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Abstract

Background—Sleep-disordered-breathing (SDB), which is characterized by chronic intermittent 

hypoxia (IH) and sleep fragmentation (SF), is a prevalent condition that promotes metabolic 

dysfunction, particularly among patients suffering from obstructive hypoventilation syndrome 

(OHS). Exosomes are generated ubiquitously, are readily present in the circulation, and their cargo 

may exert substantial functional cellular alterations in both physiological and pathological 

conditions. However, the effects of plasma exosomes on adipocyte metabolism in patients with 

OHS or in mice subjected to IH or SF mimicking SDB are unclear.

Methods—Exosomes from fasting morning plasma samples from obese adults with 

polysomnographically-confirmed OSA before and after 3 months of adherent CPAP therapy were 
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assayed. In addition, C57BL/6 mice were randomly assigned to (1) sleep control (SC), (2) sleep 

fragmentation (SF), and (3) intermittent hypoxia (HI) for 6 weeks, and plasma exosomes were 

isolated. Equivalent exosome amounts were added to differentiated adipocytes in culture, after 

which insulin sensitivity was assessed using 0 nM and 5nM insulin-induced pAKT/AKT 

expression changes by western blotting.

Results—When plasma exosomes were co-cultured and internalized by human naïve adipocytes, 

significant reductions emerged in Akt phosphorylation responses to insulin when compared to 

exosomes obtained after 24 months of adherent CPAP treatment (n=24; p<0.001), while no such 

changes occur in untreated patients (n=8). In addition, OHS exosomes induced significant 

increases in adipocyte lipolysis that were attenuated after CPAP, but did not alter pre-adipocyte 

differentiation. Similarly, exosomes from SF- and IH-exposed mice induced attenuated p-AKT/

total AKT responses to exogenous insulin and increased glycerol content in naïve murine 

adipocytes, without altering pre-adipocyte differentiation.

Conclusions—Using in vitro adipocyte-based functional reporter assays, alterations in plasma 

exosomal cargo occur in SDB, and appear to contribute to adipocyte metabolic dysfunction. 

Further exploration of exosomal miRNA signatures in either human subjects or animal models and 

their putative organ and cell targets appears warranted.

Keywords

Obesity hypoventilation syndrome; obstructive sleep apnea; intermittent hypoxia; sleep 
fragmentation; continuous positive airway pressure; extracellular vesicles; exosomes; adipocytes; 
insulin resistance

INTRODUCTION

Obesity is a major risk factor for the development of metabolic syndrome and insulin 

resistance, and is associated with an increased risk of disability and morbidity 1, 2. One of 

the consequences of morbid obesity is the obesity hypoventilation syndrome (OHS), which 

is characterized by a combination of obesity and chronic hypoventilation along with 

increased early mortality 3–5. It is estimated that 90% of patients with OHS also have 

obstructive sleep apnea (OSA) 6. The exact prevalence of OHS in the community is unclear, 

but is estimated to be approximately 0.15–0.6% of the general population 7, 8, 9–20% of 

referred obese patients, and up to 42% of referrals when BMI is >35 kg/m2 9–11. In addition, 

a paradoxical protective effect of OHS on cardiovascular function has been recently 

suggested 12, such that it is yet unclear how OHS and OSA in obese patients differ as far as 

their potential contributions to end-organ morbidity. Previous studies have also demonstrated 

that treatment with continuous positive airway pressure (CPAP) or noninvasive ventilation 

(NIV) in patients with OHS and OSA is beneficial, while supplemental oxygen alone does 

not appear to be of clinical value 13, 14.

Although metabolic dysfunction is now clearly associated with OSA, the impact of OHS on 

insulin resistance and dyslipidemia is still virtually unexplored 15, 16. Indeed, there have 

been few if any longitudinal studies evaluating the metabolic changes resulting from OHS 

treatment 17, and the exact molecular mechanisms of OHS-associated insulin resistance are 
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unclear. Identification of biomarkers indicating which OHS patients are at greater metabolic 

risk would be extremely useful. In this setting, extracellular vesicles (EVs) or EV-associated 

molecules are emerging as promising biomarkers in insulin resistance, diabetes, and the 

metabolic syndrome 18–22. Therefore, identifying and characterizing pathways leading to 

insulin resistance would help in designing strategies to treat this problem.

Exosomes are very small vesicles (30–120 nm) that are present in many and perhaps all 

biological fluids 23–27, where they participate in a vast array of physiological processes such 

as cell metabolism, proliferation and differentiation 28, 29. Plasma-derived exosomes can 

interact with target tissues and disrupt or coordinate the enrollment of inflammatory cells 

such as to alter adipocyte metabolic pathways, thereby promoting the development of insulin 

resistance 21, 22, 30–32. Based on aforementioned considerations, we hypothesized that 

plasma exosomes in OHS contribute to adipose tissue insulin resistance, and that such 

effects will improve with treatment over time. To examine this issue, we took advantage of 

the Pickwick’s Spanish Sleep Network Study 17, and assessed the in vitro effects of plasma 

exosomes from OHS patients before and following up to 2 years of adherent CPAP treatment 

on insulin sensitivity and adipocyte biology in naïve human adipocytes. To further 

understand the potential contributions of chronic intermittent hypoxia (IH) and sleep 

fragmentation (SF) to circulating exosomes and their putative functional alterations, we 

conducted parallel and similar studies in mice (please, see Fig. S1).

MATERIALS AND METHODS

Human Subjects

The human subjects were recruited as part of a larger multicenter, randomized, controlled 

trial conducted in 14 Spanish teaching hospitals (NCT01405976), and patient characteristics 

have been described in detail elsewhere 17. Every patient underwent a diagnostic sleep study. 

Patients allocated to CPAP underwent a titration study on a second night. CPAP titration was 

performed using either conventional polysomnography or an automatic CPAP following a 

validated protocol 33. The subjects were evaluated at diagnosis (Pre), and after 2, 12, and 24 

months after initiation of CPAP treatment (T-2, T-12, and T-24M). Adherence was defined at 

nightly use for at least 5.3 ± 2.1h/night throughout the duration of the study.

As controls, subjects who were diagnosed with OSA in the context of an ongoing parallel 

study, the EPIOSA study (NCT02131610), but who opted for not receiving treatment for 12 

months were also included 34.

Murine Models of OSA

All experiments were approved by The University of Chicago Institutional Animal Care and 

Use Committee (IACUC protocols # 72078 and 72043). Mouse cages were randomly 

assigned to sleep control (CTL), sleep fragmentation (SF), room air (RA) or intermittent 

hypoxia (IH) conditions for periods of 1 day, 1, 2, 6 and 20 weeks.

Sleep Fragmentation (SF) and Intermittent Hypoxia (IH) (Online Supplement)

The paradigms used to induce SF and IH have been previously described 35–38.
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Measurements of Metabolic Parameters

Fasting blood samples were drawn after the sleep study, and immediately centrifuged, 

aliquoted and stored at −80°C. Insulin concentrations were measured using ELISA kits 

(ALPCO Diagnostics, Salem, NH). Insulin resistance was assessed using the homeostasis 

model assessment (HOMA) equation (fasting insulin x fasting glucose/ 22.5) 39. Plasma 

levels of adiponectin were measured using commercial assay kits (BioVison Inc., Milpitas, 

CA), and human retinol-binding protein 4 (RBP4) was also measured using a Quantikine 

ELISA Kit (R&D Systems, Inc., Minneapolis, MN).

Circulating Plasma Exosome Isolation and Quantification

Exosomes were isolated from frozen plasma using the Total Exosome Isolation Kit 

according to the manufacturer’s protocol (Life Technologies, Grand Island, NY), as 

previously described 25, 40, 41, and all necessary steps were undertaken to characterize the 

purity of the exosomes as recommended (see below) 42.

The numbers of exosomes derived from human or mice samples were determined using the 

Exocet kit (System Biosciences), according to the manufacturer’s protocols. The exosomes 

were lysed using a gentle lysis buffer as to maintain the enzymatic activity of the exosomal 

Acetylcholinesterase (AChE) enzyme. A standard curve was performed using known 

numbers of exosomes (as measured by NanoSight) and calibrated with a recombinant AChE 

enzyme standard solution provided in the kit. The enzyme activities of the samples and the 

standards were determined by incubation in a reaction buffer in 96-well plates at room 

temperature for 25 mins. The optical density was measured at 406 nm by a 

spectrophotometric plate reader. The average of exosomes in human was 7.0–7.4x107/μl, 

while for mice were 5.9–6.2 x107/μl. Equal exosomes numbers were used for each 

experiment conditions.

Flow Cytometry

Different exosome surface markers were selected based on their functions including: (a) 

tetraspanins (CD9, CD63 and CD81), (b) targeting/adhesion (CD 31), (c) antigen 

presentation (HALA-G), and (d) membrane transport and fusion (Rab5a) that were bound to 

Exo-Flow FACS magnetic beads [(9.1μm), (SBI, System Bioscience, Mountain View, CA)]. 

Labeled exosomes markers were analyzed on a FACSCanto II (FACSCalibur) flow 

cytometer (BD Biosciences, San Jose, CA) using the FACSDiva software 2.56 (BD 

Biosciences).

Exosome Cellular Uptake

Purified exosomes from either human or mouse plasma samples were labeled with green 

fluorescent linker PKH67 (Sigma-Aldrich, St. Louis, MO), Exo-Red, and Exo-Green 

(System Biosciences, Mountain View, CA), and further incubated at 37°C for 10 min, until 

the reaction was stopped by adding ExoQuick-TC reagent. Labeled exosomes were added to 

either differentiated human adipocytes (# PT-5006, Lonza, Walkersville, MD) or murine 

3T3-L1 cells (ATCC, Manassas, VA) for 4 hours in a cell culture incubator at 37°C. Labeled 

exosomes were monitored for delivery into target cells using a Leica SP5 Tandem Scanner 
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Spectral 2-photon confocal microscope (Leica Microsystems, Inc., Buffalo Grove, IL) with a 

63× oil-immersion lens.

Cell Cultures

Human Adipocytes—Human adipocytes [adipose derived stem cells, ADSCs] were 

purchased from Lonza (# PT-5006, Lonza, Walkersville, MD) and cultured at 37°C, 5% 

CO2, 95% relative humidity in pre-adipocyte basal media (PT-8202, Lonza) supplemented 

with 10% fetal bovine serum, FBS, (Life Technologies, Carlsbad, CA). Cells were seeded in 

24-well plates with 40,000 cells per well in basal medium PGM-2 (Lonza), and after 48 h, 

cells were differentiated by changing to Bulletkit PGM-2 (PT-9502 & PT-8202) media 

containing 10% FBS, 1 μg/ml insulin, 1 μM dexamethasone (DEX), and 0.5 mM 3-

isobutyl-1-methylxanthine. The medium was changed every 2 days for 12 days.

Murine Adipocytes—Mouse 3T3-L1 cells were purchased from ATCC (Manassas, VA). 

The cells were maintained in DMEM (Life Technologies, Grand Island, NY) supplemented 

with 10% (v/v) fetal calf serum, FCS, (Life Technologies), 100 U/mL penicillin, and 0.1 

mg/mL streptomycin in incubator at 37°C. Day 0 was designated as the second day after the 

confluence of the 3T3-L1 cells. To induce differentiation, pre-adipocytes were treated for 4 

days beginning on D0 with 0.5 mmol/L, isobutylmethylxanthine, 2.5 mmol/L 

dexamethasone and 8.7 mmol/L insulin in DMEM containing 10% fetal calf serum, F (Life 

Technologies). The cells were subsequently replenished with DMEM containing 10% FCS 

every other day.

Human and Mouse Plasma Exosomes and Pre-Adipocyte Proliferation and 
Differentiation—Human ADSCs cells (4 x104 cells/well) or mice 3T3-L1 cells (4 x104 

cells/well) were cultured in 24-well plates. Exosomes from human plasma were added to 

ADSCs cells, and plasma exosomes from mice were added to mice 3T3-L1 cells for 3 

consecutive days during proliferation. Medium was removed from the plates 24 h after 

adding the last exosome administration, and the monolayers were rinsed with cold PBS and 

200μl of CyQUANT GR dye/cell lysis buffer (included in the CyQUANT kit, Invitrogen, 

Eugene, OR, USA) was added to each well. The fluorescence was measured using a 

microplate reader. The excitation maximum was 485 nm, and the emission maximum was 

530 nm.

For differentiation assays, equivalent numbers of exosomes were added every day to the 

cells in the differentiation media for 3 consecutive days during the differentiation process for 

3T3-L1, and every other day for human ADSCs cells. The differentiated human ADSCs or 

3T3-L1 were fixed in 4% paraformaldehyde for 15 min. Isopropanol (60%) was then added 

in each well, and cells were then stained using 0.5% Oil Red O solution diluted (60:40, v/v) 

in isopropanol for 15 min at room temperature. The amount of intracellular lipid was 

assessed by isopropanol dissolution and optical density measurement at 490 nm.

Effects of Exosomes on Insulin Sensitivity in Naïve Adipocytes—Human pre-

adipocytes or murine 3T3-L1 cells (4 x104 cells/well) were grown in 24-well plates, and 

cells were differentiated as described above. By day of 12 of differentiation, media were 
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replaced by growth media containing 10% depleted FBS. Exosomes were added for 24 hours 

and adipocytes cells were treated with 0 or 5nm insulin (Sigma-Aldrich, St. Louis, MO) at 

37°C for 30min prior to lysis. Protein concentrations of the cell lysates were determined 

using the BCA Kit (Life Technologies, Grand Island, NY). The lysates were separated on 

12% SDS-acrylamide gel and transferred to nitrocellulose membranes, incubated in blocking 

buffer (5% nonfat dry milk in TBST) followed by phosphoAkt (Ser473) antibody (Cell 

Signaling Technology, Danvers, MA) or Akt antibody (Cell Signaling Technology) 

overnight at 4°C. Immune-reactive bands were visualized using an enhanced 

chemiluminescence detection system (Chemidoc XRS+; Bio-Rad, Hercules, CA), and 

quantified by the Image Lab software (Bio-Rad, Hercules, CA).

Effects of Exosomes on Lipolysis—Human adipocytes or murine adipocytes cells 

were grown and differentiated in a 24-well cell culture plate. Cells were washed twice with 

100 μl of Lipolysis Wash Buffer (# K622, Lonza, Walkersville, MD). As a positive control, 

1.5 μl of 10 μM Isoproterenol (final concentration 100 nM) was added to 6-wells to 

stimulate lipolysis for 3 hrs. Fifty μl of the media were into 96-well plate. Glycerol released 

was measured by reading the absorbance (OD 570 nm) in a microtiter plate reader. Cells 

were also lysed and used to normalize glycerol to cellular protein content using BCA Protein 

Quantitation Kit (Cat. # K812).

Statistical Analysis

Data are reported as mean ± standard deviation. Comparisons between groups used unpaired 

Student t-test, or a non-parametric equivalent when data were not normally distributed. 

Comparisons between multiple groups used one-way analysis of variance (ANOVA) or Two-

tailed P values that were calculated for all pairwise multiple comparison procedures using 

the Student-Newman-Keuls test among groups. P<0.05 was defined as achieving statistical 

significance.

RESULTS

Human Subjects

A total of 24 subjects with OHS (12 M and 12 F) among those who were adherent to CPAP 

for the complete duration of the trial were randomly selected from the database and their 

samples were de-identified and transferred for analyses (see reference #13 for more details 

on the clinical characteristics of the cohort). Mean age of male OHS subjects was 60.8 

± 12.1 years, BMI was 43.8 ± 6.0 kg/m2 and AHI 57.2 ± 32.2/hr, while female OHS subjects 

were 60.5 ± 15.5 year-old, with a mean BMI of 43.3 ± 5.3 kg/m2 and AHI 62.06 ± 27.7/h. 

Although, there were no observed clinical improvements following two months of CPAP 

therapy except for reductions in fasting insulin and HOMA-IR among OHS subjects, follow-

up assessments at 12 and 24 months of adherent CPAP therapy revealed significant 

improvements in all metabolic parameters including increases in adiponectin concentrations, 

as well as reductions in RBP4 levels in both men and women, with no detectable differences 

among genders. In comparison, untreated subjects with OSA matched for age and gender 

showed no improvements in any of the metabolic parameters after 12 months (Table 1).
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Exosome Characterization and Cellular Uptake

Flow cytometry of isolated exosomes derived from human OHS, OSA, or from murine 

models of OSA revealed the presence of tetraspanins, targeting/adhesion, and antigen 

presentation markers as anticipated from highly purified (>95%) exosome fractions (Figs. S2 

and S3). Exosomes derived from human plasma or murine plasma were incorporated into 

either human or murine naïve differentiated adipocytes as shown in Fig. 1 and Fig. S4, 

respectively, whereas no signal was observed in cells grown in medium supplemented 

without exosomes to which PKH67 was also added (Fig. 1A & Fig. S4A). Of note, labeled 

intracellular RNAs (Exo-Red) and intracellular proteins (Exo-Green) (Fig. 1B and C), were 

not detectable in cells exposed to control media without exosomes (Figs. 1A– 1C; Fig. S4A–

S4C). In addition, analysis of exosome uptake performed in the differentiated adipocyte cell 

lines by time-lapsed confocal microscopy revealed increasing uptake of labeled exosomes 

over time. In this setting, cells exhibiting exosome uptake showed that both RNA and 

protein co-localized with DAPI in the nucleus, while lipid localization was restricted to the 

cell membrane. Exosome uptake was also dose-dependent, as there were increased spot 

numbers, total fluorescence, and median pixel intensities of the dyes with increasing 

exosome concentrations (data not shown).

Effects of Exosomes on Naïve Adipocytes

Insulin-induced pAkt level increases were markedly attenuated in adipocytes by exosomes 

derived from patients with OHS prior to treatment and OSA indicating the presence of 

insulin resistance, and significant increases in pAKT expression emerged following CPAP 

treatment at all time points and no gender differences were detectable (Fig. 2A; pAkt/Akt 

ratio for Pre-: 1.82±0.72 vs. Post-T-24M: 3.01±1.11, n=24, P<0.008). Similarly, mean 

pAkt/Akt ratio for untreated OSA subjects did not change over a period of 12 months (Pre-: 

1.31±0.25 vs. T-12M: 1.30±0.15, n=8, P=0.95).

Mice exposed to IH or SF develops evidence of insulin resistance 38, 43–46. Here, we used 

plasma exosomes derived from mice exposed to SF or IH from 1 day-20 weeks to expose 

naïve murine differentiated adipocytes (Fig. 2B & 2C). Exosomes from SF or IH induced 

significant reductions in Akt phosphorylation responses to exogenous insulin after 6 and 20 

weeks of exposure, while earlier time points did not exhibit significant alterations.

Effects of Exosomes on Pre-Adipocyte Proliferation and Differentiation

No significant differences in pre-adipocyte proliferation were detected at any of the time 

points (Fig. 2A). Similarly, exosomes from mice exposed to SF or IH for short-term, mid-

term or long-term exposures had no discernible effects on adipocyte proliferation (Fig. 3B & 

3C).

However, plasma exosomes derived from OHS subjects at baseline induced increased 

adipocyte lipid accumulation, an indicator of pre-adipocyte differentiation, when compared 

to all treatment time points, while no changes occurred in untreated OSA subjects (Fig. 4A). 

Moreover, plasma exosomes from either SF or IH increased adipocyte lipid accumulation 

when compared to their time-matched control groups, but only following mid-term and 

long-time exposures (Fig. 4B & 4C).
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Effects of Exosomes on Lipolysis

Assessment of lipolysis after exosome treatment of human adipocytes revealed increased 

glycerol release in Pre-treatment conditions, with significant reductions in lipolysis after 

CPAP treatment at all time points (Fig. 5A). No significant differences in exosome-induced 

lipolysis occurred in untreated subjects with sleep apnea (Fig. 5A). Notably, exosomes 

derived from SF or IH mice also increased lipolysis as shown by glycerol release assay (Fig. 

5A & 5C). In SF- or IH-exposed mice, the lipolysis induced by exosomes was increased 

after mid-term and long-time exposures, but not after shorter exposures (Fig. 5B & 5C).

DISCUSSION

This study shows that circulating exosomes from human subjects with OHS or from mice 

exposed to IH/SF promote reduced insulin sensitivity in naïve adipocytes in vitro, that 

responds favorably to CPAP treatment, particularly after long-term adherent therapy, and 

such beneficial effects of CPAP are undetectable among OSA patients who opted not to 

receive any treatment. Furthermore, plasma exosomes from OHS increased the 

differentiation of pre-adipocytes but did not affect their proliferative rates, and also enhanced 

adipocyte lipolysis. Experiments in mice exposed for variable durations of either SF or IH 

further indicated that short-term exposures do not appear to alter the functional properties of 

exosomes, while the findings in exosomes derived from plasma of mice exposed to longer 

exposures closely recapitulated the results in OHS patients.

Before we discuss in more detail the potential implications of our findings, we would like to 

comment on the reduced insulin sensitivity elicited by plasma exosomes originating from 

both SF- and IH-exposed mice. We have previously shown that mice exposed to long-term 

SF develop increased body weight and adipose tissue mass, along with mobilization and 

differentiation of adipocyte precursors, and adipose tissue inflammation 35, 44, 46, 47. This is 

in contrast with mice exposed to chronic IH who display reductions in body weight, along 

with increased visceral fat inflammation 48–52, yet these two paradigms are associated with 

metabolic dysfunction and insulin resistance, suggesting that in the context of OSA, body 

weight may potentiate the effects of obesity, but is not the sole contributor to metabolic 

dysfunction. Here however, we explored the isolated effects of circulating exosomes on 

naïve adipocytes, such that all of the direct effects of either IH or SF on adipose tissue cells 

were essentially precluded by the experimental design, and therefore enabled parallel 

comparisons between the functional effects of exosomes in OHS to those of the murine 

models of OSA. We should also remark that we characterized plasma exosomes from human 

subjects with OHS as well as from both murine OSA models, which are consistently 

enriched for tetraspanins, and are often used as exosome biomarkers 53.

Although the majority of patients with OHS have concomitant severe OSA, nocturnal 

hypoventilation may be the only respiratory sleep disorder present 6. Moreover, in the largest 

clinical trial of OHS to date, 73% of the OHS patients suffered from severe OSA 54. It is 

now quite well established that OSA is independently associated with the presence of 

metabolic dysfunction in general, and more particularly with the presence of insulin 

resistance and dyslipidemia 50, 55, 56. Here we examined different biological markers for 

insulin resistance in OHS patients, and also evaluated circulating levels of adiponectin, 
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which are low in patients with obesity or type-2 diabetes 57, 58, and correlate with indices of 

insulin sensitivity. We found that adiponectin levels were decreased in OHS, and increased 

following adherent CPAP treatment in the absence of significant changes in BMI after 

treatment.

Elevated plasma RBP4 levels have been associated with the clustering of components of the 

metabolic syndrome in insulin-resistant subjects, and in population-based studies 59. Plasma 

levels of RBP4 were higher in OHS patients, and were significantly improved with CPAP 

intervention over time, but did not change in those patients with OSA who were not 

receiving CPAP treatment. These findings provide initial evidence on the favorable impact of 

adherent CPAP treatment on metabolic markers in OHS.

Our findings also indicate that exosomes derived from OHS subjects at diagnosis induce 

insulin resistance in naïve adipocytes compared to exosomes from the same subjects 

following adherent CPAP treatment, particularly when the latter intervention is implemented 

for long periods of time (i.e., T-12M or T-24M). Such improvements were conspicuously 

absent in untreated OSA patients. In parallel studies, using murine circulating exosomes 

from both mid-term and long-term, but not short-term sleep fragmentation (SF) and 

intermittent hypoxia (IH), similar responses indicating insulin resistance emerged in murine 

adipocytes. Thus, the current findings suggest that chronic perturbations of sleep continuity 

or episodic hypoxia lead to altered composition of circulating exosomes, which turn alter the 

functional properties of target cells, i.e., adipocytes, to promote the presence of insulin 

resistance. Since, exosomes can be released by many cell types and are loaded with a variety 

of proteins, lipids, and nucleic acids (including miRNAs) 60, exploration of the potential 

dominant cells from which the exosomes originate to alter adipocyte insulin sensitivity is 

clearly beyond the scope of the present work, but certainly merits future exploration to better 

delineate the specific source cells and cargo elements that foster targeted disruption of 

insulin receptor signaling.

Current experiments illustrate for the first time that plasma exosomes of both OHS patients 

and from mice exposed to murine models of OSA promote the differentiation of pre-

adipocytes, albeit without altering their proliferative properties, and also induce significant 

lipolysis. We have previously shown that chronic SF was associated with substantial 

increases in pre-adipocyte differentiation 35, and that such events required activation and 

propagation of oxidative stress via NADPH oxidase activity. Additional studies indicated 

that IH favors the induction of lipolysis, which in turn adversely affects insulin sensitivity 
61–63, and CPAP withdrawal in patients with OSA leads to major increases in circulating free 

fatty acids, facilitating metabolic dysfunction 64. Taken together, circulating exosomes in the 

context of OHS or murine OSA may provide an inter-cellular communication vehicle that 

ultimately disrupts adipocyte homeostasis, resulting in altered metabolic function. It remains 

unclear whether exosomes derived from patients with OSA will also modify the function of 

other important metabolic cellular targets, such as hepatocytes, myocytes or pancreatic β 
cells.

Several studies have examined circulating exosomes in humans with obesity, metabolic 

syndrome, and diabetes 22. Severe obesity increases circulating exosomes independent of the 

Khalyfa et al. Page 9

Int J Obes (Lond). Author manuscript; available in PMC 2018 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



metabolic syndrome 65, while in two recent studies ob/ob null mice displayed elevated 

numbers of exosomes compared to wild-type mice 66, and exosomes bearing cystatin C were 

positively associated with metabolic complications of obesity in patients with clinical 

vascular diseases 31. Several other studies have isolated exosomes that exhibit biological 

activity from the cell culture supernatants in a variety of settings 18, 19, 21. For example, 

exosomes isolated from the supernatants of visceral adipose tissue cultures showed that 

injection of exosomes derived from diet-induced or genetically obese mice into wild-type 

lean mice results in macrophage activation and insulin resistance 32. In addition, isolated 

exosomes from the supernatants of differentiated 3T3-L1 cells under hypoxic conditions are 

increased in number and also enriched in enzymes related to lipogenesis and promote lipid 

accumulation in recipient 3T3-L1 adipocytes 67. Exosomes have also been implicated in the 

regulation of energy metabolism and are effectively involved in the communication between 

adipocytes 68.

This study provides a compelling proof of concept illustrating that exosomes derived from 

OHS patients following CPAP treatment improved insulin sensitivity in naïve human 

adipocytes, while absence of any therapeutic intervention, which would be unethical in OHS 

but is deemed acceptable in the less severe OSA cases illustrates the absence of any 

temporal changes in the functional properties of circulating exosomes. In addition, OHS is a 

clinical entity characterized by the coexistence of obesity and hypoxia and hypercapnia 

during wakefulness, with a recent study reporting that hypercapnia promotes adipogenesis in 

human adipocytes 69. Accordingly, the beneficial effects of CPAP in our OHS cohort could 

have resulted from the improvements in both hypoxia and hypercapnia, and therefore future 

murine studies may need to explore both the isolated and combined role of hypercapnia to 

exosome biological properties in adipocytes. 69 There are several additional limitations in 

this study that merit discussion. First, the untreated OSA group is not entirely comparable to 

the OHS group, i.e., lower BMI, lower glucose and insulin levels, and slightly higher 

adiponectin than OHS at baseline. Nevertheless, as indicated above the ethical issues 

involved in purposefully withholding therapy from OHS, prompted us to at least show that 

no treatment in OSA resulted on significant changes over time. Second, we used lean mice 

on a normal chow diet and exposed them to IH and SF. This strategy was aimed to avoid 

additional effects of obesity and dietary components on the experiments, and enable specific 

evaluation of the effects of the experimental interventions. Future studies centered around 

the impact on exosomal content and function of genetic or dietary obesity, dietary 

constitutive components (e.g., fat or carbohydrate content) or physical activity should be 

forthcoming70, 71.

As discussed above, plasma-derived exosomes in OHS patients and in mice exposed to OSA 

experimental models mediate at least in part the adverse metabolic effects of these 

conditions as illustrated by adipocyte-based functional reporter assays. Furthermore, our 

results illustrate an important observation, whereby there appear to be continued 

improvements in metabolic dysfunction over time with adherent CPAP treatment that are 

both apparent in systemic metabolic function (Table 1), and are also illustrated by the 

functional properties of circulating exosomes on naïve adipocyte reporter assays. Thus, large 

clinical studies to further investigate the utility of monitoring circulating exosomes and their 

cargo elements as biomarkers of OHS patients and metabolic health may be an important 
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and potentially useful approach to uncover not only the effect of treatment adherence or lack 

thereof, but also to identify putative therapeutic targets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Uptake of fluorescently labelled exosomes by differentiated human adipocytes cells. 

Confocal microscope images illustrating exosome uptake into human adipocytes cells. 

Exosomes were isolated from plasma of subjects with obesity hypoventilation and labeled 

with the PKH67 Green Fluorescent (lipophilic), Exo-Red (fluorescently-label isolated 

exosome RNAs), and Exo-Green (fluorescently-label isolated exosome protein). Panel (A) is 

a representative images of human differentiated adipocytes cells were grown on coverslips 

for 24 h and the labeled exosomes with PKH67 were added to the cells for 6 h at 37°C. 

Panel (B) a representative images of human differentiated adipocytes and the labeled 

exosomes with Exo-Red were added to the cells for 6 h at 37°C. Panel (C) is a representative 

images of human differentiated adipocytes and the labeled exosomes with Exo-Green were 

added to the cells for 6 h at 37°C. Cells were washed and stained with nuclei (blue) stained 

with DAPI, n=6, scale bar in 10 μm. As controls, no exosomes were used but PKH67 was 

added. The differential interference contrast (DIC) was used to visual the morphology of the 

cells without fluorescence.
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Figure 2. 
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Effects of exosomes derived from human subjects, adherent, (Pre- and-Post CPAP 

treatments), non-adherent on naïve human adipocytes, exosomes derived from mice exposed 

to sleep fragmentation (SF) or intermittent hypoxia (IH), respectively, using a time course of 

1 day, 1 week, 2 weeks, 6 weeks and 20 weeks and sleep control (CTL) on a murine naïve 

adipocytes for insulin sensitivity. Panel (A) shows the average of pAKT/tAKT ratio of 

human exosomes derived from human (Pre- and Post-CPAP (T-2M, T-12M, and T-24M) on 

human adipocytes, n=24 per conditions. Panel (B) shows the average of pAKT/tAKT ratio 

of SF and CTL exosomes derived from SF time course on murine adipocytes (3T3-L1), n=8 

per conditions. Panel (C) shows the average of pAKT/tAKT ratio of IH and RA exosomes 

derived from IH time course on murine adipocytes (3T3-L1), n=8 per conditions. * Indicates 

statistical significance, p≤ 0.05.
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Figure 3. 
Effects of exosomes derived from human subjects, adherent, (Pre- and-Post CPAP 

treatments), non-adherent on naïve human adipocytes, exosomes derived from mice exposed 

to sleep fragmentation (SF), or intermittent hypoxia (IH), respectively, using a time course 

of 1 day, 1 week, 2 weeks, 6 weeks and 20 weeks and sleep control (CTL) on naïve 

adipocytes for proliferation of pre-adipocytes. Panel (A) shows the average of proliferation 

values of human pre-and post-treatments (Pre- and Post-CPAP (T-2M, T-12M, and T-24M), 

n=24 per conditions. Panel (B) shows the average of proliferation values of SF and CTL 

(3T3-L1), n=8 per conditions. Panel (C) shows the average of proliferation values of IH and 

RA, (3T3-L1), n=8 per conditions. * Indicates statistical significance, p≤ 0.05.
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Figure 4. 
Effects of exosomes derived from human subjects, adherent, (Pre- and-Post CPAP 

treatments), non-adherent on naïve human adipocytes, exosomes derived from mice exposed 

to sleep fragmentation (SF), or intermittent hypoxia (IH), respectively, using a time course 

of 1 day, 1 week, 2 weeks, 6 weeks and 20 weeks and sleep control (CTL) on naïve 

adipocytes for differentiation of adipocytes. Panel (A) shows the average of lipids released 

values when incubating exosomes derived from human pre-and post-treatments (Pre- and 

Post-CPAP (T-2M, T-12M, and T-24M) to differentiated adipocytes on human adipocytes, 

n=24 per conditions. Panel (B) shows the average of lipids released values when incubating 

exosomes derived from SF or CTL to differentiated adipocyte (3T3-L1), n=8 per conditions. 

Panel (C) shows the average of lipids released values when incubating exosomes derived 

from IH and RA to differentiated adipocytes (3T3-L1), n=8 per conditions. * Indicates 

statistical significance, p≤ 0.05.
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Figure 5. 
Effects of exosomes derived from human subjects, adherent, (Pre- and-Post CPAP 

treatments), non-adherent on naïve adipocytes, exosomes derived from mice exposed to 

sleep fragmentation (SF), or intermittent hypoxia (IH), respectively, using a time course of 1 

day, 1 week, 2 weeks, 6 weeks and 20 weeks and sleep control (CTL) on naïve adipocytes 

for lipolysis. Panel (A) the average of glycerol released when incubating exosomes derived 

from human subject pre-and post-CPAP treatments (Pre- and Post-CPAP (T-2M, T-12M, and 

T-24M) to differentiated adipocytes on human adipocytes, n=24 per conditions for lipolysis. 

Panel (B) shows the average of lipids released values when incubating exosomes derived 

from SF or CTL to differentiated adipocytes (3T3-L1). Panel (C) shows the average of 

glycerol released when incubating exosomes derived from SF or CTL to differentiated 

adipocytes (3T3-L1). * Indicates statistical significance, p≤ 0.05.
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