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Theory of optical tweezing 
of dielectric microspheres in chiral 
host media and its applications
Rfaqat Ali1,3*, Rafael S. Dutra2, Felipe A. Pinheiro1, Felipe S. S. Rosa1 & Paulo A. Maia Neto1

We report for the first time the theory of optical tweezers of spherical dielectric particles embedded in 
a chiral medium. We develop a partial-wave (Mie) expansion to calculate the optical force acting on a 
dielectric microsphere illuminated by a circularly-polarized, highly focused laser beam. When choosing 
a polarization with the same handedness of the medium, the axial trap stability is improved, thus 
allowing for tweezing of high-refractive-index particles. When the particle is displaced off-axis by an 
external force, its equilibrium position is rotated around the optical axis by the mechanical effect of an 
optical torque. Both the optical torque and the angle of rotation are greatly enhanced in the presence 
of a chiral host medium when considering radii a few times larger than the wavelength. In this range, 
the angle of rotation depends strongly on the microsphere radius and the chirality parameter of the 
host medium, opening the way for a quantitative characterization of both parameters. Measurable 
angles are predicted even in the case of naturally occurring chiral solutes, allowing for a novel all-
optical method to locally probe the chiral response at the nanoscale.

One of the landmarks in the field of optomechanics was the advent of optical tweezers1, that allows for manipula-
tion of microsized dielectric spheres and nanostructures trapped by a single tightly focused laser beam. Several 
applications in cell2–4 and molecular biology5,6, chemistry7, nanotechnology8 and physics9–12 have been developed 
(for reviews see13–16). The physical phenomena behind the operation of optical tweezers rely on momentum 
conservation as the incident trapping beam interacts with the microsphere. On one hand, within the geometrical 
optics approximation, the refracted light rays provide the key contribution to the optical force, which points 
towards the focal point, whereas reflected rays provide a detrimental radiation pressure contribution17. On the 
other hand, the Mie-Debye theory accounts for the exact wave-optical redistribution18–20 of linear momentum 
engendered by Mie scattering at the trapped microsphere. Playing with directional scattering in a metamaterial 
platform allows for trapping of high-index microspheres21.

In addition to linear momentum, a circularly-polarised (CP) light beam also carries spin angular momentum 
(SAM) that can be transferred to trapped particles22–25. The resulting optical torque leads to a rotation of the 
equilibrium position when a Stokes drag force is simultaneously applied26. The optical force on chiral particles 
has been employed for chirality sorting and recognition in optical traps27–30. Enantioselective optical manipula-
tion schemes have been proposed31–34, including the possibility of employing optical torques35,36. The transfer of 
optical angular momentum dramatically changes when trapping particles in a chiral host medium37.

In this paper, we develop the theory of optical tweezers in a chiral medium. Our approach is based on the full 
Mie scattering solution for spherical particles embedded in a chiral medium38, combined with a Debye-type non-
paraxial vector model for the trapping beam39. We consider a CP trapping beam and calculate the optical torque 
resulting from the transfer of SAM to the trapped particle. When a lateral Stokes drag force is simultaneously 
applied26,36, the equilibrium position is displaced sideways and rotates around the optical axis as a consequence 
of the optical torque. The angle of rotation is strongly chiral-dependent and very large when considering radii 
a few times larger than the wavelength.
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Chirality is a geometrical property of structures including biological molecules40, random arrangement of 
plasmonic nanostructures41,42 and nanocrystals43 that are not superposable with their mirror objects44,45. Chi-
rality plays an essential role in several biological, chemical and nanotechnological applications46. Our results 
for the particle rotation open the way for the characterization of the local chiral response at the nanoscale, that 
nicely interconnects with already existing local probing techniques to determine viscoelastic properties47,48 and 
micro-rheological properties of small particles49–52.

The optical force and torque are strongly dependent on the handedness of the CP trapping laser beam, as 
expected since the two different helicities propagate according to different refraction indexes in the chiral host 
medium. Our results indicate that a chiral host medium allows for trapping of high-index particles, and more 
generally improves the trap axial stability, provided that the CP laser beam and the host medium have the same 
handedness.

Results
Electromagnetic fields in chiral medium.  The constitutive relations for a chiral medium contain a 
direct coupling between the electric field E and the auxiliary field H proportional to the chirality parameter κ . 
They connect the complex displacement field D and magnetic field B to E and H as follows53–56:

where ε and µ are the relative permittivity and relative permeability of the medium, respectively. The constant κ 
is the chirality parameter that characterizes the strength of chirality and usually satisfies the condition κ ≪ √

εµ . 
By using the aforementioned constitutive relations the Maxwell’s equations for a chiral medium in the frequency 
domain (frequency ω ) can be written in matrix form as

where

and k0 = ω/c. The propagation modes are obtained by diagonalizing the matrix K through a linear 
transformation53,57

Q+ and Q− independently satisfy the Helmholtz equation

and the subsidiary equations

with σ = ±1 representing helicity. The corresponding wavenumbers are given by

Thus, the propagation of a mode of helicity σ is governed by the refractive index nσ = √
εµ+ σκ .

Finally, for future reference, we define the Debye potentials �E and �M for electric (E) and magnetic (M) 
multipoles, respectively58,59:

The electromagnetic stress tensor in a chiral medium.  When a light beam is scattered off a particle, 
it imparts an optical force on it due to momentum conservation. Such force may be calculated by integrating the 
Maxwell stress tensor 
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T over a closed Gaussian surface S that wraps around the particle:
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As the stress tensor is quadratic in the electromagnetic fields, the following identity60 is useful when evaluating 
the time average 〈...〉 in (10):

where VVV j = Re(Vj e
−iωt) j = 1, 2 are general monocromatic fields.

We evaluate the surface integral in (10) for a Gaussian spherical surface S(R) of radius R centered at the origin. 
Using (11) and taking the standard explicit expression for the stress tensor 

↔
T in a non-viscous, incompressible 

liquid at rest61,62, we find

Note that there is a disagreement between the Minkowski and Abraham prescriptions, but it manifests itself in the 
momentum density, not in the momentum flux, so the stress tensor is the same. Finally, replacing the constitutive 
relations (1) for a non-magnetic chiral medium into (12) and taking R → ∞ , we arrive at

where we have used that the radial field components decay as 1/r2 and hence do not contribute to the flux.

Theory of optical tweezers of a dielectric sphere embedded in a chiral medium.  Here we com-
bine the previous results in order to develop a generalization of the Mie-Debye theory to the case of a chiral host 
medium. We consider a CP Gaussian laser beam of helicity σ = ±1 at the entrance port of a high-numerical 
aperture (NA) objective. The resulting non-paraxial focused beam propagates in the lossless non-magnetic chi-
ral medium of refractive index nm(σ ) =

√
εm + σκ , where εm is the relative permittivity and κ is the chirality 

parameter.
The focused beam is then represented as a superposition of plane waves corresponding to wavevectors kσ (θ ,φ) 

with a fixed magnitude kσ = nm(σ )k0
39:

The polarization unit vector ε̂′σ (θ ,φ) = (x̂′ + i σ ŷ′)/
√
2 is defined in terms of the Cartesian unit vectors obtained 

by rotation with Euler angles (φ, θ ,−φ) . The focal point is at position −rp , whereas the spherical particle center 
is at the origin19. After resolving for the Mie scattering by the particle and computing the resulting optical force, 
we displace the origin to the focal point, and then the particle position will be at rp(ρp,φp, zp) which is finally 
written in terms of its cylindrical components. The angular semi-aperture θ0 is defined in terms of the objective 
NA as discussed in detail below, whereas γ is the ratio of the objective focal length to the laser beam waist at the 
objective entrance port.

The incident focused beam (14) illuminates an achiral, non-magnetic spherical particle of refractive index 
np = √

εp  and radius a which is embedded in the chiral medium. Mie scattering of a plane wave by a chiral 
spherical particle embedded in a chiral medium has been solved in Ref.38. We consider the particular case in 
which only the host medium is chiral. Our results differ from63 by some sign factors which we attribute to typos 
in that reference.

When considering the non-paraxial focused beam (14), we need to solve the Mie scattering for different 
propagation directions and then take the superposition of the corresponding scattered field components. Due 
to the spherical symmetry of the particle, it is straightforward to write the corresponding scattering field compo-
nents with the help of finite rotations and Wigner rotation matrix elements dℓm,m′(θ) in the angular momentum 
representation64.

The Debye potentials describing the total fields outside the spherical particle are written as partial-wave 
(multipole) sums over ℓ (for the total angular momentum J2 ) and m (for the axial component Jz ) of the form

Denoting the spherical coordinates of a spatial point r as (r,ϑ ,ϕ), we find

Here, jℓ and h(1)ℓ  denote the spherical Bessel and Hankel functions of the first kind, respectively, and Yℓ,m are the 
spherical harmonics65. The multipole coefficients of the incident focused beam (14) are given by
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where Jm are the cylindrical Bessel functions of integer order m65. The scattering Mie coefficients Aℓ ≡ αℓ/�ℓ 
and Bℓ ≡ βℓ/�ℓ represent the amplitudes for conserving and changing the photon helicity, respectively. They 
are given by

here N = np/nm(σ ) is the relative refractive index of the particle with respect to the host medium and 
ψℓ(x) = xjℓ(x) and ξℓ = xh

(1)
ℓ (x) are the Riccati-Bessel functions53. The variables x = nm(σ )k0a and 

x̄ = nm(−σ)k0a are the size parameters in the host medium when taking the incident and the reversed helici-
ties, respectively. Finally, y = N x is the size parameter in the particle medium.

The coefficients Bℓ appearing in Eqs. (15) and (16) represent amplitudes for helicity reversal σ → −σ upon 
Mie scattering. When the microsphere is aligned along the symmetry z-axis ( ρp = 0 ), the total optical angular 
momentum is conserved, and as a consequence the variation of SAM is entirely converted into optical orbital 
angular momentum66. Mie scattering is indeed a mechanism for spin-orbit interaction67,68. On the other hand, 
when ρp > 0, part of the SAM change might be transferred to the particle center-of-mass, thus contributing to 
the optical torque on the particle.

We now define the normalised force efficiency17

where P is the laser power in the sample region and c is the speed of light in vacuum. When evaluating the flux 
of the stress tensor (13), we write the total electric field as

and likewise for the magnetic field H. E(σ )
s  ( E(−σ)

s  ) represents the scattered field contribution with the same 
(opposite) helicity of the incident field. The three terms in (20) are ordered precisely as the three contributions 
in the r.-h.-s. of (15) and (16).

Among the several quadratic contributions obtained when replacing (20) into (13), cross terms involving 
opposite helicities do not contribute and only E(σ )
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∗ survive when taking 
a Gaussian surface at infinity (and likewise for the terms quadratic in H and the cross electric-magnetic terms). 
The first term yields the extinction contribution Qe to the force efficiency, while the last two terms yield the 
scattering contribution Qs. Qe represents the rate at which linear momentum is removed from the incident field, 
normalized as in (19). A fraction of this momentum is carried away by the scattered field at a normalized rate 
−Qs, so that the total force efficiency is written as

When deriving the multipole series for Qe and Qs from Eqs. (13) and (15)–(17), we introduce the effect of refrac-
tion at the planar interface between the glass coverslip and the chiral medium filling the sample, which is typical 
in oil-immersion objectives69. The refraction index mismatch between the two media is written in terms of the 
relative index Nσ = nm(σ )/ng, where ng is the glass refractive index. The Fresnel amplitude for refraction is

The wavevectors in glass have magnitude kg = ngk0 and make an angle θ with respect to the z-axis, whereas 
the angle in the chiral medium is θm = arcsin(sinθ/Nσ ). The laser power P in the sample region is reduced on 
account of the interface, as well as from the finite aperture radius of the objective entrance port. The resulting 
filling fraction is given by

with s0 = min{Nσ , NA /ng}.
More importantly, we add to the ideal aplanatic model (14) the spherical aberration phase70

also introduced by refraction at the glass-sample interface. Spherical aberration is typically detrimental on the 
effects discussed in this paper as it degrades the focal region. Thus, our realistic description of oil-immersion 
objectives, which are usually employed in optical tweezers setups, prevents us from overestimating the optical 
torque discussed in the following. The phase �sa(θ) is proportional to the distance L between the glass slide and 
paraxial focal plane. Instead of assuming a given value for L,  which is unknown in real experiments, we simulate 
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the experimental procedure for controlling the amount of spherical aberration (see Methods). The relevant length 
scale is then the distance d by which the objective is displaced, starting from the configuration with the trapped 
microsphere just touching the coverslip.

The axial components of Qs and Qe are then written as

Like the axial components, the radial and azimuthal cylindrical components of Qs and Qe do not depend on the 
particle angular position φp by symmetry (see Methods). The dependence on the cylindrical coordinates ρp and 
zp of the particle position is contained in the multipole coefficients

The upper bound for the integration in (25) and (26) represents the angular semi-aperture in the glass medium: 
θ0 = sin−1{min[(NA/ng),Nσ ]}. We do not take evanescent waves (which appear when NA > nm(σ ) ) into 
account71 as the microsphere is trapped near the focal plane and thus far from the coverslip for the typical 
numerical examples discussed below.

Numerical examples.  In all numerical examples discussed in this paper, we take typical experimental 
values for a standard optical tweezers setup20. We consider a right-handed CP Gaussian beam ( σ = −1 ) with 
vacuum wavelength �0 = 1064 nm at the objective entrance port, of numerical aperture NA = 1.3. Results for 
left-handed CP ( σ = 1 ) may be considered from those shown here by replacing κ → −κ and changing the sign 
of the azimuthal force component (and its derivative). The ratio between the objective focal length and the beam 
waist at the entrance port is γ = 1.226. The objective axial displacement, which controls the amount of spherical 
aberration when employing oil-immersion objectives, is d = 5 μm. In addition, we take ng = 1.5 and εm = 1.85 
for the refractive index of the glass coverslip and the permittivity of the chiral solution, respectively.

Optical force.  As a first example, we consider a BrO2 microsphere with refractive index np = 1.7 and radius 
a = 500 nm immersed in a chiral solution. In Fig. 1a, we plot the axial force efficiency Qz as a function of nor-
malized microsphere position zp/a along the z-axis ( ρp = 0 ) for different values of chirality parameter κ . When 
the host medium is achiral ( κ = 0 ), its refractive index nm = √

εm = 1.36 is too small compared to the BrO2 
particle’s high refractive index. As a consequence, radiation pressure dominates, leading to a positive (i.e. along 
the propagation direction) force for all values of zP/a (red line).
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Figure 1.   (a) Normalized axial force Qz acting on a BrO2 microsphere of radius 500 nm embedded in a 
chiral medium as a function of axial position (in units of the sphere radius) for different chirality parameters: 
κ = −0.01 (solid), κ = 0 (red) and κ = 0.01 (dashed). The incident beam is right-handed circularly polarized 
(helicity σ = −1 ). (b) Density plot of Qz versus axial position and chirality parameter. Only negative values are 
shown.
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In contrast, trapping can be achieved in a chiral host media with κ = −0.01 under otherwise the same con-
ditions, as indicated by the solid blue line in Fig. 1a. Thus, a chiral medium with the same handedness of the 
CP trapping laser beam allows for trapping of high-index particles by diminishing the radiation pressure effect 
and leading to negative optical forces. On the other hand, in the case of a left-handed chiral medium κm = 0.01 
(dashed line), radiation pressure is enhanced and again no trapping is possible.

Figure 1b shows the density plot of the axial force efficiency Qz as a function of the chirality parameter κ 
and the axial position zp/a. The colored area corresponds to the regions in the parameter space for which the 
optical force is negative ( Qz < 0 ), thus allowing for stable trapping. The edge of this area provides the positions 
of equilibria along the z-axis as function of κ , with the left-hand side corresponding to stable equilibria. It is 
worthwhile to mention that chiral media not only optimize trapping stability but also facilitate optical tweezing 
of large refractive-index particles, as in the example considered here. In short, trapping in a chiral host media 
facilitates optical manipulation and tweezing of high-index particles provided that the chiral material has the 
same handedness of the incident CP light.

Optical torque.  Spin angular momentum (SAM) of CP light can be transferred to trapped particles and make 
them spin around the beam axis when they are absorptive, anisotropic22 or non-spherical23. Although the optical 
torque (OT) on a transparent isotropic microsphere centered along the beam symmetry axis vanishes, transfer 
of SAM to the center of mass can still be observed in this case from the analysis of Brownian fluctuations24 or by 
driving the sample laterally so as to displace the equilibrium position from the beam axis26. OT is predicted to 
be significantly enhanced in the case of chiral particles, opening the way for enantioselective manipulation and 
characterization of the chiral response of individual nanoparticles with optical tweezers36.

Here we show that a much stronger enhancement of the OT is found when taking a chiral host medium 
instead of a chiral particle. We follow the scheme of Ref.26 and calculate the rotation of the equilibrium position 
when a Stokes drag force is applied by driving the sample along the x-direction, as illustrated by Fig. 2a. As the 
particle is displaced off-axis by the Stokes force FS , an optical azimuthal component Fφ builds up, in addition to 
the restoring radial component Fρ < 0. Fφ results from the SAM of the trapping beam and its sign is controlled 
by the helicity σ of the CP. As shown in Fig. 2b, the resulting equilibrium position is then rotated by an angle α 
around the z-axis with respect to the x-axis, with tan α = Fφ/|Fρ |. When the off-axis displacement is ≪ a, we 
can write the rotation angle in terms of the transverse optical stiffness kρ ≡ −∂ρFρ |ρ=0 and the torsion constant 
kφ ≡ ∂ρFφ |ρ=0 as tan α ≈ kφ/kρ . We obtain exact values for kφ and kρ from the Mie-Debye theory for chiral host 
media developed above. We first derive partial-wave series for kφ and kρ by taking the analytical derivatives of 
the series for Qφ and Qρ . The series for kφ and kρ are then computed numerically. By rotational symmetry, they 
are independent of the angular position α.

In all numerical examples for the optical torque, we consider a silica microsphere with refractive index 
np = 1.46 embedded in a chiral medium. In Fig. 3, we plot kφ/P as a function of the sphere radius a for chiral-
ity parameters κ = −0.001 (blue), −0.002 (red) and −0.003 (black). For radii a<∼�0/nm(σ ), the torsion constant 
is approximately independent of κ and develops a peak corresponding to a negative torque72, i.e, opposite to 
the SAM of the trapping beam, at a ≈ 0.4 μm. As the radius increases, the OT goes positive and kφ develops a 
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Figure 2.   (a) Schematic representation of the optical torque on a particle trapped in a chiral medium. A right-
handed ( σ = −1 ) circularly-polarized Gaussian laser beam is focused by an oil-immersion high-NA objective 
into a sample filled with a chiral solution. The sample is driven laterally so as to displace the particle equilibrium 
position from the beam symmetry axis. (b) At equilibrium, the resulting Stokes drag force FS balances the 
optical force, which contains radial Fρ and azimuthal Fφ components, the latter being responsible for the optical 
torque. The equilibrium position is then rotated around the beam axis by an angle α with respect to the direction 
of the Stokes force.
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second (negative) peak at a ≈ 2.9 μm, whose amplitude is strongly chirality-dependent. For even larger radii 
(not shown), kφ oscillates around zero as expected in the geometrical optics regime19. The oscillations result 
from interference between direct reflection and reflection after a round-trip propagation across the microsphere 
diameter18. Such interference oscillations, of period �a = �0/(4np) ≈ 0.18 μm, are clearly visible in the negative 
peak shown in Fig. 3.

The spin-orbit contribution to kφ can be traced by collecting the spin-reversal terms involving the coefficients 
Bℓ as discussed in connection with Eqs. (15) and (16). In the peak around a ≈ 0.4 μm shown in Fig. 3, the spin-
orbit contribution is negative and its magnitude varies in the range between 15 and 20% of the total result. It 
becomes more dominant for smaller particles, closer to the Rayleigh scattering regime, for which kφ becomes 
negligibly small and κ−independent. On the other hand, the spin-orbit effect accounts for a small fraction of the 
torsion constant kφ , typically at the percent level, near the chirality-dependent peak around a ≈ 2.9 μm. Overall, 
the relative contribution of the spin-orbit term tends to decrease with the chirality parameter κ .

Such chirality-dependent enhancement of the OT illustrated by Fig. 3 leads to a significant increase of the 
rotation angle α. In Fig. 4, we plot α as a function of sphere radius, again for different values of the chirality 
parameter (same conventions as in Fig. 3). We also show the case of an achiral medium ( κ = 0 , purple), for 
which the rotation is significant only for radii near a ∼ 0.4 μm, resulting from a negative OT recently measured 

Figure 3.   Torsion constant per unit power kφ/P as a function of the radius of a silica microsphere. The particle 
is embedded in a chiral solution with κ = −0.001 (blue), −0.002 (red) and −0.003 (black). The incident beam is 
right-handed circularly-polarized (helicity σ = −1).

Figure 4.   Microsphere rotation angle α in degrees resulting from the optical torque on a silica microsphere 
(see Fig. 2) as a function of radius. The chirality parameter of the host medium is κ = 0 (purple), −0.001 (blue), 
−0.002 (red) and −0.003 (black). The inset shows the case of a left-handed host medium with κ = 0.003 (green) 
for comparison. The incident beam is right-handed circularly-polarized (helicity σ = −1 ). The incident beam is 
right-handed circularly-polarized (helicity σ = −1).
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for polystyrene microspheres26. For chiral media, the magnitude of the rotation angle is maximum at a ≈ 3.4 μm, 
which is slightly shifted with respect to the peak position of kφ because the transverse stiffness decays as kρ ∼ 1/a 
in this size range19. The behavior of kρ also explains why the ratio between the amplitudes of the two peaks for 
the angle of rotation is much bigger than the corresponding ratio for the torsion constant kφ shown in Fig. 3.

The interference oscillations discussed in connection with Fig. 3 are also clearly visible in the plot of the 
rotation angle shown in Fig. 4. The fast, large-amplitude oscillations near the peak region open the way for 
measurements of the microsphere radius. For κ = −0.003, the oscillations correspond to a maximum slope 
�α/�a ∼ 130oµm−1 near the peak region, allowing for a sensitivity δa ∼ 1.5 nm given a typical conservative 
estimate δα ∼ 0.2o for the precision in the measurement of the rotation angle26.

The inset of Fig. 4 shows the case of a left-handed chiral host medium with κ = 0.003. As the handedness of 
the medium is opposite to the handedness of the incident trapping beam, the OT is always negative. Although the 
peak value is slightly smaller than the magnitude of the peak for κ = −0.003, it still corresponds to a remarkable 
enhancement of the negative OT effect when compared with the experiment reported in26.

The comparison between the results for opposite signs of κ shown in Fig. 4 shows that the sense of rotation 
can be employed as a direct probe of the handedness of the medium when using microspheres of radii a > 1 μm. 
The angle α indeed changes sign as κ changes from negative to positive values as illustrated by Fig. 5, where we 
plot the rotation angle α as a function of the chirality parameter κ for a = 1.5 μm (blue) and 3.3 μm (black).

The strong dependence of the rotation angle on the chirality parameter illustrated by Fig. 5 paves the way 
for an all-optical, local characterization of the host medium chiral response at the nanoscale with the help of 
optical tweezers. For the radius a = 3.3 μm, the slope of the function α(κ) in the neighborhood of κ = 0 is 
�α/�κ ≈ 9.9× 103 deg, thus allowing for a chirality resolution δκ ∼ 2× 10−5 given a typical experimental 
precision δα ∼ 0.2o. Such figures bring naturally occurring chiral solutions within reach of our proposal for 
characterization of chirality, which seems to be ideally suited for the small-volume microfluidic chambers often 
employed as samples in optical tweezers setups8.

Discussion
We have shown that the optical force acting on a dielectric trapped microsphere embedded in a chiral medium 
strongly depends on the chirality parameter κ and on the handedness of the CP trapping beam. The trap axial 
stability is greatly enhanced by choosing a CP beam with the same handedness of the host medium. Such 
arrangement allows for optical tweezing of high-refractive index particles that cannot be trapped otherwise, 
thus enlarging the scope of single-beam optical traps.

We have also considered the optical torque on the trapped particle’s center of mass, which is characterized by 
the torsion constant kφ , in order to unveil the remarkable interplay between chirality and the transfer of optical 
spin angular momentum.

Our approach allows for a clear identification of the spin-orbit contribution to the optical force and torque. 
Mie scattering of a CP incident field gives rise to a field component with the reserved SAM66,67. Such spin-to-
orbit conversion becomes more transparent in the formalism developed in this paper, as field components with 
opposite helicities propagate with different phase velocities in a chiral host medium. The spin-orbit effect provides 
a sizable contribution for radii of the order of the wavelength and increases as the radius is decreased into the 
Rayleigh scattering regime.

The optical torque leads to a rotation of the equilibrium position when a lateral external Stokes force is 
applied. We have found a sizeable, detectable enhancement of the rotation angle for radii a ∼ 3 μm for media 
with chiral indices compatible with those of naturally occurring materials. Since the angle depends strongly on 

Figure 5.   Microsphere rotation angle α in degrees versus chirality parameter κ of the host medium for a silica 
microsphere of radius a = 1.5 μm (blue) and 3.3 μm (black). The incident beam is right-handed circularly-
polarized (helicity σ = −1).
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the chirality parameter in this range of radii, one might characterize the local chiral response of small-volume 
samples typically employed in optical tweezers from measurements of the equilibrium position similar to those 
reported in Ref.26. In addition, the sense of rotation provides a direct indication of the handedness of the solu-
tion. Altogether our findings show that the torque in optical tweezers could be exploited as a novel all-optical 
method to locally probe the chiral response at the nanoscale. It is important to distinguish this method from 
traditional optical methods of enantioselection of chiral solutions, such as the rotatory power, which only apply 
for macroscopically large systems and can only provide an average chiral response.

When considering the torsion constant in a chiral host medium, the geometrical optics result is obtained 
only for radii much larger than usually required. We have obtained interference oscillations which are typical 
for radii larger than the wavelength19. They arise from an unusual type of semiclassical Mie scattering near the 
focal region, with the leading contribution coming from small angular momenta (small multipole orders)18. We 
have found oscillation amplitudes much larger than the typical values for achiral materials69 when considering 
radii close to a ∼ 3 μm. Such oscillations open the way for the characterization of the microsphere diameter 
with nanometric precision. On the other hand, from a more fundamental perspective, it brings into light an 
unexpected feature of semiclassical Mie scattering73 that requires further investigation.

Methods
Numerical simulation of the spherical aberration introduced by the glass‑sample inter-
face.  In real experiments, the distance L between the paraxial focal plane and the planar interface between 
the glass coverslip and the sample chamber (see inset of Fig. 6b) is not known beforehand. In order to control 
this parameter, which defines the amount of spherical aberration according to Eq.  (22), one can start from 
a reference configuration with the trapped microsphere just touching the coverslip, which is easy to identify 
experimentally69. Then, the objective is displaced away from the coverslip so as to trap the particle at a comfort-
able distance from the boundary of the chamber.

Here, we describe how we simulate such experimental procedure numerically. To illustrate the method, we 
show explicit intermediate results for silica microspheres embedded in a chiral solution with κ = −0.003. All 
other examples discussed in the paper are obtained along the same lines.

We first calculate the interface-focal plane distance L0 in the initial reference configuration, using the condi-
tion z(0)eq + L0 = a, where z(0)eq  is the particle equilibrium position (measured with respect to the focal plane) in 
the reference configuration. Thus, we solve Qz(zp = a− L0) = 0 for L0 as a function of radius. The results are 
shown in Fig. 6a.

The second step is to increase L by a controlled amount: L = L0 + Nσ d, where d is the objective displace-
ment. In Fig. 6b we plot L/a versus radius for d = 5 μm. Once the coverslip-focal plane distance is known, one 
can either directly compute the axial force as a function of the axial position zp (see Fig. 1), or continue the 
procedure by solving Qz(zp = zeq) = 0 for the stable equilibrium position zeq. The results for zeq as a function 
of radius, shown in Fig. 6c, display interference oscillations with a characteristic period �a = �0/(4ns) already 
discussed in connection with Fig. 3.

Figure 6.   Numerical simulation of the effect of refraction at the planar interface between the glass coverslip 
and the interior of the sample chamber. As an example, we take κ = −0.003. (a) Initial reference position of the 
focal plane with respect to the glass slide versus radius. The reference configuration is defined by the condition 
that the equilibrium position is such that the microsphere is just touching the glass slide. (b) Final focal plane 
position (in units of sphere radius) after displacing the objective by d = 5 μm. (c) Equilibrium position of the 
microsphere (in units of sphere radius) and (d) transverse trap stiffness kρ (in units of power).
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Finally, the last step consists in computing the partial-wave (multipole) series for kφ and kρ taking ρp = 0 
and zp = zeq. The results for kφ/P and kρ/P are shown in Fig. 3 (black line) and Fig.  6d, respectively. Note that 
kρ > 0 for all radii as required for trap stability on the xy plane.

Multipole series for the radial and azimuthal force components.  The axial components of the scat-
tering and extinction optical force components, normalized by Eq. (19), are given by (23) and (24), respectively. 
Here, we provide the remaining cylindrical components.

•	 Scattering radial component 

•	 Scattering azimuthal component 

•	 Extinction radial component 

•	 Extinction azimuthal component 

The multipole coefficients G(σ )
ℓm  are given by Eq. (25). The extinction radial and azimuthal components also 

require the coefficients

One can show that the above results, alongside Eqs. (23) and (24) for the axial components, are such that

when taking (σ → −σ , κ → −κ) as expected for the cylindrical components of a polar vector.
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