly, locus

rs385893 was identified as a possible predictor of PC by Soranzo and our cohort, with very

similar notably large negative effect sizes (-6.24 and -7.74, respectively). Kullo also found SNP

rs7775698 to be significantly associated to MCV, with similar positive effect sizes as our study

(0.92 vs 0.56) [27]. Soranzo et al. identified rs9402686 as a top link with MCV, and again, effect

sizes were similar to ours (0.82 vs 0.65) [17].

ANOVA

The mean component values across genotypes presented in S2 Table correlate with negative

and positive effect sizes: SNPs showing a negative effect size have a decrease in component val-

ues across the genotypes from left to right (homozygous in major allele, heterozygous, homo-

zygous in minor allele). All ANOVA p-values of the significant SNPs identified in this study

are significant, even after a simple Bonferonni correction (.05/38 = 0.001). A box and whisker

figure of ANOVA results for the top hit SNP rs7961894 are shown in S2 Fig.

PheWAS of RBC components

The first PheWAS examined possible associations between significant SNPs identified in each

RBC trait GWAS and 1,488 phenotypic groups. At significance levels 1x10-4<p<1x10-3, puta-

tive associations of MCV-specific SNPs included respiratory failure; those with PC included

GERD and other diseases of the esophagus. Our study also showed links with MPV-associated

SNPs and skin cancer, hypoglycemia, hyperglyceridemia, IBS, among others. These associa-

tions are outlined in S3A–S3C Fig.

The second PheWAS investigated whether the 1,488 phenotype groups were associated

with the levels of each RBC component; more specifically, the analysis identified whether the

number of cases in a phenotype group was a predictor of the level of the component (Table 3).

For example, the PheWAS examining associations of MPV levels presented significant links

with thrombocytopenia and purpura (p<1x10-8). Interestingly, Vitamin D deficiency was also

shown to be a predictor of MPV levels, although at a lower significance level (p<1x10-6). Inci-

dence of malaise and fatigue was also found to be a potential predictor of MPV in our cohort.

Associations with MCV included hemoglobinopathies and hemolytic anemias (p<1x10-35),

as well as iron deficient anemias (p<1x10-20). Again, association with (morbid) obesity was

evident (p<1x10-20). Alcoholism and related liver diseases were associated with MCV at a sig-

nificance level of p<1x10-8; abnormal glucose and diabetes were also linked to MCV at p<
1x10-5. We identified a strong association in our cohort between platelet counts and thrombo-

cytopenia and purpura (p<1x10-30). Associations with other hematologic phenotypes such as

various anemias and pancytopenia also reached significance (p<1x10-8). Additionally, (mor-

bid) obesity and cirrhosis were statistically significantly associated with PC with p<1x10-8 sig-

nificance level. These three PheWAS results are shown in S4A–S4C Fig. As an example for the

reader, we include the PheWAS results for MCV in Fig 2.

Discussion

In this study, we first performed three independent GWASs of 4,673 Healthy Nevada Project

participants with 500,000 genotypes against the RBC components: platelet count, mean platelet

volume and mean corpuscular volume. We followed these with two independent PheWASs

for each component to identify additional phenotypic associations with each blood compo-

nent-significant SNP, and phenotypic associations with measures of each blood component.

Our genome-wide association analysis identified ten different chromosomal cytoband

regions associated with at least one RBC component. Nine of those regions were previously

GWAS and PheWAS of RBC components in Northern Nevada
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Table 3. PheWAS Results for MPV, MCV and PC.

Phecode Description Group RBC β SE p N

287.3 Thrombocytopenia hematopoietic MPV 0.75 0.11 9.06x10-12 4104

287 Purpura and other hemorrhagic conditions hematopoietic MPV 0.62 0.10 2.86x10-10 4124

286.3 Coagulation defects complicating pregnancy or postpartum hematopoietic MPV 2.47 0.39 3.66x10-10 4029

655 Known or suspected fetal abnormality affecting mother pregnancy complications MPV 0.56 0.11 8.85x10-7 4455

798 Malaise and fatigue symptoms MPV 0.16 0.03 5.21x10-6 4162

261 Vitamin deficiency endocrine/metabolic MPV 0.14 0.04 5.43x10-5 4049

61.4 Vitamin D deficiency endocrine/metabolic MPV 0.14 0.04 6.55x10-5 3992

282.8 Other hemoglobinopathies hematopoietic MCV -12.18 0.87 1.97x10-43 3751

282 Hereditary hemolytic anemias hematopoietic MCV -10.33 0.82 8.62x10-36 3754

280 Iron deficiency anemias hematopoietic MCV -3.76 0.36 1.30x10-25 3854

278 Overweight, obesity and other hyperalimentation endocrine/metabolic MCV -1.48 0.14 3.56x10-25 4365

278.1 Obesity endocrine/metabolic MCV -1.71 0.17 2.01x10-23 3874

280.1 Iron deficiency anemias unspecified or not due to blood loss hematopoietic MCV -3.81 0.38 5.03x10-23 3837

278.11 Morbid obesity endocrine/metabolic MCV -2.04 0.21 6.83x10-22 3540

281.9 Deficiency anemias hematopoietic MCV 8.73 1.10 2.60x10-15 3743

289.9 Abnormality of red blood cells hematopoietic MCV -7.30 1.08 1.94x10-11 3742

289 Other diseases of blood and blood-forming organs hematopoietic MCV 2.84 0.43 7.37x10-11 3827

317.11 Alcoholic liver damage mental disorders MCV 8.46 1.31 1.38x10-10 4009

281 Other deficiency anemia hematopoietic MCV 4.55 0.73 4.33x10-10 3759

317 Alcohol-related disorders mental disorders MCV 4.15 0.67 5.96x10-10 4041

317.1 Alcoholism mental disorders MCV 5.59 0.91 9.92x10-10 4021

571.8 Liver abscess and sequelae of chronic liver disease digestive MCV 8.01 1.50 9.85x10-8 3855

571.51 Cirrhosis of liver without mention of alcohol digestive MCV 7.22 1.42 3.61x10-7 3856

342 Hemiplegia neurological MCV -14.80 3.09 1.67x10-6 4060

573.2 Liver replaced by transplant digestive MCV 14.01 2.99 2.97x10-6 3849

571.81 Portal hypertension digestive MCV 9.80 2.12 4.00x10-6 3851

250.4 Abnormal glucose endocrine/metabolic MCV -0.88 0.19 6.30x10-6 3946

250 Diabetes mellitus endocrine/metabolic MCV -1.03 0.23 9.77x10-6 3697

250.21 Type 2 diabetes with ketoacidosis endocrine/metabolic MCV 12.99 3.04 1.94x10-5 3296

530.2 Esophageal bleeding (varices/hemorrhage) digestive MCV 8.18 1.91 1.96x10-5 3176

70.2 Viral hepatitis B infectious diseases MCV -17.81 4.31 3.63x10-5 4266

539 Bariatric surgery digestive MCV -1.98 0.48 3.71x10-5 4550

287.3 Thrombocytopenia hematopoietic PC -85.15 6.56 9.17x10-38 4104

287 Purpura and other hemorrhagic conditions hematopoietic PC -71.06 5.92 1.11x10-32 4124

278 Overweight, obesity and other hyperalimentation endocrine/metabolic PC 14.23 1.97 6.12x10-13 4366

284 Aplastic anemia hematopoietic PC -98.52 14.12 3.54 x10-12 3749

284.1 Pancytopenia hematopoietic PC -100.90 15.03 2.16x10-11 3747

278.1 Obesity endocrine/metabolic PC 14.80 2.35 3.18x10-10 3875

278.11 Morbid obesity endocrine/metabolic PC 17.70 2.92 1.56 x10-9 3541

571.51 Cirrhosis of liver without mention of alcohol digestive PC -120.03 19.85 1.61x10-9 3857

571.8 Liver abscess and sequelae of chronic liver disease digestive PC -121.58 21.03 7.96x10-9 3856

288.1 Decreased white blood cell count hematopoietic PC -32.91 5.82 1.68x10-8 3832

287.31 Primary thrombocytopenia hematopoietic PC -134.74 25.98 2.24x10-7 4028

286.3 Coagulation defects complicating pregnancy or postpartum hematopoietic PC -120.29 23.71 4.10x10-7 4029

655 Known or suspected fetal abnormality affecting mother pregnancy complications PC -35.93 7.09 4.27x10-7 4455

571.81 Portal hypertension digestive PC -143.14 29.73 1.53x10-6 3852

288.2 Elevated white blood cell count hematopoietic PC 22.82 4.99 4.88x10-6 3875

(Continued)
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associated to RBC components in other studies; the region 22q13.33 represents a novel region

in our study [17,18,20,25,27,28,30,32,49,59,60]. Nine genes lie in the cytoband regions: their

functions are outlined in Table 4.

Our GWAS results were very similar to previous MPV GWAS associations. The most sig-

nificant genetic association with MPV (rs1354034, p = 2.39x10-13) is found in an intronic

region within ARHGEF3 on chromosome 3p14.3. The gene ARHGEF3 codes for a Rho gua-

nine nucleotide exchange factor 3 protein and was associated to MPV in previous studies

[13,17,18,28,33,61], further demonstrating that our study was able to replicate associations

with RBC components in prior single-cohort studies. The mechanism by which rs1354034

affects MPV values is still ambiguous. As it lies in a DNase I hypersensitive region within open

chromatin, it could directly affect ARHGEF3 expression in human megakaryocytes maturation

[61]. Our second most significant association (rs7961894, p = 2.68x10-11) was also previously

linked with MPV [13,18,24,28]. This SNP lies in intron 3 of WDR66 on chromosome

12q24.31. Expression levels of WDR66 have been directly tied to MPV, possibly indicating that

WDR66 is involved in the establishment of platelet volumes. SNP rs7961894 is not directly cor-

related with WDR66 expression levels, implying an indirect role possibly through other regula-

tory mechanisms [24].

We also identified several SNPs on chromosome 10q21.3 to be associated with MPV in our

cohort that were linked to sex hormone levels in previous studies [53]. This may imply a possi-

ble relationship between sex hormone levels and MPV. These SNPs almost exclusively lie in

JMJD1C, a gene that encodes as a probable histone demethylase, and may have a function in

hormone-dependent transcriptional activation [17]. This could indicate that the transcription

of certain hematopoietic target genes may be enhanced or repressed when specific sex hor-

mones are present; however, the exact targets and mechanisms have yet to be studied and clini-

cal evidence for such association is scant.

Further, the chromosomal region 18q22.2 was shown to be associated with MPV [13],

although the significant SNPs in this region have not been linked to MPV in previous studies.

Three out of the four SNPs in this region are intronic to CD226, while one is in an untranslated

region of DOK6. CD226 codes for a protein, which mediates the binding of activated platelets

to endothelial cells and may participate in platelet signal transduction [63]. Soranzo et al. also

identified this gene as having a possible role in megakaryocyte (MK) development, thus these

SNPs in CD226 may influence platelet development [17]. DOK6 encodes a docking protein,

necessary for protein scaffolding, but to our knowledge has no known relation to platelet func-

tion; therefore, the functional relevance of a SNP in this gene is ambiguous. The mechanism

by which these SNPS within 18q22.2 affect CD226, DOK6 or MPV is also currently unknown.

The majority of SNPs associated with MCV and PC are in non-coding regions, and most

were previously associated with these components in previous studies [17,27,32,45]. Our two

strongest associations with MCV (rs855791, p = 5.23x10-12) and (rs4820268, p = 2.65x10-11)

Table 3. (Continued)

Phecode Description Group RBC β SE p N

395.2 Nonrheumatic aortic valve disorders circulatory system PC -29.71 6.50 5.03x10-6 4019

280.1 Iron deficiency anemias unspecified or not due to blood loss hematopoietic PC 24.29 5.74 2.36x10-5 3838

555 Inflammatory bowel disease and other gastroenteritis and colitis digestive PC 33.57 7.99 2.70x10-5 3504

Table of phenotype groups (phecodes) reaching statistical significance (p<3.4x10-5) when associated to continuous MPV, MCV and PC component values. Phecodes

and their description, effect sizes (β) of the regression, standard error (SE), and p-values are included. Each phecode group contains at least 20 cases. Note that two

associations with MPV at slightly higher p-values (p = 5.43x10-5 and p = 6.55x10-5) are also included; these are presented in the Discussion.

https://doi.org/10.1371/journal.pone.0218078.t003
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are in the gene TMPRSS6 and could cause an altered or loss of function for the matriptase-2

protein. Altered function of the protein will likely influence iron status within the body, dem-

onstrating why these SNPS are highly associated with anemia caused by iron deficiency

[31,38]. PC was associated with only a single gene in our GWAS. This gene, RCL1, which

encodes an RNA terminal phosphate cyclase-like 1 protein, was previously associated with PC

[28]. The SNP associated to PC in this gene (rs10974808, p = 3.53x10-09) in our cohort has not

Fig 2. MCV PheWAS plot. This figure illustrates the results of individual linear regression between incidence of

phenotype groups (phecodes) and continuous MCV component measures. The model includes age, gender and

ethnicity as covariates. Each point represents the p-value of the association between one of 1,488 phecodes with at least

20 cases assigned to it, and the MCV component measure. The horizontal red line represents the significance level

p = 3.4x10-5.

https://doi.org/10.1371/journal.pone.0218078.g002
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been linked to PC by other studies to the best of our knowledge. Our strongest association

(rs385893, p = 8.04×10−10) was previously found to affect JAK2, a gene 400 kb downstream of

the locus and a key regulator of megakaryocyte maturation, illustrating that these SNPs may

influence changes over large genetic regions [17]. This also highlights the difficulty determin-

ing the exact mechanisms by which these SNPS alter components, such as RBC, given their

large theoretical range of influence.

We present here two comprehensive PheWAS analyses of RBC components. The first

examines whether additional phenotypic associations exist between SNPs associated to an

RBC component in our cohort. The second groups extensive EHR phenotypic data from the

Healthy Nevada Project clinical database into 1,488 different phenotype groups and examines

the association (predictive value) between their incidence rate with continuous RBC compo-

nent values. This second analysis resulted in a number of hematologic phenotypes that associ-

ated with RBC component levels (Table 3). To the best of our knowledge, this is the first

PheWAS targeted at RBC components. Not surprisingly, many of our strongest associations

were with hematopoietic phenotypes, indicating that the incidence of having one (or more)

abnormal hematopoietic characteristics is a potential predictor of RBC component levels.

Interestingly, the incidence of having vitamin D deficiency may be linked to MPV levels and

requires further study, as incident solar radiation in the Northern Nevadan location of the

study is high. Also of interest is that MCV and PC levels could be associated to the occurrence

of (morbid) obesity, alcoholism and cirrhosis which are linked to poor vitamin D synthesis

[65].

The identified associations between the RBD indices and hematopoietic findings and

pathologies are mostly expected due to their known physiologic association and reconfirm pre-

viously reported findings. Iron deficiency anemia is often microcytic and characterized by

reduced MCV [66]. Iron deficiency also affects megakaryocytes and may induce changes in

megakaryocyte differentiation as well as increased platelet counts and volume [67]. As noted

earlier, one of the strongest associations reported here is in the vicinity of JAK2, a known regu-

lator of megakaryocytes maturation [68].

While thrombocytopenias are clearly synonymous with reduced PC, associated platelet vol-

ume and size changes can be used to differentiate between inherited macrothrombocytopenias

and idiopathic thrombocytopenic purpura (ITP) [69], thus establishing an association with

MPV that may be positive or inverse. While this study demonstrated a strong negative

Table 4. Table presenting gene functions.

Gene Gene Description Region RBC Function Reference

ARHGEF3 Rho Guanine Nucleotide Exchange

Factor 3

p14.3 MPV Increases activity of Rho GTPases by catalyzing the release of bound GDP; may have a

role in megakaryocytes maturation

[61]

JMJD1C Histone Demethylase q21.3 MPV Possible hormone-dependent transcriptional activation [17]

REEP3 Receptor Accessory Protein 3 q21.3 MPV Membrane protein [18]

WDR66 WD Repeat Domain 66 q24.31 MPV May create and alter platelet volumes [24]

RHOF Ras Homolog Family Member F q24.31 MPV May regulate platelet filopodia formation [62]

CD226 Cluster of Differentiation 226 q22.22 MPV Catalyzes binding of activated platelets to endothelial cells; may have a role in in platelet

signal transduction

[63]

DOK6 Docking Protein 6 q22.2 MPV Protein scaffolding [64]

TMPRSS6 Transmembrane Protease, Serine 6 q12.13 MCV Acts by cleaving hemojuvelin [27,31,38]

RCL1 RNA Terminal Phosphate Cyclase

Like 1

p24.1 PC rRNA processing [28]

This table presents functions of genes associated to all SNPs found significantly associated to one or more RBC components in the GWASs.

https://doi.org/10.1371/journal.pone.0218078.t004
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association between PC and purpura, and a positive association with MPV, it is important to

note that not all purpuras are necessarily caused by platelet deficiency. However, phenotypic

groupings were not specific enough to identify associations with respect to specific etiologies

(See S3 Table).

Vitamin D, independently, and in association with platelet activity and increased platelet

indices, has been associated with cardiovascular disease [70]. The positive association between

vitamin D deficiency and MPV levels is intriguing and follows other findings. Cumhur et al.

[71] observed an inverse correlation between vitamin D levels and MPV and hypothesized that

this may be due to increased release of proinflammatory cytokines present with vitamin D

deficiency. Park et al. also reported an inverse association between PC and MPV and vitamin

D levels in adults [72].

Platelet activation, as evidenced by platelet indices, is a recognized phenomenon in meta-

bolic syndrome [73,74]. This study resulted in a positive association between PC and morbid

obesity, and a negative association between MCV and obesity and morbid obesity. While pre-

vious evidence [75] does not necessarily support all-gender association between obesity and

increased platelet counts, our finding may reflect an association between the central obesity of

metabolic syndrome and the associated platelet activation of metabolic syndrome. However,

the phenotype groups were not specific enough to allow for specific differentiation between

obesity types (See S3 Table).

Thrombocytopenia is often observed in chronic liver disease and cirrhosis and platelet acti-

vation may play a role in liver regeneration [76,77]. Alcoholism is also associated with throm-

bocytopenia [78]. However, evidence of an association between liver disease or alcoholism and

platelet activation indices is lacking. Moreover, evidence points to platelet function defects in

chronic alcoholism [79]. Thus, the negative effect of PC on cirrhosis and positive effect of

MCV on cirrhosis, alcoholism, and alcohol-related disorders found in this study is intriguing

and merits further confirmation and research.

Materials and methods

The Renown EHR database

The Renown Health EHR system was instated in 2007 on the EPIC system (EPIC System Cor-

poration, Verona, Wisconsin, USA), and currently contains lab results, diagnosis codes (ICD9

and ICD10) and demographics of more than 1 million patients seen in the hospital system

since 2005.

Sample collection

Saliva as a source of DNA was collected from 10,000 adults in Northern Nevada as the first

phase of the Healthy Nevada Project to contribute to comprehensive population health studies

in Nevada. The personal genetics company 23andMe was used to genotype these individuals.

using the Orogene DX OGD-500.001 saliva kit [DNA Genotek, Ontario, Canada]. Genotypes

are based on the Illumina Human OmniExpress-24 BeadChip platform [San Diego, CA, USA]

including approximately 570,000 SNPs.

IRB and ethics statement

The study was reviewed and approved by the University of Nevada, Reno Institutional Review

Board (IRB, project 956068–12). Participants in the Healthy Nevada Project undergo written,

informed, consent to having genetic information associated with electronic health information

in a de-identified manner. Participants were eighteen years of age or older. Neither researchers
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nor participants have access to the complete EHR data and cannot map participants to patient

identifiers. These data are not incorporated into the EHR; rather, EHR and genetic data are

linked in a separate environment via a unique identifier as approved by the IRB.

Processing of EHR data

Most cohort participants had multiple RBC recordings across thirteen years; in these cases, the

mean age of each participant across those records was computed and later used as a covariate

for each component in GWAS and PheWAS analyses. Many of the participants had lab results

(for the same RBC component) recorded across different tests with different healthy reference

ranges. For example, the 4,627 participants had measurements for MCV with respect to one or

more of ten different MCV lab tests and corresponding healthy reference ranges. Many partici-

pants had records across several of these ten different tests. Only those tests/reference ranges

having records for more than one individual were used in analyses. To standardize the RBC

values across different normal reference ranges, a simple linear transform was computed using

each test’s reference range and the most recent test’s range. All component measures within

each separate test were then transformed into ranges of the most recent via each range’s spe-

cific linear transform. The most recent healthy normal reference range for each component is

listed in Table 1. Distributions of raw and transformed laboratory test values can be found in

S5A–S5C Fig.

Genotyping and quality control

Genotyping was performed by 23andMe using the Illumina Infimum DNA Human OmniEx-

press-24 BeadChip V4. This genotyping platform (Illumina, San Diego, CA) consists of

approximately 570,000 SNPs. DNA extraction and genotyping were performed on saliva sam-

ples by the National Genetics Institute (NG1), a CLIA licensed clinical laboratory and a subsid-

iary of the Laboratory Corporation of America.

Raw genotype data were processed through a standard quality control process [46,47,80–

82]. SNPs with a minor allele frequency (MAF) less than 0.01 were removed. SNPS that were

out of HWE (p-value< 1x10-6) were also excluded. Any SNP with call rate less than 95% was

removed; any individual with a call rate less than 95% was also excluded from further study.

Two pairs of participants were excluded due to high IBS (Identical by State) in all three

cohorts). Additionally, twelve people were excluded due to high autosomal heterozygosity

(FDR< 1%). A number of patients (27) were excluded due to diagnoses related to significant

blood loss that could possibly lead to anemia, although; this would likely not be related to

genetics.

For further data quality control, using the raw genotype data, a principal component analy-

sis (PCA) was performed to identify and account for population-specific variations in allelic

distributions of the SNPs. Genotype data were pruned to exclude SNPs with high linkage dis-

equilibrium using PLINK and standard pruning parameters of 50 SNPs per sliding window;

window size of five SNPs; r2 = 0.5 [80]. Regression models were adjusted by the first four com-

ponents, decreasing the genomic inflation factor of all RBC components to λ� 1.04, well

within standard ranges [17,27,83].

GWAS

Using PLINK v1.9 [84], we performed a simple linear regression analysis with an assumed

additive model (number of copies of the minor allele) including age, gender and the first four

principal components as covariates to correct for any bias generated by these variables. Stan-

dardized values of all three components followed approximate normal distributions (S5A–S5C
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Fig (row 2)). Total phenotypic variance explained by the SNPs was calculated by first produc-

ing a genetic relationship matrix of all SNPs on autosomal chromosomes in PLINK. Subse-

quently, a restricted maximum likelihood analysis was conducted using GTCA on the

relationship matrix to estimate the variance explained by the SNPS.

A simple one-way ANOVA was performed on the mean RBC component values across the

three genotypes. The raw p-values associated to the F-test statistic are included in S2 Table.

QUANTO [85] was used to calculate power in our study. While our study was understandably

underpowered (power < 80%) to detect small effect sizes with very rare variants.

(MAF between 0.01 and 0.03), the MPV cohort had greater than 80% power to detect effect

sizes of 0.25 or greater with MAF of 0.02; the MCV cohort was able to detect effect sizes of 0.8

with MAF greater than 0.03, and the PC cohort was well-powered to detect large effect sizes of

11 or greater with MAF as low as 0.01. For MAFs greater than 0.05, we found that the MPV

cohort was able to detect effect sizes of 0.60 with MAF of 0.05 at 80% power, and effect sizes of

0.70 at 90% power. The MPV cohort was large enough to detect effect sizes as small as 0.15

with MAFs at 0.05 with 80% power. The PC cohort was well-powered to detect effect sizes of

8.2 at 80% power with MAFs above 0.05. The power of specific combinations of MAF, sample

sizes, and effect sizes (n = 4673) can be seen in S2 Table.

PheWAS

The R package PheWAS [86] was used to perform two independent PheWAS analyses. The

first examined associations between statistically significant SNPs identified in an RBC GWAS

and EHR phenotypes based on ICD9 codes. The second identified associations between RBC

levels in our cohort and ICD9-based diagnoses only. ICD9 and ICD10 codes for each individ-

ual in the cohort recorded in the Renown EHR were aggregated via a mapping from the Center

for Medicare and Medicaid services (https://www.cms.gov/Medicare/Coding/ICD10/

2018-ICD-10-CM-and-GEMs.html). A total of 34,555 individual diagnoses mapped to 6,632

documented ICD9 codes. ICD9 codes were aggregated and converted into 1,814 individual

phenotype groups (“phecodes”) using the PheWAS package as described in Carroll and Denny

[86,87]. Of these, only the phecodes that included at least 20 cases were used for downstream

analyses, following Carroll’s protocol [86]: there were 1,488 phecodes with more than 20 cases

in each PheWAS. Age, gender, and ethnicity were included in all PheWAS models. The first

PheWAS detected associations between statistically significant SNPs (p<5x10-8) identified in

each of the three GWASs above and case/control status of EHR phenotypes represented by

ICD9 codes. Specifically, a logistic regression between the incidence (number of cases) of each

phenotype group (phecode) and the additive genotypes of each statistically significant SNP

was performed, using age and gender as covariates. Possible associations of 1,488 phecodes

with each previously detected SNP were assessed. The level of statistical significance was com-

puted as a Bonferroni correction for all possible associations per component: p = 0.05/ Np /Ns,

where Np is the number of phecodes tested and Ns is the number of SNPs examined in the spe-

cific blood component. This significance level is represented by a red line in S3A–S3C Fig.

A second PheWAS, as outlined in Carroll et al. (2014) [86], was performed to examine asso-

ciations between each of the three quantitative RBC components and the phecode categories.

Specifically, a linear regression between the RBC measure and the case/control status of a phe-

code was performed (with age and gender as covariates) for each of 1,488 phecodes. A single-

SNP Bonferroni correction 3.4x10-5 = 0.05/Np (with Np = 1,488) was used to compute the level

of statistical significance. Phecodes with association levels p<3.4x10-5 are highlighted in S4A–

S4C Fig.
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Data availability statement

EHR data

EHR data for the Healthy Nevada cohort are subject to HIPAA and other privacy and compli-

ance restrictions. Mean standardized RBC component values for each individual are available

in S1 Table.

GWAS results

To reduce the possibility of a privacy breach, 23andMe requires that the statistics for only

10,000 SNPs be made publicly available. This is the amount of data considered by 23andMe to

be insufficient to enable a re-identification attack. The statistical summary results of the top

10,000 SNPs for the 23andMe data are available here: www.dri.edu/HealthyNVProjectGenetics.

All column definitions are listed in Table 5.

PheWAS results

Summarized counts of each ICD9 classification and phenotype group (phecode) are presented

in S3 Table.

Researchers interested in obtaining underlying de-identified datasets specifically related to

this study should contact our Data Availability Team at Craig.Kugler@dri.edu for specific pro-

cedures to gain access to these data.

Supporting information

S1 Table. Mean standardized RBC component values. This table includes mean standardized

RBC component values for each individual along with age and gender. Due to the length of

this table it can be found online at www.dri.edu/HealthyNVProjectGenetics.

(PDF)

S2 Table. General SNP table for MPV, MCV and PC. This table lists the 38 statistically signif-

icant SNPs associated to MPV, MCV and PC in our cohort. General information about the

SNP such as chromosome location, GWAS p-value, power, genotype, cytoband, ANOVA, and

Table 5. Column identifiers for GWAS Results.

Column name Definition

CHR Chromosome

SNP Individual SNP identifier

BP Location of SNP on relative chromosome

A1 Alternative Allele

TEST Selected statistical test–ADD represents the additive effect

NMISS Indicates the number of observations–non-missing genotypes

BETA The effect size for this variant, defined per copy of the A1 allele

SE The standard error of the effect size

LE Lower end of the 95% confidence interval for the effect size

UE Upper end of the 95% confidence interval for the effect size

STAT The value of the test statistic

P The p-value for the association test

Table describing the column headers for the results file of our genome wide associations. This summary results file

only lists the top 10,000 SNPs in order to prevent a re-identification attack.

https://doi.org/10.1371/journal.pone.0218078.t005
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references of associations identified in previous studies are listed.

(PDF)

S3 Table. Counts of each phecode group. This table presents the mapping between ICD9

codes and phecodes as presented in Carroll and the R package PheWAS [86] tested in our

study, and the number of incidences from the RBC cohort in each phecode group.

(PDF)

S1 Fig. (A, B, C): GWAS results for RBC components MPV, MCV and PC. Genome-wide

association study results for the three RBC components. The x-axis represents the genomic

position of 498,916 SNPs. The y-axis represents -log10-transformed raw p-values of each geno-

typic association. The red horizontal line indicates the threshold of significance p = 5x10-8.

(TIFF)

S2 Fig. ANOVA results of SNP rs7961894. This figure shows the box and whisker diagram

for standardized values of MPV of all members in the cohort based on genotype. Mean and

standard deviation values for each genotype are CC: 10.54 ± 0.97; CT: 10.74 ± 1.0; TT:

11.21 ± 0.87. The p-value for this ANOVA analysis is p = 8.7x10-12.

(TIFF)

S3 Fig. (A, B, C): PheWAS results between RBC component-significant SNPs and phecodes.

These three figures show the results of individual logistic regressions between incidence of pheno-

type groups (phecodes) and SNP genotypes, based on the additive model. Models include age,

gender and ethnicity as covariates. Each point represents the p-value of one SNP and one of 1,488

phecodes with at least 20 cases assigned to it. The horizontal red line in each represents the signifi-

cance level p = 1.60x10-6 for MPV, p = 2.40x10-6 for MCV, and p = 1.12x10-5 for PC.

(TIFF)

S4 Fig. (A, B, C): PheWAS results between RBC component and phecodes. These three fig-

ures show the results of individual linear regressions between incidence of phenotype groups

(phecodes) and continuous RBC component measures. Models include age, gender and eth-

nicity as covariates. Each point represents the p-value of the association between one of 1,488

phecodes with at least 20 cases assigned to it, and the RBC component measure. The horizontal

red line in each represents the significance level p = 1.60x10-6 for MPV, p = 2.40x10-6 for

MCV, and p = 1.12x10-5 for PC.

(TIFF)

S5 Fig. (A, B, C): Raw and standardized RBC component lab measures. Distribution of raw

RBC component values are presented in the first row; distribution of component values upon

standardization to the most recent lab test are shown in the second row; the QQ-plot of the

standardized values is pictured in the third row.

(TIFF)
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