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Background: The tendency to devaluate future options as a function of time, known

as delay discounting, is associated with various factors such as psychiatric illness and

personality. Under identical experimental conditions, individuals may therefore strongly

differ in the degree to which they discount future options. In delay discounting tasks,

this inter-individual variability inevitably results in an unequal number of discounted trials

per subject, generating difficulties in linking delay discounting to psychophysiological and

neural correlates. Many studies have therefore focused on assessing delay discounting

adaptively. Here, we extend these approaches by developing an adaptive paradigm

which aims at inducing more comparable and homogeneous discounting frequencies

across participants on a dimensional scale.

Method: The proposed approach probabilistically links a (common) discounting function

to behavior to obtain a probabilistic model, and then exploits the model to obtain a formal

condition which defines how to construe experimental trials so as to induce any desired

discounting probability. We first infer subject-level models on behavior on a non-adaptive

delay discounting task and then use these models to generate adaptive trials designed

to evoke graded relative discounting frequencies of 0.3, 0.5, and 0.7 in each participant.

We further compare and evaluate common models in the field through out-of-sample

prediction error estimates, to iteratively improve the trial-generating model and paradigm.

Results: The developed paradigm successfully increases discounting behavior during

both reward and loss discounting. Moreover, it evokes graded relative choice frequencies

in line with model-based expectations (i.e., 0.3, 0.5, and 0.7) suggesting that we

can successfully homogenize behavior. Our model comparison analyses indicate

that hyperboloid models are superior in predicting unseen discounting behavior

to more conventional hyperbolic and exponential models. We report out-of-sample

error estimates as well as commonalities and differences between reward and loss

discounting, demonstrating for instance lower discounting rates, as well as differences

in delay perception in loss discounting.
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Conclusion: The present work proposes a model-based framework to evoke graded

responses linked to cognitive function at a single subject level. Such a framework may

be used in the future to measure cognitive functions on a dimensional rather than

dichotomous scale.

Keywords: temporal discounting, loss discounting, design optimization, reward discounting, computational

modeling, computational psychiatry

INTRODUCTION

Evaluating and deciding between alternative outcomes available
at different points in time forms one critical aspect of human
decision making (1). Outcomes which lie in the distant future are
typically devaluated in this context, a phenomenonwidely known
as temporal or delay discounting (1–3).

Devaluation of future outcomes is per se a rational choice
strategy as time comes at a cost (2, 4–6), however, some forms
of temporal discounting as well as overly steep discounting
may result in non-optimal and potentially harmful choices. For
instance, it has been argued that steeper (hyperbolic) delay
discounting may explain why individuals choose a cigarette
now over a long-term healthy life, that is, why they prefer
a smaller immediate over a delayed larger reward [(7–9); for
overviews see (10, 11)].

In line with this argument, individuals with impulsive
disorders and addiction show steeper discounting of future
rewards such as monetary gains [for overviews see (12–
15)]. Moreover, steeper discounting does not only differentiate
between addiction disorders and healthy individuals, but it
also predicts entry into drug use as well as therapy outcome
(16, 17), and has accordingly been described as a behavioral
biomarker of addiction and its treatment (18). Alterations in the
discounting of future monetary losses are less well investigated
which is surprising given that “continued use despite aversive
consequences” is a primary symptom of addiction (19). In any
case, understanding the neurobiological mechanisms underlying
both temporal reward and loss discounting is therefore of
particular clinical concern in the addiction field.

The common way to assess temporal (reward) discounting is
the intertemporal choice task (ICT), in which an individual is
presented with a series of trials and asked to choose between an
immediate smaller vs. a delayed larger reward, or between two
options delayed at different time points [(20); for overviews see
(3, 21, 22)]. Immediate choices are then taken as an indicator of

temporal discounting.
Individuals strongly vary in their tendency to discount due

to various factors such as psychiatric illness, but also gender, or
personality traits [(12, 23, 24); for overviews see (25, 26)]. In the

ICT, this inter-individual variability results in an unequal number

of discounted trials per participant, generating difficulties in

linking the temporal discount process to psychophysiological
and neural correlates. For instance, investigating the underlying
neurobiological substrates by comparing differences between
immediate and delayed choices may fall short of statistical power
given highly unbalanced trial types and the high variability

in discounting strength across individuals [e.g., (27–32); for
an overview see (21)]. At times, participants even have to
be excluded from analyses due to not discounting at all
[e.g., (31, 33–45)].

To remedy this problem, delay discounting has often
been investigated within adaptive experimental designs. Earlier
studies have focused on applying titration procedures [originally
introduced by Oldfield (46)] where reward or delay schedules
are adjusted on a trial-by-trial basis depending on the
participant’s choice history in order to find the points at
which immediate and delayed choices are displayed with
equal probability, the so called ‘indifference points’ (since at
these points the participant is indifferent toward either choice
[e.g., (7, 9, 20, 27–29, 37, 47–51)]).

More recently, several behavioral model-based approaches
have been proposed which aim at adapting the ICT trials to the
individual so as to elicit (more) comparable levels of discounting
and assess discounting more efficiently (31, 32, 36, 43, 52–
56). Ordinarily these approaches make the assumption that the
devaluation of future outcomes follows a hyperbolic curve such
that the perceived outcome values monotonically decrease with
increasing delay. Consequently, there are unique points on this
curve where the perceived value of a delayed larger outcome
and an immediate smaller outcome intersect, that is, where
immediate and delayed outcome values are equal, corresponding
to the individual’s indifference points.

While some of these approaches infer discount parameters
with a remarkably low number of trials [e.g., (36, 57)], their
primary goal lies in the efficient inference of subject-wise
discounting parameters and/or in determining inter-individual
indifference points. The latter are then used to contrast neural
activation toward “hard” as compared to “easy” adaptive
trials (i.e., trials close to vs. far from the indifference point)
(58), or to compare immediate and delayed responses with
comparable frequency at the indifference points. However,
since discounting is described by a continuous monotone
function, it may in principle be interesting to study the
neural response not only at the indifference point of a
subject at which we expect a 0.5 discounting probability
[see also (59, 60)]. By parametrically mapping the individual
discounting curves onto behavioral probabilities comparable
across subjects, we may construe experimental trials which allow
us to examine discounting behavior and its neural correlates
dimensionally. At the same time, by constructing customized
trials for a given discounting probability, we may create
more homogeneous experimental conditions on the behavioral
discounting continuum, and thereby increase statistical power
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needed to compare discounting behavior at different levels (e.g.,
low, medium, and high).

Another caveat of the model-based approaches is that they
almost exclusively rely on the hyperbolic discounting model
(with one exception (53)), and thus depend on the implicit
assumption of this model being ‘true’, or at least on it accounting
for a substantial proportion of intra-individual variability.
However, studies primarily focusing on comparing the goodness-
of-fit of different discounting functions have suggested that
this may not be the case [(53); see also (38, 49, 61–63)],
such that multiple alternatives to the hyperbolic model have
been proposed [(53); see also (5, 27, 64–69)]. Adaptive design
procedures may therefore benefit from taking into accountmodel
comparison results.

Here, we propose a generic framework which generates
individualized experimental trials based on a proposed model,
and subsequently evaluates a variety of models in order to create
an adaptive experimental (discounting) paradigm (following
the pre-registered protocol: https://doi.org/10.17605/OSF.IO/
PMWXB). In contrast to previous studies, our framework
provides a formal condition to generate trials which are expected
to elicit graded discounting probabilities on a dimensional scale.
Models are selected based on out-of-sample estimates of the
prediction error (70), such that we can report how well the tested
models perform at predicting unseen data. We also extend the
paradigm to loss discounting. The proposed framework may be
transferred to generate experimental paradigms tailored to the
assessment of other cognitive or emotional functions.

MATERIALS AND METHODS

Study Design
The designed temporal discounting paradigm went as follows:
Participants were asked to solve an ICT in two separate runs. The
ICTs consisted of both reward discounting and loss discounting
trials presented within alternating blocks (see Figure 1A). The
behavioral choices on the first run (referred to as “run A” in the
following) were used to infer subject-level behavioral discounting
models. These models were employed to generate the trials of
the second run (referred to as “run B”; see also Figure 1B).
Trials in run B were generated so as to elicit immediate
choice probabilities (and correspondingly relative discounting
frequencies) of 0.3, 0.5, and 0.7 in each participant. The
probabilities were selected to obtain three behavioral gradings
of low, medium, and high discounting probabilities. High and
low discounting probabilities reflect “easy,” while 0.5 probabilities
reflect “hard” trials in analogy to previous studies. In principle
though, the probabilities are arbitrarily tunable.

This paradigm was assessed online and optimized in a series
of experiments. After collecting data on one experiment (i.e.,
run A and run B), several alternative discounting models were
separately inferred on the two runs and their ability to predict the
behavior of the opposing run was assessed. The current model
was then used to adjust and improve trials of run A, or a superior
model was selected to update the trial-generating process for the
successive experiment (see Figure 1B).

Run A

Individuals were instructed to choose between a smaller
immediate or a larger later reward or loss. The magnitude of
the delayed rewards and losses, as well as the delay duration was
varied across trials. Each trial comprised a decision phase of up
to 10 s (otherwise self-paced), as well as visual feedback of the
selected choice and an inter-stimulus-interval of 1 s each.

In the initial experiment (exp 1), the delays were set toD= {2,
7, 30, 90, 180} days and the delayed outcomes to r2 = +/–{2, 5,
10, 20} £ (UK) for the reward and loss condition, respectively,
following frequently used delays and delayed outcomes in
previous studies (47, 71). Immediate outcomes were selected
which - according to the hyperbolic discounting model - were
expected to elicit an equal probability for immediate and delayed
choices at different hypothetical discounting parameter values
κ = {0.01, 0.1, 0.2, 0.6}, that is, to generate trials at the
corresponding indifference points (see Equation 3 for details,
where β was fixed to 1). Run A in exp 1 thus comprised 5
(delays) × 4 (delayed outcomes) × 4 (discounting parameters)
× 2 (conditions: reward and loss) = 160 trials. Reward and loss
trials were presented in blocks of 40 trials each. The trial order
within blocks was fully randomized.

Run B

After completing run A, behavioral discounting models were
inferred on the behavioral choices of each participant. We set out
with the perhaps most commonly applied discounting model, the
hyperbolic model, widely applied to study human choice in the
ICT [e.g., (8, 9, 20, 36, 37, 44, 72–74)]. The model assumes that
the values V for the delayed options a2 are discounted according
to a hyperbolic function, that is, according to

V(a2|sj) =

(

1

1 + κ · D

)

r2, (1)

while the values for the immediate options a1 correspond to the
actual outcomes, V(a1|sj) = r1 (temporal delay D = 0
at this point). Here, the state sj indexes the reward (s1) or loss
(s2) condition, κ captures the inter-individual discounting degree
(where high values indicate strong discounting), D the temporal
delay, and ri the actual outcome for the respective choice (i = 1
= immediate, i = 2 = delayed). We further refer to the factor
in front of r2 which captures the devaluation strength as the
discount factor.

While the majority of studies infer κ by fitting a sigmoid
function to the behavioral performance under this model via least
squares [see e.g., (31, 38, 43, 62, 63, 74)], we use the sigmoid to
link the discount model to immediate choice probabilities and
infer parameters via maximum likelihood estimation [see also
(36, 75–80)]. The probability of an immediate choice a1 at any
time t is given by

p
(

a1
∣

∣sj
)

=
1

1+ eβ(V(a2|sj)−V(a1|sj))
, (2)

where β indicates the tendency to exploit (β → ∞) or explore
(β → 0) choices (81), and p(a2|sj) = 1– p(a1|sj). This sigmoid
is akin to a psychometric function used in psychology to map
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(differences in) stimulus intensity on to behavioral response
probabilities, where here, we map differences in subjective values
to the probability of an immediate response. Models were
inferred (online) with constrained parameter optimization (using
optimize.minimize() from the SciPy library, https://scipy.org/
citing-scipy/, and κ ǫ [0, 10] and β ǫ [0, 100]).

The benefit of linking a sigmoid function to immediate choice
probabilities is that we can rearrange Equation 2 and explicitly
solve for immediate outcomes which elicit a predetermined
choice probability in a given participant. Defining p1: = p(a1|sj)
as the probability for the immediate choice (the one we want
to adjust), and inserting the model values (Equation 1) into
Equation 2, then rearranging for immediate outcomes r1, we
obtain the condition

r1 = V(a2|sj) +
log

(

p1
1 −p1

)

β

=

(

1

1 + κ · D

)

r2 +
log

(

p1
1 −p1

)

β
(3)

for the hyperbolic model (defined for 0 < p1 < 1). Intuitively,
at p1 = 0.5, that is, if we want to induce an equal probability
for an immediate and delayed option (to e.g., generate trials
at the indifference points), the right part of Equation 3
drops such that the immediate value (and correspondingly the
immediate reward) becomes equal to the discounted value.
Increasing/decreasing immediate choice probability above/below
0.5, on the other hand, results in increasing/decreasing the
immediate outcome. The condition in the middle further
holds for all models which only differ in their expression
of the discounted value. Note that we rearranged Equation
2 to solve for the immediate reward given an immediate
choice probability p1 (see also Figures 1C,D for an illustration
of the method’s operating principle). One may however also
apply this approach to solve for the appropriate delay (see
Supplementary Methods S1 and Supplementary Figure S1).

Trials of run B were generated using this condition (Equation
3). Three trial types were defined, namely trials which were
expected to evoke immediate choice probabilities of p1 =

{0.3, 0.5, 0.7}, corresponding to trials in which we expected
participants to mainly choose the delayed option (with p1 = 0.3),
choose both options with equal probability (p1 = 0.5), or mainly
choose the immediate option (with p1 = 0.7). Note that in the
reward task p1 also corresponds to the discounting probability
(as the immediate choice corresponds to the discounted choice)
while for loss, the discounting probability is equal to p2 = 1 – p1
(as the delayed choice corresponds to the discounted choice).

For each choice probability, each delay D, and each delayed
outcome r2 (as used in run A), immediate outcomes were thus
determined according to the inferred subject specific model
parameters κ and β . The initial run B thus comprised 5 (delays)×
4 (delayed outcomes) × 3 (choice probabilities) × 2 (condition:
reward and loss)= 120 trials.

Note that a few parameter constellations could result
in atypical trials with (1) negative immediate reward
(corresponding to losses in reward trials) or positive immediate

loss (corresponding to rewards in loss trials), (2) equal immediate
and delayed reward/loss, or (3) larger immediate compared to
delayed reward or smaller immediate compared to delayed
loss. To avoid these trials, immediate outcomes were adjusted
by iteratively increasing/ decreasing the delay durations by 1
until these cases were dissolved, or the minimum or maximum
delay was reached. If still not dissolved, negative immediate
rewards or positive immediate losses were set to 1 or -1 penny,
while immediate rewards/losses which were equal to delayed
rewards/losses were reduced/increased by 1 penny, respectively.
All choice outcomes were hypothetical.

For the successive experiments, delays, outcomes, and
discounting models were adapted to optimize the paradigm in
agreement with the interim results (see section “RESULTS”).

Sample
Healthy participants were recruited to participate in the
online study via the Prolific website (https://www.prolific.co/).
Eligibility criteria included age 18–65 and current residency in
the United Kingdom (UK). Participants received £7.50 per hour
as compensation for study participation. In total, 200 participants
took part in the study (see Supplementary Table S1). Data were
collected in batches of 50 individuals each. After each batch,
the developed paradigm was evaluated and adjusted in line with
the interim results and the proposed framework (see Figure 1B).
Specifically, batch 1 and 2 were combined into one experiment
(exp 1, N = 100), batch 3 represents the second experiment (exp
2, N = 50) and batch 4 represents the third experiment (exp 3, N
= 50). Individuals were excluded from further analyses in case of
not completing the first run, not completing the second run, or
not responding to more than 10% of the trials during each run.

Data Collection and Online Setup
The online study was programmed in JavaScript using the open-
source package “jsPsych” (82) and was hosted on a custom
virtual server using a Linux-Apache-PHP-MySQL stack (see
Supplementary Figure S2). Model parameter inference and trial
generation of run B was written in Python. All code needed for
the setup and execution of the study can be found here: https://
github.com/MathieuPinger/discounting-online.

Participants entered the study through a link on the Prolific
website. Participant IDs were randomly generated for data
storage. Additionally, a separate password-protected database
associated each participant with a Prolific internal ID to ensure
a study completion checkup.

After completing the consent form, participants filled
out sociodemographic information (age, gender, education,
employment, country of current residency). Subsequently, run
A was presented, after which participants completed the alcohol
use disorder identification questionnaire (AUDIT; (83)) and the
short version of the Barratt-Impulsiveness-Scale (BIS-15; (84)).
During this time, subject-level behavioral models were inferred
on data from run A, and used to generate trials for run B which
was presented immediately after the questionnaires.

The study was approved by the ethics committee
of the Medical Faculty Mannheim, University of
Heidelberg (2019-633N).
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FIGURE 1 | Illustration of the intertemporal choice task (ICT) and proposed paradigm adaptation framework. (A) Schematic illustration of the ICT. Subjects were faced

with a series of binary choice trials between an immediate and a delayed outcome. The absolute value of the delayed outcome was always higher. Reward and loss

trials were presented within alternating blocks of 40 trials each. (B) Paradigm development framework. Subjects perform an ICT with equal trials across subjects (run

A). The task is used to infer subject-level parameters based on a proposed underlying behavioral model. These parameters are used to generate individualized trials

designed to elicit relative immediate choice frequencies of 0.3, 0.5, and 0.7 of run B (schematically displayed as red, green, and blue, respectively), and to generate

behavioral predictions along with other common discounting models. By comparing observed and predicted behavior in run B, the task underlying model is either

updated, or trials of run A are optimized to improve parameter inference. The procedure may be repeated until no further improvement is observed. (C, D) Illustration

of method’s operating principle. (C) Immediate choice probability p(aimm) (cf. Equation 2) as a function of the difference between immediate (V imm ) and delayed (Vdel)

value for β = 0.1 (red), and β = 0.4 (blue). The indifference point where V imm = Vdel is at 0. If V imm > / < Vdel, immediate choice probability is below/above 0.5. β

regulates the steepness of the curve and thus the sensitivity toward differences in values. Lower β values require larger value differences (x-axis) to obtain a

comparable probability (y-axis). (D) Discounted value (y-axis) for different delays (x-axis) for two hypothetical discount parameter values (κ = 0.05 in gray and κ =

0.005 in black). The colored dots represent the method’s selected immediate rewards ( = V imm ) at a given delay for the different induced immediate choice

probabilities 0.3 (red), 0.5 (orange), and 0.7 (yellow). The distances between immediate values (colored dots) and delayed values (discounting curve) is constant

across all delays to ensure equally induced probabilities across delays (see graph (C)). This also indicates that for subjects with different κ’s, the reward and value

ratios will vary. The left graph depicts selected rewards for a hypothetical β = 0.1 and the right graph for β = 0.4. While β regulates discounted value of the delayed

reward Vdel, κ regulates the distance of the selected immediate reward around Vdel with higher β resulting in smaller differences, making the differentiation between

the two more difficult (that is, requiring higher sensitivity).

Data Analysis
Behavioral Models and Model Parameters

The initial experiment was conducted with the most
frequently used delay discounting model in human
research, the hyperbolic discounting model (see Equation
1). The model was compared with several other proposed
models in the field. These models differ in the assumption
of how an individual devaluates the delayed outcome
(see Equation 1). For completeness, the compared
models include

• The hyperbolic model (20, 85), where V(a2|sj) =
(

1
1 + κ · D

)

r2, with κ ǫ [0,∞).

• The exponential model (68), where V(a2|sj) = κDr2, with
κ ǫ [0, 1], implying that the perceived value of a delayed
outcome is discounted exponentially scaled by the individual
discounting rate κ .

• The quasi-hyperbolic model [also known as the beta-delta
model; (5, 69)], where V(a2|sj) = γ κDr2, for D > 0, with
γ , κ ǫ [0, 1], where the exponential discounting of the delayed
outcome is additionally modulated by a second linear discount
parameter γ .

• The hyperboloid model (27, 65), where V(a2|sj) =
1

(1 + κ · D)s
r2, with κ ǫ [0, ∞) and s ǫ [0, 1], similar to the

hyperbolic discountingmodel, only that the discounting factor
is scaled by an additional parameter s.
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• The modified hyperboloid model (20, 86), where V(a2|sj) =
1

(1 + κ · Ds)
r2, with κ ǫ [0, ∞) and s ǫ [0, 1], which is a

slight modification of the hyperboloid model, suggesting that s
solely scales the delay and thus may account for differences in
perceived time.

• The double-exponential model (87), where V(a2|sj) =

(wκ1
D + (1−w)κ2

D)r2, withw, κ iǫ [0, 1], which is inspired by
the evidence that choices result from the competition between
two neurobiological systems (referred to as valuation and
control) scaled by their own decay rates (κ1 and κ2), each
contributing by a factor w and 1 – w, respectively, and,

• The constant-sensitivity model (64), where V(a2|sj) =

exp(−( κ · D)δ) r2, with κ , δ > 0. This model accounts
for decision heuristics by including the κ parameter as an
indicator of impatience, and δ reflecting time sensitivity.
Note that this model differs from model (3) in terms of
parameter constraints.

Models were compared by inferring each model on each
experimental run (A and B) and condition (reward and loss) of
each participant and using the inferred parameters to assess the
out-of-sample prediction error (PE) on the respective contrary
run (i.e., predicting behavior in B when inferring models on A
and vice versa). The PE here was defined as 1–p̂j, where p̂j =
1
T

∑T
t p(at|sj), i.e., is defined as the average over the predicted

probabilities of observed choices per condition j. For simpler
interpretability, only p̂j is reported.

Note that the predicted probability will depend on trial
difficulty where more difficult choices (i.e., trials closer to the
indifference point of a subject), should by definition be predicted
with a lower probability. We thus do not expect an average
predicted probability close to 1 in either run. Particularly in
run B, where by condition we generate trials eliciting immediate
choice probabilities of 0.3, 0.5, and 0.7, the expected prediction
should lie around (0.7 + 0.5 + 0.7)/3 = 0.63 (see also
Supplementary Figure S5 right), and may slightly deviate due to
slight trail adjustments (see Section Run B) or to using a model
not used for trial generation.

Behavioral Variables and Data Analysis

Temporal discounting was measured by assessing the frequency
of discounted choices for each run, each condition, and each
manipulated (immediate choice) probability (cf. p1), as well as
the median reaction time (RT) for these conditions. Individuals
which discounted in < 5% of all trials were defined as “non-
discounters.”

We further assessed subjective impulsivity by averaging across
all items of the BIS-15 (i.e., BIS-total), as well as across items
related to the three sub-scales, namely attentional impulsivity
(i.e., the difficulties to focus attention or concentrate), motor
impulsivity (i.e., acting without thinking), and non-planning
impulsivity (i.e., lack of future orientation), respectively (84). We
also assessed abusive or harmful alcohol consumption by the
alcohol use disorders identification test (AUDIT; (83)).

Model parameters and behavioral variables such as
discounting parameters, choice frequencies, as well as (absolute)
deviations between observed and expected choice frequencies,

were compared via t-tests for paired or unpaired samples (i.e.,
for comparisons between conditions and runs vs. comparisons
between experiments; please note, absolute deviations were used
when comparing experiments) in case of normally distributed
variables, or nonparametric Wilcoxon signed-rank tests for
paired and Wilcoxon rank-sum tests for unpaired samples
in case of normality violation. Variables were correlated via
Pearson’s or Spearman’s correlation coefficient, respectively. The
number of discounters vs. non-discounters across experiments
was compared via Chi-square tests for equal and Fisher’s exact
test for unequal sample sizes. Statistical significance was set to
p < 0.05 (two-tailed) for all tests. Individuals repeating either
option in more than 95% of all trials during run A, making it
difficult to obtain valid parameter estimates, were removed from
analyses on run B where deemed necessary (explicitly mentioned
in the Results Section). Individuals with extreme discounting
parameters κ > 2 were removed from all analyses related to this
parameter.

RESULTS

Experiment 1
Two separate batches of 50 individuals each were collected for
exp 1. After collecting the first sample (N = 50), we observed a
minor bug in the paradigm code which resulted in the generation
of run B trials with equal immediate and delayed outcomes. These
trials occurred in < 1.2% of all trials (around 2–3 trials in 24
participants). We thus immediately collected a second sample (N
= 50) with this bug fixed and removed the afore-mentioned trials
from the first sample in the behavioral measures analyses. Two
individuals were excluded from further analyses since they had>

30% missing values in one condition. Exp 1 thus included N =

98 individuals.
As reported in multiple other studies [e.g., 31, 33–35, 38–40],

we observed a high percentage of individuals, namely 58%, which
showed no temporal discounting in at least one condition of the
initial run A (see Figures 2A,B). This was particularly evident
for the loss discounting condition which yielded 53% of non-
discounters (see Figure 2B; non-discounters being defined as
individuals which discounted in < 5% of all trials, cf. Behavioral
Variables and Data Analysis).

After adapting the experimental trials to the individual
participants in run B, we observed a considerable reduction
in non-discounters (from 26 to 13% in the reward, and from
53 to 42% in the loss condition), and a significant increase
in the frequency of discounted choices in both reward (Z =

5.06, p < 0.001; see Figure 2A), and loss (Z = 4.85, p <

0.001; see Figure 2B) conditions. This was accompanied by
a significant increase in the inferred discount parameters κ ,
signaling higher discounting (reward: Z = 2.83, p = 0.005, loss:
Z = 4.57, p < 0.001).

The observed choice frequencies in run B, moreover, aligned
with the experimentally manipulated probabilities. That is, the
frequency of immediate choices increased in response to trials
with p1 = 0.7 compared to p1 = 0.5 (reward: Z = 5.43, p < 0.001;
loss: Z = 4.91, p < 0.001), and to trials with p1 = 0.5 to p1 =

0.3 (reward: Z = 6.21, p < 0.001; loss: Z = 3.72, p < 0.001).
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FIGURE 2 | Results of experiment 1. (A) Left: Percentage of discounted choices in run A (gray) and run B (magenta) for reward condition. Right: Histograms over

relative frequency of immediate choices in run A (gray) and run B (magenta) for reward condition. Asterisks indicate significant differences. (B) Same as A for loss

condition with run B displayed in green. (C) Mean and standard deviation of observed relative frequency of immediate choices for the experimentally evoked

probabilities p1 = {0.3, 0.5, 0.7} (x-axis) in run B (individuals with >95% or <5% immediate choices were removed, N = 28 or 29% in reward, N = 52 or 53% in loss

condition). (D) Mean and standard deviation of median reaction time (RT; y-axis) for p1 = {0.3, 0.5, 0.7.} trials (x-axis) in run B for reward (magenta) and loss (green)

conditions. (E) Histograms over discounting parameter κ of the hyperboloid model for both loss and reward conditions, displayed at different resolutions and bin

widths.

However, the observed choice frequencies deviated significantly
from the model expectations w.r.t. all three trial types in the
loss condition (p1 = 0.3: Z = 6.52, p < 0.001; p1 = 0.5: Z =

5.63, p < 0.001; p1 = 0.7: Z = 4.27, p < 0.001), as well as for
p1 = 0.7 in the reward condition (Z = 3.35, p < 0.001; other
comparisons p > 0.05). This was somewhat due to individuals
who consistently chose only one option showing no behavioral
variation in general (concerningN = 28 in the reward andN = 52
in the loss condition). After removing these individuals from the
analysis, the mean of the choice frequency distributions moved
closer to the model expectations (see Figure 2C), although still
significantly deviating for p1 = 0.7 in the reward (Z = 3.35, p <

0.001) and for p1 = 0.3 in the loss condition (Z = 2.21, p= 0.027;
all other p’s> 0.05).We did not observe an increase in RT toward
p1 = 0.5 trials (defined as “hard” trials in the field) as compared to
the other two trial types (amounting to “easy” trials here; reward:
p’s > 0.329; loss: p’s > 0.290; see also Figure 2D).

In conclusion, the first experiment indicated that by applying
the condition in Equation 3, we were able to reduce the number
of non-discounters and evoke higher discounting frequencies.
We could also show that for individuals which generally showed
behavioral variation in run A, the observed immediate choice
frequencies on average largely centered around the model
expectations in run B. However, the standard deviation of these
choice frequencies was rather high. Also, RT’s did not reflect a
clear separation between ‘hard’ and ‘easy’ trials (see Figure 2D).

Two possible (non-exclusive) explanations may account for
these findings. First, the hyperbolic model may not have
captured the entire systematic data variation, such that the
model predictions and thus the generated model-based (run
B) trials were somewhat biased. In fact, the hyperbolic model

performed worse in predicting (out-of-sample) behavior than
several other tested models (see Supplementary Figure S3),
achieving a prediction of only 0.55 for both reward and loss (as
compared to predictions > 0.7, see Supplementary Figure S3).
Second, going one step back, trials in run A may not have evoked
enough behavioral variability to infer valid model parameters
required to generate subject specific trials. Since the percentage of
discounted choices during run A was rather low for both reward
and loss conditions (Figures 2A,B), and we obtained a higher
behavioral model agreement after excluding individuals with
low behavioral variability from analysis (Figure 2C), the second
explanation seemed rather likely. A poor (hyperbolic) model fit
could therefore also be due to a poor selection of run A trials.
As an initial step to further improve the paradigm, we thus first
focused on improving trials of run A to promote valid parameter
inference, before altering the underlying trial-generating model.

Modification

Trials of run A were initially generated by using common delays
and delayed outcomes found in the literature and finding the
indifference points to these values, given a set of hypothetical
discounting parameters κ (cf. Section Run A). To improve this
run, we now focused on generating trials which more closely
matched the actually observed discounting parameters and
behavior in run B (since we observed more discounting in this
run). We observed a bimodal κ distribution, with the majority
of individuals being characterized by κ ’s ranging between 2.6
× 10−11 and 3, and a few above 7 (see Figure 2E left). The
dominance of the left mode indicates that most participants
were characterized by rather low discounting rates (see also
Figures 2A,B), and, in particular, far lower than the ones used for
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FIGURE 3 | Results of experiment 2. (A) Percentage of discounted choices in run A for experiment (exp) 1 and exp 2 for reward (left) and loss (right) discounting.

Asterisks indicate significant differences. (B) Empirical distribution of the relative frequency of immediate choices for reward (left) and loss (right) conditions in run A of

exp 1 (gray) and exp 2 (colors). (C) Relative frequency of immediate choices (y-axis) in run B of exp 2 as a function of experimentally manipulated probabilities (x-axis)

for reward (magenta) and loss (green) conditions (individuals without behavioral variability were removed, N = 2 for reward, N = 14 for loss condition). (D) Empirical

distributions of the relative frequency of immediate choices in run B for trials with immediate choice probability 0.3 (top), 0.5 (middle) and 0.7 (bottom), as also

indicated by the gray line. Reward condition is displayed left, loss right, exp 1 in gray and exp 2 in color. (E) Average over median reaction times (RT) for the three

experimentally manipulated immediate choice probabilities for reward (magenta) and loss (green) conditions. (F) Average predicted (out-of-sample) probability of

observed responses p̂j (y-axis) for reward and loss conditions (x-axis) for different models. (G) Inferred scaling parameters s of the modified hyperboloid model for

reward and loss discounting conditions.

the initial run generation (cf. Run A). Run A was thus modified
to better represent the left mode of the actually observed κ

distribution (see Figure 2E for a high resolution of the true κ

distribution). Around half the sample was characterized by a κ

< 0.2 (reward: N = 67; loss: N = 62). Of these, 20 participants
in the reward and 16 participants in the loss condition exhibited
κ ’s between 0.01 and 0.2, 17 participants in the reward and
16 participants in the loss condition ranged between 0.001 and
0.01, and 20 participants in the reward and 21 participants in
the loss condition were characterized by κ ’s < 0.001 (among
which 10 in the reward and 16 participants in the loss condition
were characterized by κ ’s < 0.00001; see Figure 2E). To cover
this range of the parameter distribution, we updated the set of
hypothetical discounting parameters in run A (cf. Section Run
A) to κ = {0.00001, 0.001, 0.01, 0.6}.

We further exchanged the shortest delay (2 days delay) with
a long delay (365 days delay) as longer delays additionally
encourage discounting (cf. Equation 3) such that the new set of
delays was set to D = {7, 30, 90, 180, 365}. Lastly, we removed
the lowest delayed outcome and replaced it by a higher delayed
outcome such that the new set of delayed rewards and losses was
r2 =+/–{5, 10, 20, 50}£.

Experiment 2
Fifty individuals completed exp 2 with altered trials of run
A. In run A of exp 2, compared to exp 1, we observed
a considerably lower percentage of non-discounters in the
reward condition (N = 2, that is, a drop from 26% to 4%;
OR = 8.67, p < 0.001), as well as in the loss condition (N
= 14, a drop from 53% to 28%; OR = 2.91, p = 0.005)
(see also Figure 3A). The average percentage of discounted
choices also significantly increased in run A of exp 2 compared
with run A of exp 1, for both reward and loss conditions
(reward: Z = 6.58, p < 0.001; loss: Z = 3.93, p < 0.001; see
Figures 3A,B). In fact, for the reward condition it amounted to
51%, renderingmore optimal conditions for parameter inference.
In the loss task, this percentage remained lower, however, with
around 26%. In both conditions, we furthermore observed a
significant increase in RT compared with exp 1 (reward Z
= 4.47, p < 0.001; loss: Z = 4.26, p < 0.001), suggesting
that choices became more difficult, closer to the indifference
points of each participant. We conclude that by model based
adaptation of run A, we were able to reduce the number
of non-discounters and increase behavioral variability within
participants (see also Figures 3A,B).
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FIGURE 4 | Results of experiment 3. (A) Relative number of non-discounter in run A across experiments for reward (left) and loss (right) conditions. (B) Relative

frequency of immediate choices (y-axis) in run B of exp 3 as a function of experimentally manipulated probabilities (x-axis) for reward (magenta) and loss (green)

conditions (individuals without behavioral variability were removed, N = 0 for reward, N = 10 for loss condition). (C) Empirical distributions of the relative frequency of

immediate choices in run B for trials with immediate choice probability 0.3 (top), 0.5 (middle) and 0.7 (bottom), as also indicated by the gray line. Reward condition is

displayed left, loss right, exp 2 in gray and exp 3 in color. (D) Average relative frequencies of immediate choices per subject across the three experimentally

manipulated immediate choice probabilities. (E) Average over median reaction times (RT) for the three experimentally manipulated immediate choice probabilities for

reward (magenta) and loss (green) conditions. (F) Average predicted (out-of-sample) probability of observed responses p̂j (y-axis) for reward and loss conditions

(x-axis) for different models averaged over run A and B. (G) Hypothetical discounting curves in the modified hyperboloid model for κ = 0.01, r1 = 10, and different

values of scaling parameter s.

Regarding run B, the observed immediate choice frequencies
in the reward condition centered around the model expectations
(see Figure 3C; reward: p1 = 0.3: Z = 0.50, p = 0.615; p1 = 0.5:
Z = 1.46, p = 0.145; p1 = 0.7: Z = 0.09, p = 0.923), while still
significantly deviating in the loss condition (p1 = 0.3: Z = 4.93,
p < 0.001; p1 = 0.5: Z = 4.55, p < 0.001; p1 = 0.7: Z = 3.22,
p = 0.001). Nonetheless, for both reward and loss conditions,
the absolute deviations between expected and observed relative
immediate choice frequencies were lower in exp 2 compared with
exp 1 (statistically significant for reward: p1 = 0.3: Z = 2.64, p =
0.008; p1 = 0.5: Z = 1.67, p = 0.096; p1 = 0.7: Z = 2.65, p =

0.008; and loss: p1 = 0.5: Z = 2.24, p = 0.025; see Figure 3D),
suggesting an improvement in the proposed paradigm. However,
many non-discounters remained in the loss condition of run B
(N = 14, Figure 3D).

Given that run A now rendered better conditions for
parameter inference, we next focused on evaluating and
improving the paradigm underlying model. For this, we inferred
several discounting models suggested by the literature on run
A and run B separately (cf. Section Behavioral Models and
Model Parameters) and assessed their ability to predict the
behavior in the opposing run, that is, inferring parameters

on run A and predicting behavior in run B and vice versa.
The two experimental runs thus allowed us to assess an
estimate of the out-of-sample PE which is less biased and
preferred over in-sample estimates (70, 88), commonly used
in the field [e.g., (38, 61, 89)]. Figure 3F shows the model
comparison results averaged over predictions in both runs. The
hyperboloid and the modified hyperboloid model outperformed
all other models in both reward and loss conditions, with
a slight preference for the modified hyperboloid model (20,
86). On average, the modified hyperboloid model predicted
responses successfully with 0.71 probability in the reward, and
0.72 probability in the loss condition. In contrast, the most
commonly used hyperbolic and exponential models performed
comparatively poorly (exponential model: p̂reward = 0.64, loss
p̂loss = 0.58, hyperbolic model: p̂reward = 0.61, p̂loss = 0.57;
see also Figure 3F and Supplementary Figure S6). These results
held true when evaluating a weighted PE where the response
probability was averaged over predictions for immediate and
delayed choices (ensuring that predictions were not only good
in predicting a dominant response, sometimes referred to as
the majority class, see Supplementary Figure S4). Note that
the hyperboloid models also outperformed the exponential
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FIGURE 5 | Cross-experimental results. (A) Correlations of the percentage of immediate choices between run A and run B for the reward condition (1st plot), and the

loss condition (2nd plot), and between reward and loss conditions within run A (3rd plot), and run B (4th plot). (B) Same as in (A) only with the discount factor

evaluated at delay D = 30 for the hyperboloid model. (C) Same as in (B) for the hyperbolic model.

and hyperbolic models on predicting the data of exp 1
(see Supplementary Figure S3).

Evaluating the parameters of the modified hyperboloid model
(cf. Behavioral Models and Model Parameters) also revealed
some interesting insights into behavior. The additional scaling
parameter s distinguishing this model was extremely reliable,
observed in terms of a high correlation in s between runs (for
reward: r = 0.44, p = 0.001; for loss: r = 0.44, p = 0.001) and
conditions (run A: r= 0.26, p= 0.064; run B: r= 0.24, p= 0.091),
and pointing toward a trait like scaling of delay. Apart from that,
s was higher in the reward compared with the loss condition (Z
= 3.43, p < 0.001; see Figure 3G).

Modification

Following these results, we updated the paradigm to now
generate trials of run B according to the modified hyperboloid
model (20, 86). The lower values in the scaling parameter s
observed for the loss condition effectively reduce discounting (by
shrinking the delay duration). To further encourage discounting
in the loss task, we therefore also exchanged the shortest delay (7
days delay) with a long delay (3 years) in the loss condition only.
The new set of delays for the loss condition was set to D = {30,
90, 180, 365, 1095}.

Experiment 3
Fifty individuals completed exp 3 with altered trials of run A
in the loss condition and an altered trial-generating discounting

model for run B (now using the modified hyperboloid
model).

In run A, we observed a slight reduction in the number of
non-discounters compared with exp 2, with 0 non-discounters
observed in the reward and 10 non-discounters observed in the
loss condition, although this was statistically not significant (p
> 0.875; see Figure 4A). The average frequency of discounted
choices did also not significantly differ in run A of exp 2
compared with run A of exp 3, neither for the reward (Z = 1.08,
p = 0.277), nor for the loss condition (Z = 0.33, p = 0.740). We
observed an average of 48% discounted choices in the reward and
27% in the loss condition in exp 3.

In run B, we also observed a slight, but statistically not
significant reduction in the number of non-discounters (reward:
N = 2 or 4%; loss: N = 12 or 24%). The observed immediate
choice frequencies again increased with increasing model
expectations (i.e., from 0.3 to 0.5, and from 0.5 to 0.7) both on
average (all p’s < 0.001), as well as (largely) on a single subject
level (see Figures 4B,D). For the reward condition, the observed
frequencies seemed to moreover center around the model-based
expectations (see Figure 4B; p1 = 0.3: Z = 0.88, p = 0.378; p1 =
0.5: Z = 1.23, p = 0.221; p1 = 0.7: Z = 0.37, p = 0.712), while
still deviating significantly for the loss condition (see Figure 4B;
p1 = 0.3: Z = 4.27, p < 0.001; p1 = 0.5: Z = 3.60, p < 0.001;
p1 = 0.7: Z = 3.31, p < 0.001). The absolute deviations between
observed and expected immediate choice frequencies were again
lower than those in exp 1, indicating choice frequencies were
more consistent with model expectations (statistically verifiable
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for reward p1 = 0.7: Z= 2.67, p= 0.008; loss p1 = 0.3: Z= 2.05, p
= 0.040; p1 = 0.5: Z= 1.89, p= 0.059), but remained comparable
to those in exp 2 (that is, no significant differences were observed,
p’s> 0.2; see also Figure 4C). In contrast to exp 1 and 2, RTs were
however more in line with theoretical expectations by which RT
increases toward “harder” trials (see Figure 4E and Figure 3E in
comparison). Individuals responded slower to reward trials close
to the indifference point (i.e., p1 = 0.5) as compared to trials
far from the indifference point (p1 = 0.7: Z = 3.20, p = 0.001;
p1 = 0.3: Z = 1.70, p = 0.089). Although this was statistically
not verifiable for the loss condition (p’s > 0.237), a qualitatively
consistent picture was observed (see Figure 4E).

The out-of-sample based model comparison analysis
suggested once more that the hyperboloid models outperformed
all other tested models in both the reward and loss conditions
(see Figure 4F; hyperboloid model p̂reward = 0.64 and p̂loss =
0.68, modified hyperboloid model p̂reward = 0.65 and p̂loss =

0.68). Similar to exp 2, the hyperbolic and exponential models
performed rather poorly, particularly in the loss condition
(hyperbolic model p̂reward = 0.58 and p̂losst = 0.53, exponential
model p̂reward = 0.62 and p̂loss = 0.52). Once more, the scaling
parameter s was lower in the loss compared with reward
condition in run B (Z = 3.17, p= 0.002).

Joint Analysis of Experiments 1, 2, and 3
Lastly, we investigated correlations between behavioral variables
and model parameters across all three experiments to gain a
deeper understanding of involved mechanisms during reward
and loss discounting. First of all, there was amoderate correlation
between the immediate choice frequencies of run A and B
(reward: r = 0.24, p = 0.001, loss: r = 0.42, p < 0.001,
see Figure 5A) suggesting at least some reliability in delay
discounting processes as assessed in terms of choice frequency.
Second, there was a considerable (expected negative) correlation
between loss and reward (run A: r = −0.59, p < 0.001, run B: r
=−0.22, p= 0.002, see Figure 5A), suggesting commonalities in
the processing of reward and loss discounting.

In agreement with these results, the discount factor of the
modified hyperboloid model (evaluated at delay D = 30) was
highly correlated across runs and conditions (see Figure 5B). We
observed a considerable correlation between run A and run B
(reward: r= 0.6, p< 0.001; loss: r= 0.65, p< 0.001), and between
reward and loss conditions (run A: r= 0.53, p< 0.001, run B: r=
0.35, p< 0.001). The correlations assessed on the discount factors
were even higher than when assessed on the choice frequencies
(Z’s> 3.24, p’s< 0.001). Discounting parameters κ were similarly
correlated across runs (reward: r= 0.43, p< 0.001; loss: r= 0.48,
p < 0.001) and conditions (run A: r = 0.37, p < 0.001; run B: r
= 0.46, p < 0.001), although significantly less so (Z’s > 1.97, p’s
< 0.024), with exception of the correlation between conditions
during run B (Z = 1.21, p= 0.112).

In contrast, the discount factor of the hyperbolic model
(evaluated at delayD= 30) did not correlate across runs (reward:
r = 0.03, p = 0.698; loss: r = 0, p = 0.991, see Figure 5C).
It correlated moderately between reward and loss conditions
of run B (r = 0.24, p < 0.001), but not run A (r = 0.03, p
= 0.633). The correlations observed for the hyperbolic model

were therefore also significantly lower than the ones observed for
the hyperboloid model (Z’s > 3.33, p’s < 0.001). A qualitatively
similar picture held true when evaluating the discount parameter
κ which is proportional to the discount factor in the hyperbolic
model. These results suggest that cognitive processes related to
delay discounting were only captured reliably in the superior
model, that is, the model with superior prediction performance.
Note that the scaling parameter s of the hyperboloid model was
also reliable, that is, correlated across reward and loss conditions
(run A: r= 0.19, p= 0.006, run B: r= 0.25, p< 0.001), and across
runs (reward: r = 0.31, p < 0.001; loss: r = 0.26, p < 0.001).

We also observed several differences between reward and
loss conditions. The discount parameters κ and the scaling
parameters s, were higher in the reward compared with the loss
condition (κ run A: Z = 5.72, p < 0.001; κ run B: Z = 2.71, p <

0.001; s run A: Z = 1.99, p= 0.046; s run B: Z = 5.53, p < 0.001),
while the discount factor was lower in the reward condition (run
A: Z = 7.05, p < 0.001; run B: Z = 5.53, p < 0.001). Note though
that despite the parameter constraints on scaling parameter s, we
did observe moderate correlations between s and κ in the reward
condition (run A: r = −0.31, p < 0.001; run B: r = −0.31, p <

0.001), suggesting slight issues with parameter identifiability.
W.r.t. subjective reports, we did not observe any associations

betweenmodel parameters and subjective reported impulsivity or
alcohol use behavior (p’s > 0.147). We did also not observe any
correlations between subjective reports and the discount factors
of the hyperbolic model (all p’s > 0.105). Exploratory analyses
revealed a weak negative association between the loss discounting
factor of the modified hyperboloid model (evaluated at D = 30)
in run A and impulsivity (BIS-total: r = −0.15, p = 0.037), and
between the loss discounting factor of the modified hyperboloid
model in run B and alcohol use behavior (AUDIT-total: r =

−0.14, p= 0.044; see Supplementary Figure S7).

DISCUSSION

A long-standing problem with the experimental measurement
of cognitive functions based on group statistics is that an
identical experimental trial presented to different subjects may
elicit very different levels of functioning due to high inter-
individual variability [(90–94); see also (95)]. This aggravates
the reliable measurement of cognitive mechanisms and limits
the comparability of results between subjects. For example, the
same aversive stimulus in a fear conditioning paradigm can lead
to very different degrees of fear association across individuals
(93, 94). To remedy this problem, a common approach is to
adapt experimental conditions such as stimulus intensities to the
subject, making the experimental condition more comparable
and less heterogenous across individuals (94, 96). Similarly, in
delay discounting, the extent of discounting behavior is known
to vary widely between subjects [(97, 98); for review see (25,
26)]. In an ICT, adjusted experimental settings for delays and
outcome values per subject are therefore required to map a
similar magnitude of discounting between subjects (31, 32, 36, 43,
53, 54), whereby poorly adaptive or non-adaptive experimental
designs may even lead to subjects entirely not discounting. This

Frontiers in Psychiatry | www.frontiersin.org 11 June 2022 | Volume 13 | Article 846119

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Thome et al. Model-Based Induction of Homogeneous Behavior

may result in the exclusion of these subjects from further analyses
[similar to conditioning paradigms (94)]. Here, we attempt
to address this problem and propose a general approach to
tailor experimental trials to the single subject. The underlying
idea of this approach is that by modeling behavior as being
probabilistically generated by the experiment and the cognitive
function of interest, we can use the model to alter experimental
components so as to align behavior. Besides reducing variance
between subjects within an experimental condition, the proposed
approach offers an additional advantage to current adaptive
designs. It allows to generate trials associated with the entire
range of discounting probabilities thus enabling to measure
graded levels of discounting behavior. Both the model and the
experimental components are optimized in an iterative process.
We apply the proposed approach here to reward and loss
delay discounting.

Our experimental paradigm is divided into two runs, run A
and run B, which both consist of an identically structured delay
discounting task which differs only in the prompted outcomes
and delays (but could also be extended to other tasks and
processes). From the behavioral results of run A, we infer subject-
level models that probabilistically explain each participant’s
behavior. The modeled behavioral probabilities are then used to
design (that is, solve for) experimental trials of run B to elicit
discounting behavior with a predetermined probability. Here, we
chose trials that, according to the applied model, should elicit a
probability for the discounted option of 0.3, 0.5, and 0.7, although
the approach principally allows for an arbitrary grading. The
behavior in run B was then in turn used to (i) optimize run
A based on the current model and (ii) evaluate and adjust the
model-by-model comparison analyses. We tested the protocol in
three sequential experiments.

Overall, we were able to significantly reduce the number of
individuals showing no behavioral discounting. In addition, we
were able to largely induce graded levels of discounting behavior
on a single subject level. That is, the observed frequency of
immediate choices in both the reward and the loss condition
increased within participants with increasing immediate choice
probability predicted by the behavioral model. In the reward task,
this choice frequency was not only graded, but on average also
consistent with the specific model expectation.

The match between model expectation and behavior
improved across the successive experiments. In the first
experiment we observed that the participants’ behavior in run
B was graded with respect to the predetermined probabilities,
although the actual deviation from these probabilities was rather
high.We also observed a high number of non-discounters in both
conditions. By model-based adjustment of run A trials, we were
able to drastically reduce this number in experiment 2, an issue
commonly reported in the delay discounting literature, whereby
studies report various rates of non-systematic discounting
behavior ranging from 7% up to 50% of the investigated samples
(31, 35–45, 89). In addition, the adjustments led to higher
behavioral variability within participants, rendering better
conditions to validly infer model parameters in run A. This in
turn resulted in lower deviations between observed behavior
and model predictions in run B of exp 2. Our procedure

therefore successfully generated graded response conditions with
lower variance, that is, higher behavioral homogeneity within
conditions of exp 2.

After systematic model comparison analyses, we then
additionally adjusted the underlying trial-generating model in
the 3rd (and last) experiment. Again, we observed significantly
smaller behavioral deviations from model predictions within run
B of exp 3 compared to run B of exp 1. The deviation was
comparable to that of exp 2. The total number of non-discounters
further decreased on a descriptive level, although this was not
confirmed statistically. In contrast to exp 2 (see Figure 3E),
reaction times of exp 3 (see Figure 4E), however, were more in
line with theoretical expectations by which reaction times close to
the indifference point, that is, close to difficult choices, are slower
compared with easy choices.

Interestingly, one of the most commonly applied models, the
hyperbolic model, performed among the worst in predicting out-
of-sample behavior (see also Supplementary Figure S6). With
a correct prediction probability of on average p̂reward = 0.57
and p̂loss = 0.55 (evaluated across all runs and experiments,
see Supplementary Figure S5 left), it performed only marginally
above chance level. Overall, the hyperboloid models provided
the highest prediction probability, averaged across experiments.
The modified hyperboloid model was able to correctly predict
behavior on average with 0.68 probability in the reward and
0.71 in the loss condition (see Supplementary Figure S5 left).
It particularly excelled at predicting behavior in run A while
staying close to the theoretical expectation in run B (see
Supplementary Figure S5 right), as observed for several other
models as well.

As most studies in the field do not report out-of-sample
prediction errors (9, 21, 38, 41, 44, 49, 61, 63, 72, 74, 99–101),
or report predicted log-likelihood (40), or predicted accuracies
(54), which may be far above the predicted probabilities reported
here, and since the prediction error depends on trial difficulty
(i.e., on how close trials are to the indifference point and therefore
on the precise experimental manipulation, cf. Section Behavioral
Models and Model Parameters), the obtained values are difficult
to compare. However, the results are in line with the few studies
who have considered the modified hyperboloid model and have
shown its superiority [(49, 61–63, 100); but see also (44)], and
which show that the hyperbolic model is not a comparably good
fit (61–63, 100).

The modified hyperboloid model is characterized by an
additional free parameter s which scales the delay period
in the discount factor (cf. Section Behavioral Models and
Model Parameters) analogous to a psychophysiological power
function [(9); see also (102)]. The power law, originating from
psychophysics, describes the relationship between the intensity of
a stimulus and the perceived magnitude increase in the sensation
induced by the stimulus, which is modulated exponentially by
a parameter, here s (102). In the present investigation, as often
observed, s on average was smaller than 1 (38, 49, 61, 62),
indicating a flattening of the discounting curve (cf. Figure 4G).
This indicates that delay durations may not be perceived
similarly, that is, objectively, across participants as indicated
by e.g., the hyperbolic and exponential models, but there is
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additional inter-individual variability w.r.t. delay perceptions.
This is in line with studies indicating that time perception plays a
significant role in delay discounting [(103–107); see also (108)].

This scaling parameter s, as well as the discount parameter
κ , moreover differed significantly between the reward and the
loss condition. Both parameters were on average lower in the
loss condition. Since the scaling parameter s was restricted
between 0 and 1 [see also (109, 110)], smaller values here
lead to a shrinking of the objectively experienced delay and
thus to a lower degree of devaluation. Small κ values in
the hyperboloid model similarly cause the discount factor to
approach 1 such that effectively devaluation decreases. The fact
that we found differences in both parameters, together with the
fact that the hyperboloid model was superior to the hyperbolic
at predicting the data, suggests that lower κ values alone were
not sufficient to capture the weaker devaluation process observed
in the loss condition. One may therefore speculate whether
lower s values during loss discounting may be associated to
a subjectively shorter perception of delays in this condition.
Note though that this interpretation should be evaluated with
caution since we observed a moderate correlation between s and
κ in the reward condition. While a previous study evaluating
the modified hyperboloid model did not find differences in
the scaling parameter s between discounted rewards and losses
(49), while others did not explicitly compare the parameters
between tasks (38, 61, 62), the obtained results are in line with
the frequent observation of lower discounting rates during loss
discounting, also termed “sign-effect” [see also (41, 111); for an
overview see (112)]. This sign-effect was also reflected in the
lower frequency of discounted choices for the loss condition
as compared to the reward condition observed for all runs
and experiments despite explicitly prolonging delays for this
condition (see Supplementary Results S2.1–S2.3).

Interestingly, the discount factor of the modified hyperboloid
model was significantly related to subjective measurements:
Subjectively reported impulsive behavior, as well as alcohol
use behavior was negatively related to the discount factor,
indicating that stronger temporal discounting was related to
higher impulsivity andmore alcohol use behavior.While this is in
line with studies linking stronger discounting behavior to higher
impulsivity as well as increased alcohol use behavior [(113–117);
for an overview see (26, 118, 119)], other studies did not provide
evidence for a direct link (120–122).

A crucial difference between our framework and other
adaptive designs is that previous studies were mainly interested
in the two-level comparison between hard and easy trials,
i.e., trials close and far from the indifference point (31, 32,
43, 52, 54), or interested in choices around the indifference
points [e.g., (31, 32, 43)]. By providing a formal condition
for trial generation, our approach in contrast allows a more
highly resolved and targeted grading of discounting probabilities.
This includes the assessment of hard and easy trials, that is,
trials with discounting probability 0.5 vs. discounting probability
unequal to 0.5, as well as any other selected discounting
probability on the probability measure (i.e., between 0 and
1). By inducing graded behavior, one presumably induces
graded levels of cognition and associated neuronal responses.

This facilitates the identification of brain regions or networks
which co-vary with discounting probabilities, resolving the
neural response at a finer scale and thus providing stronger
evidence of the underlying neuronal mechanism (123–127).
In addition, from a statistical point of view, generating more
homogeneous experimental conditions across different levels
of discounting behavior within subjects, should increase the
statistical power needed to detect (differences in) the associated
brain responses (128–130).

While most studies to date continue to focus on reward
(rather than loss) discounting, we provide a general framework
which is easily transferable to other scenarios. Although our
approach did not work as well for the loss condition, that is,
the average discounting frequency deviated somewhat from the
model expectation, we did observe graded choice frequencies in
response to the three experimentally manipulated levels for both
reward and loss conditions. This (and even finer) gradation at the
within subject level could be particularly helpful when studying
the neurobiological underpinnings of a cognitive process, by
providing a dimensional mapping from experimental trial to
discounting probabilities.

Beyond that, many previous studies have focused on
addressing the question of which discounting model best fits
empirical data and how to adapt experimental trials to the
individual. However, these studies mostly focused either on
model comparisons [e.g., (38, 40, 49, 61, 72, 74, 89)], or onmodel-
based trial adaptation [(31, 32, 36, 43, 54); but see (53)], but
not on both. The latter is important though, since the success
of model-based trial adaptation should naturally depend on the
suitability of the model (see also Supplementary Figure S5). To
our knowledge, only one study performed both model selection
and design optimization simultaneously (53), selectingmodels on
a subject-specific (as compared to group) level (which comes with
its own advantages and disadvantages). However, this study as
well as the other model comparison studies have mainly selected
models based on in-sample error estimates [(9, 21, 38, 41, 44, 49,
61, 63, 72, 74, 99–101); but see also (40, 54)]. In-sample errors are
susceptible to under-estimation of the PE due to e. g. overfitting,
whereas out-of-sample errors represent more conservative and
unbiased estimates (70, 88). They thus do not allow to quantify
how well the models actually work at predicting unseen data
(70). On the other hand, the studies focusing on adaptive designs
have mainly focused on the hyperbolic model [e.g., hyperbolic
only: (31, 32, 43, 54)], which performed particularly poorly in
other studies [e.g., (53)], and yielded poor predictions as well as
unreliable parameter estimates here.

One caveat of comparing multiple models as done in the
present study is that it requires a sufficient number of trials. Other
adaptive approaches which are often tuned to a single model have
focused on optimizing efficiency and require a lower number of
trials. A lower number of trials with equal reliability is desirable
as it exerts less experimental burden on the participant. Overall,
the applied number of trials varies highly between adaptive
studies though, ranging from 5, ∼10 and 98 trials in more
recent approaches (31, 36) up to over 300 trials in more classical
titration procedures [e.g., (32, 40, 43, 44, 47–50, 54, 89, 131, 132);
with an average of around 95 trials (+/−77)]. The exact trial
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numbers may depend on subject specific parameters, and on
how many delays and outcomes are applied. In an appealing
Bayesian framework, Pooseh et al. (32) performed simulation
analyses investigating the number of iterations necessary for
parameter estimates to converge to their true values. Their results
illustrate the dependency on the true parameter values and
indicate that the classic amount adjusting method converges after
20–200 iterations (with high variance). Their Bayesian approach
on the other hand starts to converge after around 50 trials
for both κ and β evaluated on experimental data (32). Using
adaptive design optimization [ADO; (36, 53)], recent studies
demonstrated remarkable efficiency in measuring κ with high
reliability in <10 trials, although the β parameter is inferred less
reliably and likely requires more trials. Having now established
a suitable model for our parametric method, one could perhaps
improve the proposed framework by combining run A with one
of these more efficient methods to further reduce the number of
trials necessary in run A.

An interesting observation of the present study is that
we noticed a high agreement in the discount factor of the
hyperboloid model between both experimental runs and
between reward and loss conditions. This agreement suggests
that temporal discounting may be reliably measured (and
may bear similarities in the processing of loss and reward)
and is consistent with (the significantly) lower correlation of
behavioral frequencies. In contrast, in the commonly used
hyperbolic model, the relation between discount factors across
runs (and partly across conditions), as well as the associations
to discounting relevant measures such as impulsivity and
alcohol use, vanished. On the one hand, this suggests that
poorer behavioral models may provide more unreliable
and biased parameter estimates, potentially also explaining
difficulties in reproducibility between studies [see also e.g.,
(133) restricted reliability for hypothetical monetary outcomes;
see also (36)]. On the other hand, it also shows that using
appropriate behavioral models in combination with adaptive
designs may even improve the valid and reliable measurement
of cognitive function (superior to for instance behavioral
frequencies). Especially considering the reproducibility
crisis in psychological experiments [for overviews see (134–
138)], such approaches could prove particularly beneficial
[see also (139)].

Finally, we also address several limitations of the current
study. First, our sample was highly dominated by women (with
N = 145 women and N = 51 men). Although we found no
differences in discounting behavior between women andmen (cf.
Supplementary Table S2), we cannot exclude that our findings
generalize better to women. Second, although the proposed
framework performed well within the reward condition, many
non-discounters remained in the loss condition. It is unclear
whether this may be attributed to yet suboptimal run A trial
settings, inadequate to identify each participant’s indifference
point, or whether there is a true proportion of individuals in
the population who do not exhibit loss discounting. The latter
is not unlikely, as other studies with different settings have also
found constant high rates of non-discounters (31, 33–35, 38, 40).

However, it is also possible that the delays used in the current
experiment were simply not long enough to tempt participants
to discount future losses, masking the true proportion of non-
discounters in the population. Future studies that explore the
relationship of non-discounting to other subjective factors such
as risk aversion, punishment sensitivity, reward sensitivity,
preference uncertainty, and temporal uncertainty, or that
systematically examine other trial settings, may help shed light on
this question and reveal potential alternative discounting “styles.”

We also recognize that even in the reward condition,
where choice frequencies on average matched well with model
expectations, the behavioral variation was quite high. This could
either be due to natural noise in the behavioral process, or
that the true behavior generating model was not amongst the
tested set. We cannot exclude that there is another model
that describes the data better and would potentially further
reduce the observed variation [see also 53]. For example, there
is evidence that temporal discounting also depends on the
tendency to avoid risks, often referred to as risk aversion
(32, 40, 52, 73). Lopez-Guzman et al. (40) could for instance
show that by inferring the individual’s risk attitude on an
independent task and adding it as an additional parameter
to the discounting function, they could account for more
behavioral variance in a temporal discounting task. It may also
be reasonable to assume that individual participants are best
described by different models (53), although inferring models
on the single subject level limits comparability of associated
neurobiological correlates.

CONCLUSION

The present work proposes a model guided framework to
evoke graded responses linked to cognitive function at a single
subject level. Such a framework may be used in psychology,
neuroscience, or psychiatry in the future to (a) measure
cognitive function on a dimensional rather than dichotomous
scale, (b) homogenize behavior across participants, (c) test
the validity of a behavioral model, or (d) investigate the
causal differences underlying heterogeneous behavior, which
may benefit the investigation of cognitive mechanisms [see
e.g., (140)]. Importantly, temporal discounting is a fundamental
process underlying decision making and largely comparable
between species (13). Given that similar decay functions of
reward delay discounting have been observed in humans and rats
(141), application of the here proposed adaptive experimental
design to appropriate behavioral animal models may significantly
enhance insights to the circuitry and molecular underpinnings
of various neuropsychiatric disorders (142). Future studies are
needed to assess whether our approach is suitable to dissolve
discounting behavior onmore than three levels, that is, on amore
fine-grained dimensional spectrum of behavioral probabilities.
We also propose a more general approach to create adaptive
experimental designs based on the combination of behavioral
models and model selection techniques. Our framework was
tested in the context of temporal reward and loss discounting.
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It may however be generalized to other cognitive functions by
using similar models which map actions probabilistically to an
underlying cognitive process.
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