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Introduction
Advancing biomedical research often depends on the use of 
modern problem-solving technologies that offer versatile tools 
and methods to enhance human convenience and health. At the 
forefront of these technologies is microfluidics1—an extraordi-
nary science and enabling technology that precisely controls 
fluid behavior at micro-, nano-, and pico-scales.

In the past 3 decades, the technological and scientific 
advances in microfluidics led to the development of lab-on-a-
chip2 and organ-on-a-chip3 devices. These devices comprise 
closed microfluidic channels, chambers, and components for 
various small-scale laboratory methods and analysis. For 
example, portable microfluidic devices can quantitatively 
detect nucleic acids in blood4 or glucose levels in plasma and 
tears.5 This holds the potential for affordable point-of-care 
diagnostics, which is a critical component of precision medi-
cine. Biomimetic microfluidic devices can replicate lung 
functions6 or cardiac tissue models7 on a chip. This holds the 
promise for drug testing, understanding disease mechanisms, 
and identifying potential therapeutics using physiologically 
relevant 3D organ-on-a-chip models. Such models are 
increasingly important in personalized medicine.

Further advances expanded the capabilities of microfluidic 
systems, resulting in the development of lab-on-a-paper8 

platforms. These platforms utilize capillary action to passively 
control fluids within a single sheet of paper for rapid “sample-
to-diagnose” approaches. For example, paper microfluidic 
assays are proven effective in detecting severe acute respiratory 
syndrome coronavirus type 2 (SARS-CoV-2) infections when 
integrated with recombinase polymerase amplification9 or with 
bioconjugated gold nanoparticles.10 These assays showcase 
their multiplex gene and antibody detection capabilities, 
respectively. Additionally, they also offer rapid and semiquanti-
tative measurements of liver enzymes11 or glucose detection12 
in a fingerstick blood specimen. This functionality makes them 
accessible for monitoring drug-induced liver injury and diabet-
ics in resource-limited settings, respectively.

More recently, a significant advancement in microfluidics was 
the development of lab-on-a-tip13 devices that integrate and exe-
cute a multitude of cell-related applications directly into the tip of 
an open (non-contact) microfluidic probe. These “channel-less” 
microfluidic systems combine a bottom glass substrate with a top 
microfluidic delivery system. Moreover, by utilizing the capabili-
ties of three-dimensional (3D) printing, they offer flexibility in 
design, efficiency, and versatility. For example, a herringbone 
microfluidic probe (HB-MFP)14 can efficiently capture rare cir-
culating tumor cells (CTCs), including clusters, from prostate 
cancer blood samples onto bioactivated glass substrates. Through 

Next-Generation Microfluidics for Biomedical Research 
and Healthcare Applications

Muhammedin Deliorman1, Dima Samer Ali1,2  
and Mohammad A Qasaimeh1,2

1Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, UAE.  
2Department of Mechanical and Aerospace Engineering, New York University, New York, NY, USA.

ABSTRACT: Microfluidic systems offer versatile biomedical tools and methods to enhance human convenience and health. Advances in 
these systems enables next-generation microfluidics that integrates automation, manipulation, and smart readout systems, as well as design 
and three-dimensional (3D) printing for precise production of microchannels and other microstructures rapidly and with great flexibility. These 
3D-printed microfluidic platforms not only control the complex fluid behavior for various biomedical applications, but also serve as microconduits 
for building 3D tissue constructs—an integral component of advanced drug development, toxicity assessment, and accurate disease modeling. 
Furthermore, the integration of other emerging technologies, such as advanced microscopy and robotics, enables the spatiotemporal manip-
ulation and high-throughput screening of cell physiology within precisely controlled microenvironments. Notably, the portability and high preci-
sion automation capabilities in these integrated systems facilitate rapid experimentation and data acquisition to help deepen our understanding 
of complex biological systems and their behaviors. While certain challenges, including material compatibility, scaling, and standardization still 
exist, the integration with artificial intelligence, the Internet of Things, smart materials, and miniaturization holds tremendous promise in reshap-
ing traditional microfluidic approaches. This transformative potential, when integrated with advanced technologies, has the potential to revo-
lutionize biomedical research and healthcare applications, ultimately benefiting human health. This review highlights the advances in the field 
and emphasizes the critical role of the next generation microfluidic systems in advancing biomedical research, point-of-care diagnostics, and 
healthcare systems.

KeywoRdS: Microfluidics, 3D printing, high-throughput, automation, screening, point-of-care diagnostics, precision medicine, 3D tissue 
engineering, human-on-a-chip, drug development, disease modeling, personalized medicine

ReCeIVed: September 28, 2023. ACCePTed: October 30, 2023.

TyPe: Review

FuNdING: The author(s) disclosed receipt of the following financial support for the 
research, authorship, and/or publication of this article: This work was financially supported 
by NYU Abu Dhabi, UAE.

deClARATIoN oF CoNFlICTING INTeReSTS: The author(s) declared no potential 
conflicts of interest with respect to the research, authorship, and/or publication of this 
article.

CoRReSPoNdING AuTHoR: Mohammad A Qasaimeh, Division of Engineering, New 
York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, UAE.  Email: maq4@
nyu.edu

1214387 BEC0010.1177/11795972231214387Biomedical Engineering and Computational BiologyDeliorman et al
review-article2023

https://uk.sagepub.com/en-gb/journals-permissions
mailto:maq4@nyu.edu
mailto:maq4@nyu.edu


2 Biomedical Engineering and Computational Biology 

affinity-based multiplexing, the HB-MFP offers insights into 
cellular phenotypes. In a related field, a non-contact multiphysics 
probe (NMP)15 can operate within the physiological tissue envi-
ronment to precisely manipulate single cells. Through controlled 
manipulation, electropermeabilization, transfection, and cyto-
plasm extraction from living single cells, the NMP enhances spa-
tiotemporal single-cell analysis within tissue samples.

As a result, next generation microfluidic systems, equipped 
with advanced automation and screening capabilities, are dem-
onstrating their potential in a wide range of biomedical research 
applications. These applications include, but are not limited to, 
the manipulation and patterning of single cells, multiplex char-
acterization of cell phenotypes, precise cell sorting, diverse bio-
assays and biosensing, as well as contributions to tissue 
engineering, drug efficacy testing, and disease modeling.

Next Generation Microfluidic Systems: Trends
At the core of microfluidics lies the precise manipulation of 
fluids at the microscale, which is primarily facilitated by the 
laminar fluid flow.16 Traditionally, microfluidic devices consist 
of closed microconduits designed for specific applications (see 
Figure 1). However, the field is currently undergoing dynamic 
shift toward innovative technological advances. For example, 
nowadays digital microfluidics17 challenges standard micro-
channels by providing control over fluids through discrete 

droplets. Moreover, the integration of microfluidics with elec-
tronics,18 photonics,19 plasmonic,20 magnetics,21 nanomateri-
als,22,23 and advanced microscopy and spectroscopy techniques24 
enhances the accuracy in fluid manipulation, improves the pre-
cision in sensing and characterizing biological samples, and 
increases the overall automation and screening efficiency.

Notably, when microfluidics is integrated with wearable 
devices,25 it facilitates non- to minimally invasive health and ill-
ness measurements on individuals. Whereas, when it is inte-
grated with multifilament threads,26 it enables the development 
of intelligent fabrics that continuously monitor human physio-
logical condition in real time. Paper microfluidics27 represents 
another important branch of microfluidics with applications in 
point-of-care diagnostics for disease detection, biomarker moni-
toring, and blood testing (see Figure 2). In recent years, paper-
based microfluidic devices advanced into a new dimension by 
incorporating the art of origami (ie, paper folding) to transform 
from 2D microfluidics to 3D microfluidics. This innovative 
technology utilizes capillary action to passively “guide” 3D fluid 
flow on porous paper, thus eliminating the need for valves or 
external pumps. For example, Liu and Crooks28 fabricated an 
entire 3D device using a flat sheet of paper in a single photo-
lithographic step through origami approach. The device com-
patibility for chemical analysis was demonstrated in fluorescent 
and colorimetric assays. Zhu et  al29 developed 3D origami 

Figure 1. Lab-on-a-chip and organ-on-a-chip devices: (a) integrated microfluidic chip for low-cost, quantitative, and portable nucleic acid testing. (b) 

Microfluidic platform for immunodiagnostics integrated with artificial intelligence (AI) technology. Microfluidic systems for developing advanced models of 

(c) lung and (d) cardiac tissues. Reproduced from Yeh et al,4 with permission from American Association for the Advancement of Science (a), from 

Bhuiyan et al,5 with permission from American Chemical Society (b), from Li et al,6 with permission from American Institute of Physics Publishing (c), and 

from Michas et al,7 with permission from American Association for the Advancement of Science (d).
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paper-based ratio-metric fluorescent microfluidic device for vis-
ual point-of-care detection of alkaline phosphatase.

Microfluidic probes,13 on the other hand, further expand 
the boundaries of microfluidics through innovative “wall-free” 
control of fluid, which makes them suitable for multiplexing. 
For example, Dorrigiv et al30,31 presented computer-controlled 
drug screening platform that utilizes pixelated MFPs to enable 
multiplexed delivery of multiple biochemical reagents—up to 9 
distinct biochemical reagents—to 3D tumor models. This 
innovation significantly increased the throughput of traditional 
MFPs, enabling multiple testing scenarios in each experiment. 
Conversely, Brimmo et al32 experimented with various aperture 
configurations to bio-fabricate selective multicellular patterns 
on an open substrate without the use of confined conduits.

In recent years, microfluidics influenced various aspects of 
life, from applications in smartphones to outer space. In space, 
microfluidics requires special forces beyond gravitational forces 
to function effectively. These forces include capillary flow,33 
thermocapillary (Marangoni) forces,34 and electrolytic gas evo-
lution.34,35 To date, various types of electrospray thrusters,36 
based on capillary and porous surface wetting emitters, success-
fully demonstrated functionality both on Earth and in space, 
among other innovative applications.37-39 These examples 
highlight the significant role of microfluidics in space explora-
tion. Furthermore, microfluidic chips are developed to track 

the physiological indicators of astronauts,40 identify diseases,41 
and monitor living conditions including air, water, and food 
quality.42 Additionally, the Phorm iPad mini case is a real-life 
example of using microfluidics to create pop-up guiding bub-
ble buttons for providing a tactile interface on touch-screen 
devices.43 This innovation is particularly valuable for individu-
als who may have difficulty with operating touchscreens, such 
as blind, visually impaired, elderly, and individuals with diseases 
that affect fine motor skills, including arthritis and Parkinson’s 
disease.

Modern digital electronics typically rely on rigid semicon-
ductor materials, which limit their physical configurability. 
This constraint makes flexible and bendable electronics desir-
able in several applications, including sensing and actuation. In 
this regard, microfluidics provides the necessary flexibility 
needed for various applications that are not achievable with 
rigid semiconductors.44 For example, in the work by Cheng 
and Wu,45 a deformable radiation sensor was achieved by fab-
ricating its radio frequency antenna through soft lithography 
patterning of the microfluidic channel grid onto polydimethyl-
siloxane (PDMS), a silicone polymer. Room-temperature con-
ductive liquid alloy, Galinstan, is then used to fill the channels 
to allow for stretchability and bending.41 The same microflu-
idic fabrication technique was employed by Othman et al46 to 
fabricate a multi-modal microfluidic bend sensor for robotic 

Figure 2. Lab-on-a-paper devices: wearable (a) electrochemical microfluidic device and (b) antibody test assay for viral infection detection and severity 

monitoring, respectively. Point-of-care fingerstick devices for (c) liver function and (d) glucose level testing in blood. Reproduced from Kim et al,9 with 

permission from Elsevier (a), from Boumar et al,10 with permission from Springer Nature (b), from Pollock et al,11 with permission from American 

Association for the Advancement of Science (c), and from Luo et al,12 with permission from MDPI (d).
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sensing applications. These microfluidic smart sensors are 
proven to provide valuable insights into organ stiffness during 
minimally invasive surgeries, as demonstrated in the preceding 
works by the same authors.46,47 In addition to mentioned appli-
cations, microfluidic devices provide high performance in vari-
ous applications, including heat sinks to cool integrated 
circuits,48 simplified solutions in agriculture to study enzyme 
reactions and plant responses,49,50 and in wearable devices to 
monitor body movements51 or mimic human skin.52

Materials, Fabrication, 3D Printing, and 
Commercialization
Characteristics of the used materials in manufacturing micro-
fluidic devices significantly impact the fabrication cost, perfor-
mance, and versatility of their functions. Traditional microfluidic 
devices commonly employ the PDMS due to its ease of pro-
duction, biocompatibility, and optical transparency. Their fab-
rication is commonly based on soft lithography,53 where master 
molds with microfluidic channels are initially created, followed 
by their replication using casting. This technique offers precise 
control over channel geometries and other microstructures, but 
is labor-intensive and time-consuming.54 In contrast, paper 
microfluidic platforms employ hydrophilic cellulose- or nitro-
cellulose-based paper substrates due to their intrinsic capillary 
action characteristic.55 This enables the passive flow of fluid 
within the porous 3D microenvironment of the paper, which is 
guided through paths fabricated via chemical modifications, 
wax printing, or other methods. Microfluidic probes, on the 
other hand, are classically fabricated by standard photo- and 
stereo-lithography approaches in silicon and glass substrates, 
but more recently, researchers started employing ultraviolet 
(UV)-curable, biocompatible, and transparent resins used in 
stereolithographic 3D printing.56 Their fabrication based on 
3D printing emerged as an innovative approach for creating 
customizable device designs that otherwise would be time con-
suming using the conventional photolithography methods.

In the last decade, the commercialization of microfluidic 
devices witnessed substantial growth.57,58 Standard microfluidic 
chips are now widely available in the market, where they provide 
individuals and healthcare personnel with point-of-care solu-
tions. In particular, paper microfluidic platforms, similar to 
pregnancy tests, are becoming preferred tools for diagnosis of 
infectious diseases in resource-limited settings due to their sim-
plicity in function, flexibility in design, portability, and low cost.

After over 3 decades of development, a new concept in 
microfluidics, the modular microfluidics,59 has emerged. This 
innovative concept was made possible by the consistency and 
precision of the injection-molded bricks, such as those from 
the famous brand LEGO, which fit together perfectly regard-
less of where they are manufactured in the world. Consequently, 
modularity has infinite potential that eliminates the borders of 
creativity. For example, these bricks inspired MIT researchers 
to use them as the foundation for a new modular microfluidic 
design that enabled them to form modular microfluidic devices 

capable of conducting biological operations such as cell sorting, 
fluid mixing, and molecule filtering.60

Applications in Biomedical Research
A key feature of microfluidics is the ability to integrate various 
biology, engineering, computation, chemistry, and physics 
related functions into a single device. In single-cell analysis, 
microfluidic devices enable isolation and phenotyping14,61,62 
and sorting and patterning15,32,63 of rare cells, such as circulat-
ing tumor or plasma cells. These capabilities are instrumental 
in unraveling cellular heterogeneity and identifying biomarkers 
(Figure 3). In bioassays, microfluidic devices achieve high sen-
sitivity and rapid quantification through the utilization of dif-
ferent phenomena and methods, such as isotachophoresis,64 a 
promising approach for protein extraction, purification, and 
quantification.

Microfluidic devices also play a pivotal role in biosensing 
applications by exhibiting remarkable signal amplification 
capabilities.66 In point-of-care diagnostics, on the other hand, 
microfluidic devices enable rapid detection of diseases and 
infections.67 This expedites patient care and relieves the test-
ing burden in laboratories, especially during unprecedented 
pandemic times such as the Coronavirus Disease 2019 
(COVID-19).68,69 The environmental implications of micro-
fluidic technology are equally promising. Monitoring water 
and food quality, air pollutants, and soil contaminants is 
achievable with improved precision.70

Paper microfluidics is a good example of recent innovations 
in microfluidics. Given the advantages, such as capillary-
driven fluid flow and portability, paper microfluidic platforms 
enable point-of-care diagnostics to be efficiently conducted 
with minimal sample volumes and shorter analysis times. 
Additionally, textile microfluidics, which is often integrated 
into wearable devices, extends the reach of point-of-care diag-
nostics. These “smart” textiles incorporate microfluidic chan-
nels that collect and analyze bodily fluids such as sweat,71 
urine,72 and blood.73 In the process, the automation through 
microfluidics ensures seamless data collection, while the inte-
gration into clothing offers non-invasive and continuous 
health monitoring in real time.

Microfluidics is rapidly integrating innovative technologies, 
including automation and robotics, and the Internet of Things 
(IoT) (Figure 4). In terms of automation, labor-intensive and 
time-consuming experimental tasks, such as sample prepara-
tion, mixing, and detection, can now be performed in parallel, 
thus reducing human error and enabling high-throughput 
screening and analysis. For example, in drug efficacy testing, the 
automation in microfluidic devices allows for a large library of 
compounds to be screened quickly and efficiently.74 Furthermore, 
the precise control of biomolecular concentration gradients in 
these devices enables investigation of cellular responses and 
behaviors including patterning, differentiation, migration, and 
the development of drug resistance.75,76 For example, microflu-
idics enables the production of plasmonic nanomaterials 
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through aqueous colloidal synthesis within a structured com-
posite foam lattice inside a straightforward microfluidic 
device.77 This approach allows for precise control over reagent 
dispensing and mixing, while the organized foam structure 
facilitates compartmentalized nanoparticle growth. Importantly, 
this production method operates continuously, possesses inher-
ent digital control, is scalable, and operates fully automated.

In the context of the IoT, the integration of microfluidics 
with data networks results in “smart” devices that can transmit 

real-time information to remote locations for monitoring and 
in-depth analysis of the measurements.78,79 Microfluidic devices, 
with their ability to precisely manipulate small volumes of fluids 
and perform complex chemical and biological assays, are well-
suited for creating intelligent and responsive systems. By com-
bining microfluidics with artificial intelligence (AI), these 
devices can take on advanced functionalities.80,81

For example, microfluidic sensors can collect substantial 
data from various biological and chemical processes. AI 

Figure 3. Lab-on-a-tip devices: Non-contact microfluidic probe technologies for (a) affinity-based multiplex isolation of circulating tumor cells and 

clusters, and (b) spatiotemporal resolved single cell manipulation and analysis. Reproduced from Deliorman et al,65 with permission from Springer Nature 

(a), and from Brimmo et al,15 with permission from Wiley (b).

Figure 4. Microfluidic platforms integrated with Internet of Things (IoT) for healthcare applications: (Left) Paper-based electrochemical wearable sensors 

integrated with microfluidics and nanotechnology for combined sampling and data analysis. Reproduced from Deroco et al,78 with permission from Wiley. 

(Right) A wearable patch, incorporating fluorescent probes on paper substrates and cotton thread microfluidics, is fabricated and paired with a 

smartphone-based fluorescence imaging module, a self-developed smartphone app, and an IoT-based model to enable multi-sensing of sweat 

biomarkers, including glucose, lactate, chloride, pH, and volume. Reproduced from Ardalan et al,79 with permission from Elsevier.
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algorithms can then be employed to analyze this data, identify 
patterns, and make predictions or decisions based on the col-
lected information. This integration enables microfluidic sys-
tems to autonomously adapt, optimize processes, and respond 
to changing conditions using cloud-based analysis and remote 
monitoring.82 As a result, the connectivity and analytical capa-
bility hold potential in fields such as healthcare, environmental 
monitoring, and diagnostics, where real-time insights and 
rapid decision-making are crucial.83 For example, microfluidic 
devices integrated with environmental sensors can continu-
ously monitor water quality and transmit data for real-time 
analysis.84

In the context of the dynamic platforms, the integration of 
microfluidics with robotics creates platforms capable of execut-
ing even more advanced research tasks.85 For example, a robotic 
arm integrated with an acoustofluidic device as its end effector 
induces oscillations within a capillary to create controlled flow 
patterns or microstreaming when placed in a liquid.86 Moreover, 
self-guided movement of microrobots in fluids allows their 
autonomous navigation capabilities in complex environments 
such as blood vessels.87

Tissue Engineering and Human-on-a-Chip
Tissue engineering merges biological cells, natural biomateri-
als, and dynamic biochemical and biophysical factors with 
microfluidic technologies to form 3D tissue constructs for drug 
efficacy testing,88 disease modeling,89 and other fundamental 
research.90,91 The formation of the tissue constructs relies on 
the growth and differentiation of various cell types, such as 

parenchymal and mesenchymal fibroblasts, to mimic cell-cell 
and cell-environment interactions within natural tissues.92,93 
During this process, biomaterials provide structural integrity 
and mechanical support for the cells. These 3D scaffolds mimic 
the extracellular matrix of the target tissue for facilitating the 
3D cell adhesion, migration, and organization.94 Cellular 
behavior and tissue development, on the other hand, are regu-
lated by both biochemical factors, such as growth factors, 
cytokines, and signaling molecules,95 and mechanical factors, 
such as tissue stiffness.96 These factors are delivered spatiotem-
porally to induce cellular proliferation, differentiation, and 
morphogenesis.97

Merging these 3 components (ie, cells, biomaterials, and 
biochemical/mechanical factors) is crucial for fabricating 3D 
tissue constructs that mimic real organs.98 Organ-on-a-chip 
devices, for this matter, are becoming increasingly successful in 
providing the necessary in vitro microenvironment for cells to 
interact with the biomaterials and get exposed to the biochem-
ical and mechanical factors during their growth and differen-
tiation. Nowadays, the developed organ-on-a-chip models 
offer accurate representation of human organs, and provide 
spatiotemporal organ-specific responses to drugs and dis-
eases.99 Human-on-a-chip systems, on the other hand, con-
nects multiple organ-on-a-chip units (Figure 5). This 
integration aims to mimic how various organs influence each 
other and how drugs or diseases impact the entire body.100 
Importantly, this integration also has transformative implica-
tions for pre-clinical testing. Traditionally, animal testing was a 
necessary step prior to clinical trials. However, with the advent 

Figure 5. Human-on-a-chip system: The Human-on-a-chip system connects different organs within a single device through a microfluidic circulatory 

system. By integrating organ models like the lung, heart, gut, liver, kidney, and bone, the 4 key drug processes such as absorption, distribution, 

metabolism, and excretion can be simulated effectively. Reproduced from Huh et al,100 with permission from Elsevier.
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of the organ-on-a-chip platforms, these pre-clinical tests are 
increasingly replacing animals with microfluidic chips that 
closely replicate the responses of human body to drugs.101 This 
transition not only saves animal lives but also yields outcomes 
that are more relevant to clinical results. As a result, it enhances 
both the efficiency and ethical considerations of the drug 
development processes.

Current Challenges and Future Directions
The miniaturization of laboratory procedures and essays  
demands interdisciplinary collaboration between engineers, 
biologists, chemists, and medical experts to develop the full 
potential of lab-on-a-chip, organ-on-a-chip, lab-on-a-paper, 
and lab-on-tip devices. Whereas accurate and reproducible 
control of fluid flow at microscales requires detailed design, 
computation, fabrication, optimization, and biological testing. 
Particularly, the integration of conventional 3D printing with 
microfluidics minimizes the microfabrication workflow and 
enables the creation of complex designs that were previously 
challenging to achieve.

While the technological and scientific advances in microflu-
idics are exciting, several challenges still persist. One of these 
challenges is the physical adsorption of hydrophobic and other 
small molecules in PDMS microchannels that leads to altered 
composition of solutions and inconsistent results.102 Another 
challenge is the micro-to-macro scalability.103 The complexities 
of organs consisting of a number of cells are not accurately 
reflected by relatively small number of experimental cells. 
Importantly, the use of a common (standardized) medium in 
multiorgan-on-a-chip platforms poses challenges for the 
growth and differentiation of cells in certain organ tissues.104 In 
addition to these challenges, shortcoming of unified standards 
for various aspects of microfluidics poses a significant hurdle. 
The International Organization for Standardization (ISO) is 
the global entity responsible for international standardization 
efforts. In this regard, microfluidics requires standards for 
dimensions, connections, and initial device classification due to 
its diverse applications, numerous technologies, and wide array 
of materials.105 This diversity becomes problematic when 
attempting to integrate microfluidic components. Moreover, 
there is a pressing need for standardized testing, which may be 
application-specific. Some of these tests include leakage test-
ing,106 pressure testing,107 and flow throughput testing.108 
Developing these test protocols must take into consideration 
the material of the chips as well as the temperature and pressure 
ranges of operation. To expedite market access, researchers have 
identified specific application classes with defined temperature 
and pressure ranges, which provide boundary conditions for the 
development of tests.109 Standardized specifications for micro-
fluidic devices include standardizing chip thickness, outer 
dimensions for compatibility with microplates and microscope 
slides, as well as port pitch and diameters.110

The integration of microfluidics with innovative technolo-
gies holds substantial promise in overcoming many challenges 
in the field. For example, the 3D printing can facilitate rapid 
prototyping toward commercialization.111 Advanced sensing 
technologies can enhance the capabilities of microfluidic sys-
tems.112,113 Whereas, advanced wearable sensors can provide 
real-time and precise measurements of various parameters, 
ranging from molecular concentrations to cellular responses.114 
Notably, droplet microfluidics can accelerate drug discovery 
workflow by coupling with high-throughput paper-based 3D 
cell culture and spheroids.115,116 This integration can expedite 
the assessment of drug candidates through fast compound 
screening, and significantly reduce reliance on animal testing 
by utilizing patient-specific cells.

In parallel, AI algorithms can optimize experimental pro-
tocols, automate data analysis, and predict outcomes based on 
large datasets, thus accelerating biological testing with 
improved precision in data acquisition.81 Moreover, the use of 
smart materials with stimuli-responsive properties can 
improve the functionality and reliability of microfluidic 
devices.117 Noteworthy, miniaturization can offer more accu-
rate representations of organ function at the microscale, thus 
accelerating drug development, toxicity assessment, and dis-
ease modeling.118

In the last decade, the integration of smartphones and 
microfluidic devices opened up new possibilities.119 This inte-
gration enabled the utilization of microfluidic detection mod-
ules that rely on complementary metal oxide semiconductor 
cameras of the smartphones.120-122 More than ever, they found 
applications in medical and public health practice where they 
serve as point-of-care-diagnostic tools.123 For example, one 
notable integration is the work by Schaumburg et al,124 where 
a free platform called “Appuente” was developed. This platform 
seamlessly combines microfluidic chips, smartphones, and 
cloud access. It includes a mobile application for end users that 
provides several functions, such as chip identification and 
tracking, guidance and control, data processing, smart imaging, 
and result reporting.

In tissue engineering, the goal is to recreate the microenvi-
ronment of natural tissues to facilitate proper cell growth, dif-
ferentiation, and function. This involves replicating the 
biochemical and biophysical factors that cells experience in 
their physiological environment. In this regard, organ-on-a-
chip devices successfully generate human organs in microflu-
idic devices, which expedite drug testing and disease modeling. 
In the near future, multiple organ-on-a-chip models are envi-
sioned to be interconnected within a human-on-a-chip system. 
When combined with automation, robotics, and disease mod-
eling, human-on-a-chip models can provide personalized 
detailed view on how drugs affect the entire body of a human.125 
Excitingly, a radical step was recently taken by the U.S. Food 
and Drug Administration toward ending the use of animal test 
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subjects in pharmaceutical research.126 This game-changing 
decision can open doors for microfluidic systems to provide 
various complex in vitro multiorgan models for “real-life” drug 
development, toxicity assessment, and disease modeling as 
alternatives to animal testing.

Conclusion
Next generation microfluidic systems stand at the forefront of 
transformative technologies, bridging automation, screening, 
and manipulation with biomedical research. Presently, challenges 
still exist such as material compatibility, scaling, and standardiza-
tion across multiple systems and procedures. However, the inte-
gration of AI, smart materials, and miniaturization is a promising 
approach to redefine the conventional approaches, and paves the 
way for creating transformation in biomedical research and 
applications that will revolutionize human health. Whereas the 
integration with 3D printing, advanced sensing, robotics, and 
clinical methods holds the key to diverse applications ranging 
from fundamental research to healthcare solutions.
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