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Chiral Separation by Flows: The 
Role of Flow Symmetry and 
Dimensionality
Sunghan Ro1, Juyeon Yi2 & Yong Woon Kim1

Separation of enantiomers by flows is a promising chiral resolution method using cost-effective 
microfluidics. Notwithstanding a number of experimental and numerical studies, a fundamental 
understanding still remains elusive, and an important question as to whether it is possible to specify 
common physical properties of flows that induce separation has not been addressed. Here, we study 
the separation of rigid chiral objects of an arbitrary shape induced by a linear flow field at low Reynolds 
numbers. Based on a symmetry property under parity inversion, we show that the rate-of-strain field 
is essential to drift the objects in opposite directions according to chirality. From eigenmode analysis, 
we also derive an analytic expression for the separation conditions which shows that the flow field 
should be quasi-two-dimensional for the precise and efficient resolutions of microscopic enantiomers. 
We demonstrate this prediction by Langevin dynamics simulations with hydrodynamic interactions 
fully implemented. Finally, we discuss the practical feasibility of the linear flow analysis, considering 
separations by a vortex flow or an extensional flow under a confining potential.

An enantiomer is a molecule that cannot be superposed on its own mirror image, and such property is called chirality1.  
Despite the structural similarity, a pair of enantiomers often exhibits very different biochemical activities due to 
the chiral nature of living systems2. It is, therefore, of great importance to separate a racemic mixture by chirality 
in the pharmaceutical, agricultural, and environmental industries where a number of molecules in use are enan-
tiomers3. The conventional separation techniques such as chromatography and capillary electrophoresis require 
molecular specific and expensive chiral agents or media.

Among alternative physical separation methods that do not rely on a chiral selector4–6, chiral resolution by 
flows has recently received considerable attention with rapid developments in microfluidics7–19. Since the orig-
inal suggestions7,8, chirality-dependent drift has been demonstrated by several experiments using shear or vor-
tex flows9–13. While a number of numerical studies14–19 have been done to propose various sorting strategies by 
assuming particular flow fields, e.g., microfluidic vortices14 or asymmetric flows with different slip lengths15,16, 
there are few efforts to develop a general theoretical framework for arbitrary linear flow patterns and object 
shapes. Hence, important questions, what are the common characteristics, if any, of flows that cause separation? 
or what is the role of each flow component in separation?, are still to be answered.

In this work, we address this problem by introducing a theoretical framework to understand the motion of a 
rigid chiral object of any shape in an arbitrary linear Stokes flow. The essential flow component for separation is 
elucidated from a symmetry argument using parity inversion and mirror reflection. We also show that the velocity 
gradient tensor has to be nearly singular, i.e., quasi-two-dimensional, to induce the separation of high precision. 
In order to validate our analytic results, we perform Langevin dynamics simulations that explicitly incorporate 
hydrodynamic interactions among object elements. In simulations, the separation precision is quantified by the 
Jensen-Shannon divergence between the probability distributions of particles of opposite chirality.

Results
Model.  Consider a rigid chiral object moving through a viscous incompressible fluid. Let r  be the position of 
any point O fixed to the particle, say, the center of mass, with respect to a reference frame. At low Reynolds num-
ber (i.e., in the inertialess regime), the equations of motion are obtained from the Stokes equation for translational 
velocity v  of that point and angular velocity ω�� of the object, in relative to the flow20–22:
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where ≡
�� �� �U U r( ) denotes the ambient fluid velocity at r , and Ω = ∇ ×

�� �� �U r( )1
2

 is half the fluid vorticity. Here the 
ambient flow is approximated as a linear Stokes flow = +

�� � �� �U r U rJ( ) (0)  with a constant velocity gradient tensor 
= ∇

��
UJ 21. The rate-of-strain field E is the symmetric part of J, given as E =​ (J +​ JT)/2 with the transpose operator 

T. The mobility tensors, μ’s, are related to the strengths of thermal noises, ξ


’s, through the fluctuation dissipation 
theorem ξ ξ µ〈 〉 = k T2i

m
j
n

B ij
mn, with m, n =​ t, r and kBT being the thermal energy at temperature T. Here the super-

scripts, t and r, stand for ‘translational’ and ‘rotational’, respectively; μ’s couple two degrees of freedom corre-
sponding to its superscripts. The third-rank resistance tensors, ζ’s, determine hydrodynamic friction force and 
couple the translational and rotational motions of the object with the rate-of-strain field (for which we assign ‘e’ 
as a superscript symbol, and see also index notation of Carrasco et al.23).

The tensor product in Eq. (1) is defined as (ζ : E)i ≡​ ∑​j, kζijkEjk.  In calculating μ and ζ, the no-slip condition on 
object surface is imposed, and they depend on the position vectors of the surface elements relative to O. The 
mobility and resistance tensors are thus independent of the choice of the origin, and they are functions only of the 
geometry of the particle such as object orientation ϕ̂ and handedness α. Therefore, the chirality-dependent drift 
can be induced only by the rate-of-strain field E. We write it in shorthand notation,

ϕ µ µζ ζ≡ +α ˆv E E( ) ( : ) ( : ), (2)E
tt te tr re

with chirality index α =​ R or L and refer to it as drift velocity.

Symmetry under parity inversion.  Using a symmetry property under parity-inversion operation, we first 
show that the chiral separation (objects move in opposite directions according to handedness indeed) occurs by 
the parity-even rate-of-strain field. In particular, this is proven even with considering the rotational motions of 
object orientations. Using parity-inversion () operation about the point O, a linear flow is decomposed into two 
parts; one is a parity-odd flow whose direction is changed by  operation, and the other is a parity-even flow that 
remains invariant under  operation.

In Fig. 1, translation motions of a chiral molecule and its chiral partner under parity-odd and parity-even 
flows are illustrated, respectively. Shown on the left panel of Fig. 1(a) is a left-handed (L) object in a parity-odd 
flow, which is supposed to drift to the left by the flow. Applying  operation on this system, the flow direction is 
inverted, and the object handedness as well as the drift direction are reversed (middle panel). If the flow field 
becomes again inverted (right panel), the original flow field is recovered and the right-handed (R) object then 
moves to the left because of the linearity of relations between the object velocity and the flow fields. One clearly 
sees that the drift motions of the chiral pair are identical under the parity-odd flow, leading to no chirality resolu-
tions. On the contrary, if  operation is applied on an object of L in a parity-even flow (Fig. 1(b)), the object 
handedness is converted into R and the drift direction is changed as well, while the flow itself remains invariant. 
This enables us to have the opposite motions of the chiral pair under the same ambient flow and thus demon-
strates that the parity-even flow field is essential for chiral separation.

According to Eq. (1), the translational velocity v  of an object includes two flow components 
��
U  and E. It is 

obvious that 
��
U is parity-odd while E is parity-even as J remains invariant under  operation. Therefore, from the 

analysis above, we find that the drift velocity of a left-handed object is opposite to its chiral partner under a given 
rate-of-strain field:

ϕ ϕ= − ′ ˆ ˆv v( ) ( ), (3)L R
E E

Figure 1.  Schematic figure illustrating motions of a chiral object and its chiral partner under (a) parity-odd and 
(b) parity-even flows. The chiral objects are represented by the helices, the flow fields by blue arrows, and red 
arrows indicate the translational motions of objects induced by the flow.
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where ϕ′ˆ  denotes parity-inverted orientation of ϕ̂. It is to be noted that the angular motion remains invariant 
under  operation, and thus the probability distributions of orientation are symmetric, ϕ ϕΦ = Φ ′ˆ ˆ( ) ( )L R , at any 
time t (see the Supplemental Information for details). Accordingly, the orientation-averaged drift velocity of the 
left-handed object is given by

∫
∫

ϕ ϕ ϕ

ϕ ϕ ϕ

= Φ

= − ′ ′ Φ ′ = −

Φ

Φ

 

 

ˆ ˆ ˆ

ˆ ˆ ˆ

v d v

d v v

( ) ( )

( ) ( ) , (4)

L L L

R R R

E E

E E

where the negative sign of the average drift velocity implies a possibility of chiral separation.
In a similar way, the separation direction can be specified if a linear flow field has a mirror-reflection symme-

try. Shear flow, γ=
�� �

� ˆU r yx( )  with shear rate γ

, belongs to the case, if choosing the xy-plane as a mirror-symmetry 

plane. Regard a relation,

ϕ ϕ ϕ ϕ= ″ − ″⊥ ⊥″ ″ˆ ˆ ˆ ˆv v v v( ( ), ( )) ( ( ), ( )), (5)
L L R R

E E E E, , , ,

where the double prime indicates quantities transformed by mirror-reflection () operation. Here, αvE,  and α⊥vE,  
are, respectively, the parallel and perpendicular components of a drift velocity αvE  to a chosen mirror-reflection 
plane. For a mirror-symmetric flow field (E″ =​ E), taking average over object orientations for ϕ ϕΦ = Φ ″ˆ ˆ( ) ( )L R , 
one has a relation,

= − .
Φ

⊥ Φ Φ
⊥ Φ( ) ( )v v v v, ,

(6)
L L R R

E E E E, , , ,

Combining with Eq. (4), one finds that 〈 〉α
Φ

vE,  =​ 0, and the separation of objects with opposite chirality can occur 
along the direction perpendicular to the mirror-symmetry plane, as indeed in the case of the shear flow. We again 
note that Eqs (4) and (6) are obtained through the ensemble averages over time-dependent probability distribu-
tions of orientations.

Separation criterion.  The nonvanishing average drift velocity α
Φ

vE  is, though essential, only a necessary 
condition. For practical realizations of chiral separations, the position dependence of 

��
U  should be analyzed. In 

other words, the chirality-independent drift by 
�� �U r( ) should not dominate the chirality-dependent drift αvE  by E. 

Furthermore, the positional distributions of particles should evolve by αvE  to be well separated on macroscopic 
scales, at least, larger than experimental resolutions of microfluidic devices. Below we argue that this is achieved 
with quasi-two-dimensional flow fields.

Eigenmode analysis.  It is more intuitive to examine the equation for v  for the case of diagonalizable J (for a 
non-diagonalizable case the analysis can be performed in a similar way, leading to the qualitatively same conclu-
sions; see the Supplemental Information for details). The equation for v  in Eq. (1) can be written in the diagonal-
izing basis of J, and one of its components along the direction of the q-th eigenvector of J reads as,

λ ξ= + +λ
α

λ
α

λ
α

λr r v , (7)q E,
t

q q q q

where λq is the q-th eigenvalue of J, and quantities with the subscript λq symbolize the q-th component of trans-
formed vectors = λ

��
X XS( )q q

 with (SJS−1)q,q′ =​ λqδq,q′ and X =​ r, vE, ξt. For notational simplicity, we shall drop the 
eigenvalue index q and chirality index α hereafter. Without loss of generality, we have set =

��
U(0) 0.

The formal solution of Eq. (7) is given by

= + + Ξ .λ
λ
λ λ λr t e r X t t( ) (0) ( ) ( ) (8)t

E,

Here we define the displacements resulting from the drift motion, ∫= ′ ′λ
λ

λ
− ′X t dt e v t( ) ( )t t t

E E, 0
( )

, , and from the 
thermal noise ∫ ξΞ = ′ ′λ

λ
λ

− ′t dt e t( ) ( )t t t
0

( ) t . Taking average over the thermal noises and initial positions, we obtain 
the average displacement

=λ λr t X t( ) ( ) (9)E,

with the average of initial positions located at origin. Mean separation distance between particles having opposite 
chirality is given by  = −λ λt r t r t( ) ( ) ( )R L , and separation precision can be quantified by  Σt t( )/ ( ) with 
Σ ≡ −λ λt r t r t( ) ( ) ( )2 2 2. The chiral separation is achieved if the quantifiers satisfy following relations:

σΣ . t t t( )/ ( ) 1 and ( )/ 1 (10)0 

The first condition requires that the mean separation distance t( )  should be much larger than the dispersion  
Σ​(t) for efficient separation. The second condition states that the separation distance t( )  ought to be much larger 
than the initial width of distribution σ​0 which roughly amounts to experimental resolution such as the distance 
between recovery outlets of devices for the separated particles.



www.nature.com/scientificreports/

4Scientific Reports | 6:35144 | DOI: 10.1038/srep35144

It is clear that an exact analysis of the separation conditions (10) requires to obtain the precise form of vE,λ(t) 
which is highly nonlinear and has no known solution to the best of our knowledge. Notwithstanding the difficulty, 
one can still put forward a reasonable analysis: Suppose that there exists a finite maximum drift velocity vm of 
vE,λ(t), viz. vE,λ(t) ≤​ vm, which is reasonable because the drift velocity as given in Eq. (2) is determined by the 
product of the bounded quantities. It is also assumed that up to the leading order, the maximum drift velocity vm 
is proportional to the magnitude of flow field given as λ∑~J i i

3 2, and for a fixed |J|, only weakly depends on an 
individual λi. This assumption may be supported by an observation that as increasing the flow gradient tensor J 
by a factor of a certain constant, the resulting drift velocity will be increased proportionally. Lacking in mathemat-
ical rigour, this ansatz is effective to extract an essential flow property to induce chiral separation, as evidenced 
later in our numerical simulations. Since ∫ ∫≤dx f x dx g x( ) ( ) for f(x) ≤​ g(x), the maximum value of the mean 
separation is determined by rλ(t) in Eq. (8) with letting vE,λ(t) =​ vm as

≡ = 〈 〉λ =λ
d t D t r t( ) max[ ( )] 2 [ ( )] (11)v t v( ) mE,

λ= −λv e2( / )( 1), (12)m
t

On the other hand, the positional dispersion can be written as

σ

σ σ λ

Σ = + −

= + −
λ λ

λ λ

t t X t X t

t e D e

( ) ( ) ( ) ( ) ,

( ) ( /2 )( 1), (13)t t
E E

2 2
,

2
,

2

2
0
2 2 2

where σ(t) determines the dispersion when vE,λ(t) is purely deterministic to annihilate fluctuations of XE,λ(t). 
Obviously, an inequality, Σ​(t) ≥​ σ(t), follows, which together with Eq. (11) leads to σΣ ≤t t d t t( )/ ( ) ( )/ ( )  and 

σ σ≤t d t( )/ ( )/0 0 . Equation (10) then constitutes a necessary condition for chiral separation,

σ σ d t t d t( )/ ( ) 1 and ( )/ 1 , (14)0

which is given in a greatly simplified form to allow an analytic approach and helps to extract essential flow factor 
inducing chiral separation. It should also be mentioned that in high Péclet number regime the drift velocity as 
a function of object orientation remains roughly constant, as suggested by Marcos et al.11. For the case, vm can 
be interpreted as the constant drift velocity and hence, conditions in Eq. (14) are equivalent to Eq. (10). In the 
following, we proceed our analysis of the separation conditions, (14) with d(t) and σ(t) determined by Eq. (12) 
and Eq. (13), respectively.

Short time behavior.  We examine the behavior of the separation precision for t ≪​ tλ ≡​ |λ|−1, where tλ is the 
saturation time scale at which the separation precision with a non-zero λ approaches a constant value. In Fig. 2, 
we illustrate the characteristic behaviors of d/σ depending on λ. For λ =​ 0, d/σ grows unboundedly with time t, 
while for λ ≠​ 0, it approaches a constant value after a time tλ. That is, in the case of λ ≠​ 0, the feasibility of d/σ ≫​ 1 
depends on the system parameters such as initial dispersion and diffusion constant, even at large t. For t ≪​ tλ, d 
is monotonically increasing function of time, and irrespective of the sign of the eigenvalue λ, d/σ is simplified as

σ +σ
~

d t
t

t

t t t

( )
( )

,
(15)D

2

where tσ ≡​ σ0/vm is the time required for an object to travel a distance of initial positional dispersion σ0 by the drift 
velocity vm, and ≡t D v/D m

2  is the time scale at which the traveling distance by the drift motion is comparable to 

Figure 2.  Separation precision, d/σ, as a function of time t at three different eigenvalues: λ = 0 (solid line), 
small λ with tλ = |λ|−1 ≫ ts (dashed line), and large λ with tλ = |λ|−1 ≪ ts (dotted line). Here, ts indicates the 
separation time scale at which d/σ ≈​ 1. For a vanishing eigenvalue λ (i.e., a singular velocity gradient tensor), 
d/σ monotonically increases with t, while for a non-zero eigenvalue, d/σ is saturated to a constant value after the 
saturation time scale, tλ.
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the diffusion length ( ~v t Dtm D D). From the separation conditions, Eq. (14), and the equation of the separation 
precision, Eq. (15), one can readily define the separation time scale ts at which both d/σ and d/σ0 become of the 
order of unity (see Fig. 2) as

≡ σt t tmax( , ), (16)s D

and therefore, an efficient and precise chiral resolution (i.e., d/σ ≫​ 1 and d/σ0 ≫​ 1) occurs when

.λ  t t t (17)s

This constitutes the condition of macroscopic chiral separation for short times, i.e., t ≪​ tλ.

Long time behavior.  In the long time regime of t ≫​ tλ, if the eigenvalue is not zero (λ ≠​ 0), d/σ is saturated to a 
certain value as

σ
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λ
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D
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When λ >​ 0, it is found from Eq. (18) that the condition of macroscopic separation (d/σ ≫​ 1) is translated into

.λ t t (19)s

This can also be intuitively understood from Fig. 2, i.e., only when tλ ≫​ ts, the saturated value of d/σ can be much 
greater than one. Then, the condition of d/σ0 ≫​ 1 is always satisfied since σ −λ σ

λ~d t t e/ ( / )( 1)t t
0

/ . On the other 
hand, when λ <​ 0, the first condition of Eq. (14) leads to tλ ≫​ tD, and the second condition does to tλ ≫​ tσ.

Remarkably, we find that in both of short-time and long-time regime, the macroscopic chiral separations are 
dictated by a single criterion, irrespectively of sign of λ:

λ =








λ

σ
� �t t

t t t
or 1 min 1 , 1 ,

(20)
s

s D

which means that the eigenvalue of the velocity gradient tensor should be significantly smaller than the inverse of 
the separation time scale. We note that the eigenvalue index q has been omitted for notation simplicity. Therefore, 
Eq. (20) should be interpreted as conditions required to be satisfied by respective λq in order to obtain the separa-
tion along the corresponding coordinate λr q

. In other words, the chiral separation may occur if at least one of the 
eigenvalues satisfies the condition.

Dimensional analysis and estimates of parameters.  Let us now express the separation condition, Eq. (20), in 
terms of physical parameters such as the linear size of the object  and magnitude of the flow velocity gradient V 
defined through J (for example, see Eqs (22) and (23) of the next section). One may define V also as 

∑ =~V Ji j ij, 1
3 2 , where the proportionality constant is of the order of unity, and it is irrelevant to the present anal-

ysis. We introduce dimensionless parameters

δ σ ε λ≡ ≡ ≡ V c v V/ , / , / ,m0

where δ is initial dispersion σ0 in units of , and it seems reasonable to assume δ ≫​ 1 in most cases of practical 
interest of small particles. ε is the amplitude of λ relative to the magnitude of the flow velocity gradient, which can 
characterize the dimensionality of the flow field; if ε =​ 0, the corresponding flow becomes a two-dimensional flow. 
c measures the chiral-dependent drift velocity relative to a variation of ambient flow velocity over . Since 

η~D k T /B  with the solvent viscosity η, tσ =​ σ0/vm ~ δ/cV and η= ~t D v k T c V/ /D m B
2 2 2 3. As a result, the separa-

tion condition of Eq. (20) can be written in dimensionless form as

ε
δ








c c Pemin ,
(21)

2

where Pe ≡​ V/Dr with the rotational diffusion constant η~D k T /r B
3.

Among the parameters, c affects both of tσ and tD, and its estimation is important for numerical evaluations of 
Eq. (21). The exact value of c, of course, relies on system details such as object shape and chirality, and it should be 
a tremendous task to obtain the general expression of c analytically. However, as we show in the Supplemental 
Information, a possible upper bound of c can be envisioned, which turns out to be of the order of 10−2. In addi-
tion, we numerically evaluate c for different objects and flow patterns considered in simulations, which is indeed 
found to be small as consistent with the proposed upper bound (see the next section of Simulation results). 
Combining these facts, we can take a conservative bound of |ε| for an efficient separation as ε −⪅ (10 )3  for 
various flow strengths and/or object sizes, even though a rather unrealistically narrow initial distribution (δ ~ 1, 
i.e., σ ~0 ) is assumed. Considering the measurement and control accuracy of current microfluidic devices (to 
our knowledge, of the order of 0.1% at best), one might view this range of ε to be synonymous for a singular flow. 
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It implies that the chiral separation is possible only by quasi-two-dimensional flows described by a velocity gra-
dient tensor J with a vanishingly small eigenvalue.

Before going further, we explicitly mention the validity range of our theory, especially, in terms of the  
relevant object size . Our theoretic formulation assumes the low Reynolds and high Péclet number conditions, 
which give the range of appropriate object size as η η ρ� � �k T V V( / ) ( / )B

1/3 1/2. Note that ρ η= vRe /  where 
~v V  and ρ is the fluid density. For a water at room temperature, µ µ. � � �0 01 m 1 m for V ~ 106/s, and 

µ µ. � � �0 1 m 100 m for V ~ 102/s. The present theory is based on the assumption of linear flow field which is 
hard to be realized in most cases over extended length and time scales. For example, the presence of hydrodynamic 
boundaries arising from confining walls of microfluidic devices leads to nonlinear flows, which might yield non-
trivial effects on the separation. However, analysis on general nonlinear flow fields is beyond the scope of the 
present study, and the relevance of our linear flow analysis will be discussed later in more detail in section of 
Possible applications.

Simulation results.  In order to demonstrate the arguments, we perform Langevin dynamics simulations by 
integrating Eq. (1) with explicitly taking into account full hydrodynamic interactions among object elements at 
the level of the Rotne-Prager tensor23. As typical examples of enantiomers, helix and tetrahedral structures are 
concerned. We decompose the structures into arrays of N closely packed beads with radius a. The decomposition 
allows us to calculate their grand mobility tensors which in turn yield mobility tensors for a rigid body motion of 
Eq. (1), according to the conversion equations, Eq. (19) to (22) in ref. 23 (see the Supplemental Information for 
details). In simulations, we rescale all lengths by the bead radius a, giving linear size  of the helix and tetrahedral 
structure as 225a and 254a, respectively. Characteristic time scale is τ =​ 6πηNa3/kBT. The distribution of initial 
positions of objects is assumed to be a Gaussian centered at the origin with an initial width σ0.

We consider two different types of flow fields, one with a diagonalizable velocity gradient tensor JA and the 
other with a non-diagonalizable tensor JB, parameterized by a dimensionless variable ε. First, flow-A is described 
by the velocity gradient tensor,

ε
ε

ε
ε

=





−






VJ ( )

2 0
1 2 0
0 0 , (22)

A A

which has distinct eigenvalues, λ3/VA =​ ε and λ ε ε= − ± +V/ ( 8 9 )/2A1,2
2 . If ε =​ 0, the eigenvalue λ3 vanishes 

and the corresponding JA describes a two-dimensional flow. Flow-B is represented by

ε
ε
ε
ε

=






−
−






VJ ( )

1 0
0 0
0 0 2

,
(23)

B B

where a finite ε describes a deviation from the shear flow (ε =​ 0), and eigenvalues are degenerated, λ3/VB =​ 2ε and 
λ1,2/VB =​ −​ε. Both flows are incompressible, i.e., J is traceless, and have a reflection symmetry about xy-plane. 
According to our symmetry argument, the chirality-dependent drift is expected to occur along the z-direction 
which is the eigenmode direction of λ3. Dimensionless flow velocities, τ πη= =

∼V V Na V k T6 /i i i B
3  for i =​ A, B, are 

set to 30 in order to realize high Pe; Pe ~ 3.2 ×​ 104 for helix and Pe ~ 3.9 ×​ 104 for tetrahedral. The magnitude of 
flow velocity gradient, V, can be defined in a basis independent way as = ∑V E Ei j ij ij0 , . However, the current 
expression of V equals V0 up to a prefactor of the order of one and does not lead to any qualitative difference in 
results. For a wide range of flow velocity V and object size , c is found to be small as −⪅c 10 3 for the helix and 

−⪅c 10 2 for the tetrahedral, in accord with the estimate on the possible maximum value of c (see the Supplemental 
Information). The previous criterion of Eq. (21) predicts that for separation to occur, the upper bound of |ε| is 
given as ε −⪅ O(10 )3  even when a very narrow initial distribution of molecular size is assumed (δ ~ 1). We test 
this prediction through numerical simulations, as varying the value of ε of the flows considered above.

Figure 3 explicitly shows the flow fields at different flow parameters, ε =​ 0 and ±​0.01, for the flow-B (a–c), and 
the time evolutions of corresponding probability distributions of R or L helices, along the z-direction, obtained 
from the simulations (d–f). Note that, in (b–c), the arrows indicating difference fields are magnified by 50 times 
for clear visibility. As consistent with Eq. (21), a small but finite value of ε leads to qualitatively different behaviors, 
despite the apparent similarity to the separable shear flow with ε =​ 0. For either small positive or negative ε, the 
probability distributions continue to substantially overlap even at t ≥​ tλ, while for ε =​ 0, the two distributions are 
well discriminated and d increases with time, enabling complete separation.

Now we propose to quantify the degree of the separation by the Jensen-Shannon divergence (JSD):

∫∑|| =




 +







α

α
α

p p dzp z p z
p z p z

JSD( ) 1
2

( )ln 2 ( )
( ) ( )

,L R
L R

where pα(z) represents the probability distribution to find an object with chirality α =​ L, R at a projected position 
z along a chosen axis of observation. Unlike d/σ, JSD is bounded as 0 ≤​ JSD ≤​ ln2, and its value depends on over-
lapping area between pL(z) and pR(z). If pL(z) =​ pR(z) (perfect overlap), JSD vanishes. If pL(z) has no overlapping 
region with pR(z) (complete separation), JSD reaches its maximum value ln 2. Any values of JSD less than ln 2 sig-
nal that finite overlap between pL(z) and pR(z) exists, and resulting separation is inaccurate. JSD therefore provides 
the well-defined scale of separation precision, taking into account shape details of pα(z).
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Depicted in Fig. 4 is JSD as a function of ε for different flow patterns and chiral objects. It follows from 
Eqs (15) and (18) that when λ =​ 0, d/σ >​ 1 for t >​ ts, while for λ ≠​ 0, it is saturated to a constant value after tλ. The 
occurrence of macroscopic separation can therefore be determined by measuring JSD at time t larger than ts (for 
λ =​ 0) and tλ (for λ ≠​ 0) which are estimated as follows. For the high Pe regimes considered in this work, ts is 
given by tσ ~ δ/cV. In simulations, the upper bound of δ is (1) , the lower bound of c is −(10 )4 , and 

τ τ= =
∼V V/ 30/ , which leads to τ~t (10 )s

2 . For a non-zero λ, λ ε τ ε= | |
∼

λ ~ ~t V V1/ 1/ / , and the smallest 
value of |ε| other than zero is 0.01 in Fig. 4. Thus, JSD’s are measured at  τ~t (10 )3  for ε ≤​ 0, τ(10 )  for 
0 <​ ε ≤​ 0.2, and  τ( ) for ε >​ 0.2, which are long enough for JSD to reach its stationary value. For numerical eval-
uations of JSD, the probability distributions p(z) are discretized into histograms with the bin size of the order of 
the object size. The complete separation with the maximum JSD of ln 2 is achieved in all considered cases only 
when ε (and thus at least one of the eigenvalues) is vanishingly small. A finite value of JSD results for small 

Figure 3.  Three-dimensional visualization of flow B with (a) ε =​ 0, and difference fields for (b) ε =​ 0.01 and 
(c) ε =​ −​0.01. Arrow length is proportional to the velocity magnitude, and the color varies from red to blue as 
Ux changes from positive to negative. Arrows in (b,c) are enlarged by 50 times for visibility. (d–f) Probability 
distributions of R helix(solid lines) and L helix(dotted lines) are shown at different times for the corresponding 
flow fields. At each case, data are obtained from 106 ensembles of Langevin dynamics simulations with the initial 
distribution of width, σ0 =​ 100a.

Figure 4.  JSD as functions of flow parameter ε for (a) helix and (b) tetrahedral under flow A (solid lines) and 
B (dashed lines). Two different widths of initial distributions are considered, i.e., σ0 =​ 10a (black lines) and 
100a (red lines). The behaviors near ε =​ 0 are magnified in the insets. Shown in (c,d) are parts of the helix and 
tetrahedral considered in simulations. The helix consists of 25 turns with 6-beads per turn, the radius of 3a, 
and the helical pitch of 9a (N =​ 150). The tetrahedral structure has arm lengths of 200a, 104a, 48a, and 24a 
(N =​ 189).
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positive ε from unrealistically narrow initial dispersions of particles (σ .~/ 0 050 ). In most realizable situations 
where σ � �0 , it is more pronounced that JSD yields very small values unless ε is vanishingly small. As shown in 
Fig. 4, the simulation results clearly demonstrate our claim that the complete separation indeed occurs by 
quasi-two-dimensional flows satisfying the condition, Eq. (21).

Possible applications.  Finally, we discuss the relevance of our linear flow analysis in terms of possible prac-
tical applications. In most cases, it is challenging to realize linear flows persisting for extended length and time 
scales in microfluidic devices. A simple shear flow is a well-known exception. We exhibit here two other examples 
where the linearity of flows is easily assured and at the same time, the present analysis can be useful for practical 
purposes. In particular, we show that for chiral separations, it is enough to have a linear flow only in a localized 
region if a confining potential is applied together.

Vortex flow.  According to our theoretic formulations, the chiral separation occurs when both of the follow-
ing conditions have to be satisfied: First, one of the eigenvalues of velocity gradient tensor should be much 
smaller than the inverse of the separation time scale (the eigenmode analysis). Secondly, there should exist a 
non-vanishing rate-of-strain field that induces a finite drift velocity (the parity-inversion argument). Now we 
present a salient example explicitly showing the indispensable role of the rate-of-strain field: consider a pure 
rotational flow with a perfect circular streamline, defined by the velocity gradient tensor,

=





−






.VJ

0 1 0
1 0 0

0 0 0 (24)

This flow satisfies the first condition but obviously not the second condition because it has a vanishing 
rate-of-strain field, E =​ 0. Hence it cannot separate any kind of chiral pairs. On the contrary, a vortex flow 
deformed by a finite rate-of-strain field, e.g., with the following velocity gradient tensor,

=






.
− − .






VJ

0 8 1 0
1 0 8 0

0 0 0 (25)

fulfills the both conditions and could, therefore, lead to the separations, as indeed confirmed by the Langevin 
dynamics simulations (Fig. 5). The vortex flow can be an obvious solution for chiral separations, if not perfectly 
circular, and is another example of linear flows that persist for an extended period of time in microfluidic setups. 
As shown here, the vortex flows with circular streamlines have very distinct separation powers, depending on 
whether or not they have a finite rate-of-strain field.

Our prediction on the separation power of vortex flows can be tested by a microfluidic four-roll mill device 
suggested by Lee et al. which can produce the entire spectrum of flow types, from purely rotational flow to purely 
extensional flow, by varying flow rate ratio24. Considering the dimensions of the device, the sub-micron helical 

Figure 5.  Two-dimensional flow streamlines for (a) an elongated vortex flow (Eq. (25)) and (c) a pure 
rotational flow (Eq. (24)) in the xy-plane. Probability distributions of right-handed (black) and left-handed 
(red) helices, along the z-direction (in units of a), at t =​ 500τ under (b) the elongated vortex flow and (d) the 
pure rotational flow. (e) JSDs as a function of time (in units of τ) for the respective flow patterns. The chiral 
separation is clearly achieved for the elongated vortex flow, but not for the pure rotational flow. Initial 
distributions are given as Gaussian centered at the origin with dispersion of 100a, the number of ensembles is 
105, and the same helical objects are considered as in Fig. 4. =∼V 30.
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objects ( µ⪅ m), for example, should be observed to be separated for elongated vortex flow but not for purely 
rotational flow. Also using various chiral objects of different shapes in this setup can be a feasible way to confirm 
our theory predicting that the flow properties rather than object shapes are essential to chiral separation.

Confining potential.  At low Reynolds numbers, the resistance formalism linearly relates the hydrodynamic net 
force and torque exerted on a rigid object to the flow parameters21. Due to the linearity of the relations, origi-
nating from the linearity of the Stokes equations, the external forces such as confining force can be separately 
added into the equations of motion (see the Supplemental Information). Consequently, even in the presence 
of external forces our analysis can be performed in a similar way and the separation criterion remains intact 
in general.

In order to numerically verify this, we perform Langevin dynamics simulations with Flow-A and 
Flow-B previously defined, considering helical and tetrahedral objects under an external potential,  
φ(x, y) =​ k(x2 +​ y2). Here, we set ε =​ 0, and then Flow-A and B represent a two-dimensional extensional 
flow and a shear flow, respectively. The external potential plays a role as a two-dimensional confinement, 
constraining particle positions near to the origin in the xy plane. We note that for both flows, the separation 
occurs along the z-axis. The right panel of Fig. 6 shows the simulation results of temporal evolution of JSD 
in the presence of the potential while the left panel exhibits the results without the potential. As deduced, 
one can see that the separation behaviors remains the same qualitatively. This suggests that for practical 
applications of our analysis, a linear flow field does not necessarily have to persist over extended length and 
time scales. The two-dimensional confinement potential makes the separation (e.g., along the z-axis) take 
place only in a limited space of the xy-plane where the linearity of flows can be rather easily assumed for a 
time longer than the separation time scale.

Discussion
In practical applications of harnessing microfluidic devices for separations, one of the central questions will 
be to determine which flow has separation capability. Despite increasing attention to microfluidic chiral 
resolutions, most of the previous works are restricted to be considering an object of a specific shape in a 
given flow pattern. The complicated mathematical structure of the equations of motion present difficulties 
in understanding chiral separation phenomena even for a specific flow, and a comprehensive picture of 
common mechanisms and general conditions for chiral separations in terms of flow properties has been 
lacking. We have tackled this problem for an arbitrary linear flow using simple ideas, namely, considering 
symmetry properties and adopting the eigenmode analysis of flow fields. These enable us to draw an intui-
tive physical picture of the underlying mechanism of chiral separation dynamics. According to our results, 
the common features of separable flows are summarized as i) flows with a finite strain-rate tensor and 
ii) quasi-two-dimensional flows with small eigenvalues obeying Eq. (20). The typical examples satisfying 
both conditions are shear flow, vortex flow, and two-dimensional extensional flow, all of which are indeed 
demonstrated here to cause separations via the Langevin dynamics simulations. The present study thus pro-
vides a theoretical understanding of why two-dimensional flows such as shear and vortex flow are efficient 
to induce chiral separations. Our results provide simple criteria that would allow us to categorize and decide 
what kind of flows have a separation power or not. This is the prediction that cannot be easily made, without 
complicated numerical calculations or extensive simulations, from the theoretical studies known hitherto. It 
is also important to note that the separation criteria only concern the properties of flows, not of objects, so 
that they are applicable for objects of different shapes.

(a) (b)
forced
forced
forced
forced

Figure 6.  Temporal evolution of JSD for helix (black) and tetrahedral (red) under flow A (solid lines) and 
flow B (dashed lines). Here, we set ε =​ 0, σ0 =​ 100a, =∼V 30, and time is in units of τ. (Left panel) In the absence 
of external potential, JSD reaches its maximum of ln 2, indicating a complete chiral separation, for all 
considered cases around τ~t (10 )3 . (Right panel) In the presence of confining potential φ(x, y) =​ k(x2 +​ y2) 
with k =​ 8kBT/a2, JSD shows the very similar behaviors and the complete separation is also achieved for all cases. 
For helix and tetrahedral, the same objects as in Fig. 4 are considered, the number of ensembles is 105, and the 
initial distributions are given as Gaussian centered at the origin with dispersion of 100a.
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