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ABSTRACT Staphylococcus aureus infection is a major public health threat in part
due to the spread of antibiotic resistance and repeated failures to develop a protec-
tive vaccine. Infection is associated with production of virulence factors that include
exotoxins that attack host barriers and cellular defenses, such as the leukocidin (Luk)
family of bicomponent pore-forming toxins. To investigate the structural basis of
antibody-mediated functional inactivation of Luk toxins, we generated a panel of
murine monoclonal antibodies (MAbs) that neutralize host cell killing by the �-hemolysin
HlgCB. By biopanning these MAbs against a phage-display library of random Luk
peptide fragments, we identified a small subregion within the rim domain of HlgC
as the epitope for all the MAbs. Within the native holotoxin, this subregion folds
into a conserved �-hairpin structure, with exposed key residues, His252 and Tyr253,
required for antibody binding. On the basis of the phage-display results and molec-
ular modeling, a 15-amino-acid synthetic peptide representing the minimal epitope
on HlgC (HlgC241-255) was designed, and preincubation with this peptide blocked
antibody-mediated HIgCB neutralization. Immunization of mice with HlgC241-255 or
the homologous LukS246-260 subregion peptide elicited serum antibodies that spe-
cifically recognized the native holotoxin subunits. Furthermore, serum IgG from pa-
tients who were convalescent for invasive S. aureus infection showed neutralization
of HlgCB toxin activity ex vivo, which recognized the immunodominant HlgC241-255
peptide and was dependent on His252 and Tyr253 residues. We have thus vali-
dated an efficient, rapid, and scalable experimental workflow for identification of
immunodominant and immunogenic leukotoxin-neutralizing B-cell epitopes that can
be exploited for new S. aureus-protective vaccines and immunotherapies.
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Staphylococcus aureus is both a ubiquitous commensal microbe and a leading cause
of community-acquired and hospital-acquired bone, joint, lung, and bloodstream

infections. Due to the acquisition of broad antibiotic resistance (e.g., in methicillin-
resistant S. aureus [MRSA]), this pathogen is increasingly difficult to treat and is now
estimated to contribute to more than 20,000 deaths in the United States each year (1).
S. aureus infections are also associated with great economic burden, with the cost of
treatment of complicated skin and soft tissue infections (SSTIs) alone estimated to be
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over $5 billion per year for the U.S. health care system (2). Thus, new approaches to
prevent and treat S. aureus infections are desperately needed.

In patients, a colonizing S. aureus strain can often be the same as the infecting
isolate (3), indicating that the capacity of these isolates to resist host innate immune
clearance mechanisms is common but blurring the properties associated with strain
pathogenicity. The suppression and evasion of host immunity are mediated by the in
vivo release of immune cell-targeting S. aureus virulence factors (4, 5). While some of
these virulence factors interfere with soluble host factors, such as opsonins and
complement proteins, others such as the staphylococcal toxins attack host cellular
barriers, red blood cells, and leukocytes. These virulence factors are believed to aid the
pathogen in preemptively attacking host defenses. Furthermore, recovery from a
serious infection does not uniformly result in persistent augmentation of host protec-
tive immunity. S. aureus infection recurrence rates of greater than 20% have been
previously reported (6–8), with defects in adaptive immune responses suspected.

Despite many attempts, all efforts to develop an efficacious protective S. aureus
vaccine have failed to meet their primary endpoints in clinical trials. At the same time,
adults commonly have circulating IgG antibodies (Abs) to hundreds of S. aureus
proteins with high reactivity for exotoxins that include the members of the bicompo-
nent pore-forming toxin (PFT) family (9), and memory B-cell responses to PFT members
are also common in both healthy adults and those recovering from S. aureus infection
(3). These memory responses include antibodies with cross-reactivity between struc-
turally related PFT subunits (3). But little is known about the capacity of such immune
responses to affect S. aureus toxin activity, thus leaving open the possibility that
neutralizing anti-S. aureus toxin antibodies are important correlates of protective
immunity from S. aureus infection just as they are for other pathogens (for example,
HIV-1 [10]). Moreover, the characteristics of the epitopes that are targeted by naturally
occurring and immunization-induced neutralizing anti-S. aureus antibodies are un-
known.

The nine leukocidin members of the PFT family are important contributors to S.
aureus strain pathogenic potential (reviewed in reference 11); all share a conserved
�-barrel structure (12). The leukocidins are secreted as inactive subunits during infec-
tion, but upon binding to the membrane receptors of a targeted host cell, these
subunits oligomerize to form pores that act as cell-killing machines that break down
epithelial barriers, disable immune cells, and aid the scavenging of nutrients (13, 14).
Certain PFTs are associated with specific clinical infection syndromes. For example, the
Panton-Valentin leukocidin (LukSF-PV) is associated with primary skin and soft tissue
infection and pneumonia (15). Although these factors represent important antigens
recognized by host immunity (3, 9), sites within such toxins have been assigned defined
functional roles in pathogenesis in only a few cases, such as for the recognition of
target cells or at the interface of the assembled toxin subunits required for pore
formation (reviewed in reference 11).

HlgC, the �-hemolysin subunit that belongs to the Luk family of PFTs, is a near-
universal component of the core genome of clinical S. aureus isolates (11, 16–18). HlgC
binding to the human cell receptor for the chemotactic factor/anaphylatoxin comple-
ment fragment C5a (C5aR) occurs at the initiation of the process of intoxication and the
death of monocytes and neutrophils that is caused by the holotoxin (19). Furthermore,
the introduction of dominant-negative variants or complete ablation of the HlgC
subunit inhibits formation of the HlgCB complex in vitro, and in S. aureus infection
models, elimination of HlgCB has previously been shown to result in dramatic de-
creases in levels of toxin pore formation and concordant increases in the survival of
targeted immune cells (20–23).

As the HlgCB complex is a potent and broadly produced virulence factor responsible
for S. aureus subversion of host innate immunity, we sought to characterize the
molecular features associated with the recognition of the antigenic determinants by
HlgCB-neutralizing monoclonal antibodies (MAbs). We utilized a recently developed
filamentous phage-display system that enables the identification of the molecular
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surfaces recognized by an antibody (24), which we probed with a panel of murine MAbs
generated by immunization with the HlgC subunit. From these studies, we identified a
minimal toxin subregion that contains a stable �-hairpin loop previously implicated in
the functional properties of the toxin. Antibody-dependent toxin neutralization is
contingent on the recognition of this subregion and of the critical amino acids therein.
Moreover, this small subregion is a common antigenic target of serum antibody
responses in human subjects recovering from invasive S. aureus infection, as well as a
potent immunogen that elicits murine serum antibody responses that recognize the
parental holoprotein.

RESULTS
Characterization of the molecular features of the anti-HlgC MAbs. To investigate

the molecular basis for antibody recognition of the HlgC subunit, naive mice were
immunized with recombinant HlgC subunit protein, and then immunoassays of postim-
mune sera were performed to confirm the induction of an anti-HlgC IgG antibody
response (data not shown). The spleen from the best responder was then used in a
standard hybridoma fusion protocol with sequential subcloning, which resulted in the
isolation of four IgG-expressing B-cell hybridomas that displayed high-level reactivity
with HlgC. These IgG1-� monoclonal antibodies (MAbs) were designated anti-HIgC1
MAb, anti-HIgC2 MAb, anti-HIgC3 MAb, and anti-HIgC4 MAb. Each of these four MAbs
displayed strong binding activity with the immunizing HlgC recombinant protein as
well as high-level cross-reactivity with LukS, a structurally homologous leukocidin
subunit that naturally pairs with the LukF subunit to form the Panton-Valentin leuko-
cidin (LukSF) holotoxin (see Fig. S1 in the supplemental material). We did not observe
significant reactivity with the other PFT family members, including LukD, LukE, LukF,
HlgA, HlgB, LukABC8, LukAB CC30, and �-hemolysin (Hla) (Fig. S1).

Examination of the encoding antibody genes of these MAbs indicated that the
members of this panel of anti-HlgC MAbs were assignable to two distinct sets based on
the encoding nucleotide sequences (Fig. S2 and S3). The anti-HlgC1, anti-HlgC3, and
anti-HlgC4 MAbs express the same somatically generated heavy chain variable region
(VH region) (HV1-85/HD1-3*01 or 2– 4*01/HJ4*01) gene which was paired with VL
(kV8-19*01/kJ5*01) gene rearrangements, but all of these MAbs were nonidentical and
differed from one another by a number of replacement mutations (Fig. S2 and S3). By
comparison, the anti-HlgC2 MAb expresses a distinct somatically generated VH region
(VH2-9*02/HD2-2*01/HJ4*01) and VL region (IGKV1-117*01/IGKJ5*01); as such, this MAb
appears to have arisen from an unrelated B-cell clonal origin (Fig. S1 and S2). Notably,
while the size of the light chain variable region third complementarity-determining
region, LCDR3, is the same in these two clonal sets (i.e., 9 codons), the sizes of the heavy
chain CDR3 (HCDR3) in the two presumed clonal sets are very different (i.e., 4 and 14
codons) (Fig. S2). On the basis of their molecular genetic features, we conclude that this
panel represented four distinct nonidentical monoclonal antibodies. These MAbs are
likely to have arisen from two independent B-cell clonal precursors, with the differences
between the presumed clonally related anti-HIgC1, anti-HIgC3, and anti-HIgC4 MAbs
likely representing the imprint of somatic diversification events.

Since these MAbs displayed similar cross-reactivity profiles (Fig. S1), we wondered
whether other functional properties of these MAbs are also conserved. Thus, we
assessed their capacity for neutralization of the activity of the HlgCB cytotoxicity on
primary peripheral blood neutrophils from healthy adults. For these studies, we used a
validated ex vivo assay (25) and a concentration of HlgCB subunits that kills 90% of cells
(24 nM or 0.85 �g/ml). Significantly, each of these four HIgC-reactive MAbs displayed
dose-dependent neutralization of HIgCB complex-induced neutrophil intoxication and
death, which was highly reproducible using neutrophils from four different donors,
with maximal levels of 55% to 84% inhibition for each of the MAbs (data not shown).
In contrast, these MAbs showed no detectable neutralizing activity for the LukSF toxin
that has a different host cell surface target (data not shown) (reviewed in reference 11).
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Identification of the primary sequence-dependent epitope recognized by the
anti-HlgC MAbs. To localize the antigenic binding site recognized by these anti-Luk
MAbs, we used our recently developed gpVIII-fusion phage-display vector system,
pCOMB-Opti8 (24). This phagemid system enables the generation of large libraries of
individual phagemid members, each carrying a gene insertion that is expressed as a
fusion protein product with a coat protein on the phage surface that provides a
physical linkage with the encoding gene (26). Here, we utilized a proven phage-display
library composed of random gene fragments of the highly homologous Luk/PFT family
member, LukS (24), that was recognized by all of these MAbs (Fig. S1). Using the
anti-HIgC2 MAb as bait, we performed four rounds of biopanning, which yielded an
increase in the phage-out/phage-in ratio for each of the sequentially selected subli-
braries (Fig. 1A) that suggested the successful selection of specific fragment phage
clones (24). Furthermore, the pan4 sublibrary selected by the anti-HlgC2 MAb displayed
the highest-level dose-dependent binding interactions with the anti-HlgC2 MAb
(Fig. 1C). This anti-HIgC2-selected sublibrary exhibited a lower level of reactivity with
the anti-HlgC1, anti-HlgC3, and anti-HlgC4 MAbs (Fig. 1B to E), while there was
essentially no reactivity with bovine serum albumin (BSA), a control protein (Fig. 1F).
Together, these findings suggest that all of the anti-HlgC MAbs displayed similar
patterns of reactivity with LukS gene fragment products.

To explore the structural basis for antibody binding, 20 colonies were randomly
selected from the LukS fragment pan 4 sublibrary recovered by biopanning with the
anti-HIgC2 MAb for further analysis. Strikingly, we found that the nucleotide sequences
of all of the selected colonies represented only three distinct fragment clones. These
LukS fragment clones contained three overlapping LukS gene sequences, ranging from
20 to 162 codons in length, and each was predicted to be in-frame for the potential
production of a LukS fragment protein in fusion with the vector gpVIII protein (Fig. 2A).

The anti-HlgC1 and anti-HlgC4 MAbs independently selected for clones that con-
tained only two larger unique in-frame fragments of 92 and 162 codons in length; both
included a 20-codon fragment that corresponded to the LukS240-259 subregion.
Importantly, this LukS subregion was nearly identical to a homologous subregion in the
HlgC gene, with only three conservative amino acid residue substitutions (Fig. 2A)
(Table 1). Thus, biopanning of the LukS gene fragment library using phage display and
the anti-HlgC MAbs identified a potential common epitope present in both HlgC and
LukS (Fig. 2A).

To validate the candidate epitopes in the gene fragments recovered by phage
display, inhibition studies were performed in which wells were precoated with a fixed
concentration of a MAb. Mixtures consisting of a fixed amount of a phage clone with
a titer corresponding to the amount of the HlgC holoprotein were then incubated in
these microtiter wells, which were subsequently developed with tagged anti-M13
phage detection reagent (Fig. 3). These assays documented that the recombinant HlgC
protein mediated dose-dependent inhibition of binding by the fragment clones rep-
resented by LukS240-259 (Fig. 3) and LukS168-259 (Fig. S4; see also Fig. S5) correspond-
ing to each of the anti-HlgC MAbs. These results validated that the LukS240-259 and the
LukS168-259 fragment clones contained the epitope recognized by the anti-HlgC
MAbs.

Structural studies of the HlgC candidate epitope. Since there is currently no
publicly available crystal structure of a HlgC monomer, we chose the LukS crystal
structure (PDB identifier [ID] 4IYA), which has 77% protein sequence identity to HlgC,
to visualize the potential antigenic surfaces associated with the candidate epitope
(Fig. 2B and C). The candidate LukS240-260 subregion in the native toxin subunit
structure folds into two antiparallel � strands connected by a small � turn, which forms
an ideal hairpin with a solvent-exposed surface (Fig. 2C). Very similar substructures are
also present in other members of the leukocidin family, LukE and HlgA (not shown).
However, examination of the LukE and HlgA crystal structures indicates that the
antiparallel � strands that stabilize the conserved � turn in these particular subunits are
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comparatively shorter, which may contribute to the lack of binding cross-reactivity of
the anti-HIgC MAbs with these subunits (Fig. S1). Furthermore, our modeling studies
also suggested that the amino-terminal amino acids of the LukS240-260 subregion
(Table 1) are buried in the hydrophobic � sandwich core of holotoxin; thus, these
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FIG 1 The murine anti-HlgC2 antibody selected for a strongly reactive Luk gene fragment phage sublibrary. (A)
Comparisons of the ratios of phage-out/phage-in, from wells of a library subjected to MAb biopanning, demon-
strated most-efficient selection by the anti-HlgC2 MAb. After the 3rd and 4th round of biopanning, relatively
greater phage expansions were mediated by the anti-HlgC2 MAb. (B to F) Binding of phages from pan 4 to
anti-HlgC MAbs. The indicated phages selected by each MAb after pan 4 were put on ELISA plates precoated with
(B) anti-HlgC1, (C) anti-HlgC2, (D) anti-HlgC3, (E) anti-HlgC4, and (F) BSA. Binding of phage to the MAbs was
detected by the phage-specific anti-M13 antibody. The anti-HlgC2 MAb selected library appeared to be the most
strongly reactive with all of the Luk binding MAbs. In these studies, microtiter wells were coated with each of the
indicated MAbs or the control protein, BSA, and then equal titers corresponding to the amounts of the indicated
anti-HlgC MAb-selected Luk fragment library were added, and phage binding was detected with a labeled
anti-M13 antibody. “Isotype” refers to reactivity of wells that had been coated with a murine MAb of irrelevant
binding specificity. In these ELISA, each point was assayed in duplicate. OD450, optical density at 450 nm.
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residues are unlikely to directly contribute to binding interactions with the anti-HlgC
MAbs.

Armed with these insights from the LukS full-length protein, we sought to better
localize the minimal LukS epitope recognized by these MAbs. We therefore directly
tested the structural requirements for MAb binding and evaluated the possibility of a
direct contribution of residues in the � strands. We designed a series of three synthetic
peptides with the solvent-exposed subregion, LukS248-258, flanked by various lengths
of the antiparallel � strands (Table 1) from the native sequence, which in turn were
flanked on both sides by cysteines that formed a disulfide bridge that constrained each
peptide into a stable hairpin structure. As all four anti-HlgC MAbs recognized these
three synthetic peptides with equivalent levels of reactivity (Fig. 4A to D), the presence
of these flanking residues in the � strands did not appear to be critical. These studies
suggested that the minimal epitope recognized by all of these MAbs is the LukS248-258
subregion, representing the primary amino acid sequence RRTTHYGNSYL.

On the basis of the findings described above, we then used a similar design to
generate a self-cyclizing synthetic peptide that was based on the homologous HlgC
subunit, HIgC239-257 (Table 1). As anticipated, side-by-side analyses demonstrated that
the peptide with the minimized HlgC239-257 subregion had reactivity equivalent to

FIG 2 Sequences of phage fragment clones selected by the anti-HlgC2 MAb from the LukS phage display fragment library are nested within the parental gene.
(A) Deduced amino acid sequences of recurrent LukS gene fragment phage clones selected by anti-HlgC MAbs (depicted in gray box) align to a conserved
region of the PVL LukS homologues, LukS and HlgC. These findings provide a structural basis for MAb cross-reactivity. The LukS244-260 subregion is underlined.
(B) Structural visualization of the LukS crystal structure (4IYA) (48), with the conserved solvent-exposed structure among the clones highlighted in yellow with
charged surfaces in red and blue. In this solved structure, residues LukS240-242 are not solvent exposed. (C) The solvent-exposed surface of LukS244-260 on
the LukS crystal structure is depicted.

Hernandez et al. ®

May/June 2020 Volume 11 Issue 3 e00460-20 mbio.asm.org 6

https://www.rcsb.org/pdb/explore/explore.do?structureId=4IYA
https://mbio.asm.org


that seen with the LukS-derived subregion, LukS246-260 (Fig. 4E). The previously
described anti-LukE3 MAb (24) does not recognize this same subregion but does
recognize the structurally unrelated HlgA123-133 subregion, which is included here as
a binding specificity and isotype control (Fig. 4F).

To evaluate whether the intramolecular forces present in the conserved hairpin in
the parental protein were sufficient alone to stabilize the fold of the peptide into a
conformation recognized by the anti-HlgC2 MAb without the need for covalent
cysteine-based cyclization, we also generated a peptide, LukS246-260, devoid of the
introduced flanking paired cysteines (Table 1). We found that both constrained and
unconstrained LukS246-260 peptides displayed similar strong reactivity with the anti-
HlgC2 MAb (Fig. 4E). Collectively, these peptide binding results document that the
LukS246-260 and HlgC239-257 subregions are each sufficient as isolated peptides to
mimic the surface determinants required for recognition by the anti-HlgC2 MAb.

In the solved crystallographic structure, the His252 and Tyr253 residues are located
at the very tip of the � turn of the LukS246-260 hairpin, and the same residues are
present at comparable positions in the HlgC241-255 subregion in this homologous Luk
subunit. We therefore postulated that residues in the actual �-hairpin loop represented
the best candidates for contact sites for binding interactions with one or more of these
MAbs. To directly test whether these specific residues were involved in antibody
recognition, we designed cysteine-constrained peptides in which either His or Tyr or
both in the LukS248-258 core subregion were replaced with Gly or Pro, respectively (i.e.,
His252Gly and Tyr253Pro) (Table 1). Notably, these substitutions for these Gly and Pro
residues were each predicted by molecular modeling to maintain the overall � turn
conformation of the native residue. We therefore generated peptides with mutations at
position 252 (from His to Gly) and at 253 (from Tyr to Pro) as surface MAb targets
because we predicted these would not disrupt the overall epitope architecture. We
tested the contribution of these side chains to antibody binding and observed that
mutations at either the His residue or the Tyr residue or both did significantly reduce the
immune recognition of the LukS248-258 subregion by each of the anti-HlgC1, anti-HlgC2,
anti-HlgC3, and anti-HlgC4 MAbs (Fig. 4G to J). Cumulatively, these studies documented
that the same epitope (or a closely related epitope) can be emulated by small peptides with
the LukS248-258 subregion and the HIgC subregion homologue, where the His and Tyr
residues at the tip of the inherently stable hairpin loop represent absolute requirements for
the binding interaction of each of the anti-HlgC MAbs.

TABLE 1 Leukocidin subregions and variants generated as synthetic peptidesa

Leukocidin subregion
Leukocidin
variant Sequence

LukScyc244-262 biotin-SGSG-C THATRRTTHYGNSYLEGSR -C
LukS246-260 biotin SGSG ATRRTTHYGNSYLEG
LukScyc246-260 biotin-SGSG-C ATRRTTHYGNSYLEG -C
LukScyc248-258 biotin-SGSG-C RRTTHYGNSYL –C
LukScyc248-258 mutH252G biotin-SGSG-C RRTTGYGNSYL –C
LukScyc248-258 mutY253P biotin-SGSG-C RRTTHPGNSYL –C
LukScyc248-258 mutH252G Y253P biotin-SGSG-C RRTTGPGNSYL –C

HIgC241-255b biotin SGSG AIKRSTHYGNSYLDG
HIgCcyc239-257 biotin SGSG-C THAIKRSTHYGNSYLDGHR –C

LukScyc182-213 biotin-SGSG-C NLFVGYKPYSQNPRDYFVPDNELPPLVHS
GFN –C

HIgA123-133 biotin SGSG YLPKNKIDSAD

LukScyc189-214 biotin SGSG-C KPYSQNPRDYFVPDNELPPLVHSGFN –C

aThe parental sequences of Luk subunits LukS and HlgC are depicted in Fig. 2.
bSynthetic peptides were generated with the designated sequence, with an amino-terminal biotin with SGSG
linker, or with a carboxyterminal KLH (see Materials and Methods), as specifically described. Residues in bold
represent unnatural variants. Residues that differ between the subregions of interest in LukS and HIgC are
underlined in the HIgC241-255 peptide.
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The LukS248-258 subregion is required for neutralization of HlgCB toxin-
mediated neutrophil killing. We next investigated whether the LukS/HlgC subregion
sequence described above, implicated in immune recognition by the anti-HlgC MAbs,
also affects the functional capacity of the HlgCB toxin to intoxicate and kill human
primary neutrophils. We therefore used a validated ex vivo cytotoxicity assay to
empirically identify a concentration of the HlgCB holotoxin that killed 90% of the
neutrophils (0.85 �g/ml, 24.09 nM). With this HIgCB concentration, we documented
that each of the MAbs caused dose-dependent neutralization of HlgCB-mediated
neutrophil killing, and we identified the 50% effective concentration (EC50) for each
MAb in these assays (i.e., that provided 50% reductions in toxin-mediated neutrophil
cytotoxicity) (Fig. 5A).

We preincubated the LukS248-258 peptide or the double mutant LukS248-
258mutHY-GP peptide with each anti-HlgC MAbs at the EC50. Strikingly, the LukS248-
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258 peptide significantly inhibited the capacity of the MAbs to neutralize the cytotox-
icity of HIgCB (Fig. 5B to E). In contrast, the mutant peptide with substitutions for the
critical His and Tyr residues (LukS248-258mutHY-GP) did not interfere with the ability of
anti-HlgC MAbs to neutralize HlgCB cytotoxicity (Fig. 5B to E). Taken together, these
findings indicate that all four of these anti-HlgC MAbs bind an epitope(s) in which the
same small hairpin structure appears to be involved in molecular interactions that
require the conserved His and Tyr residues. In these experiments, we thereby identified
His252 and Tyr253 as residues critical for the binding of anti-HlgC MAbs to the toxins.
These findings therefore further validated the primary sequence-dependent structural
basis for the cross-reactivity of the anti-HlgC MAbs. Consistent with these data, the
homologous HlgC235-255 subregion has been implicated in the binding interaction of
the LukS homologous toxin subunit with the host cell receptor (27).

The HlgC241-255 epitope is commonly recognized by postinfection human
serum antibodies. To investigate the relevance of the neutralization-associated
LukS246-260 and HlgC235-257 minimal epitopes to human immunity, we performed
binding assays with these peptides and with sera previously obtained from patients
recovering from invasive S. aureus infection (3). In general, the highest titer of S.
aureus-specific antibody was detected in convalescent-phase sera collected at about 6
weeks after the initial clinical presentation of the patients (3). In multiplex assays,
binding studies were performed with full-length Luk subunit proteins and the isolated
minimal LukS246-260 and HlgC235-257 subregion peptides, together with the
control LukS248-258mutHY-GP peptide (Fig. 6; see also Fig. S5). Remarkably, the
majority of these convalescent-phase sera were enriched for IgG antibodies that
recognized the full-length proteins and these minimal epitopes but not the mutant
peptides, although the levels of antibody reactivity differed between patients (Fig. 6B
to D). Furthermore, the level of IgG reactivity with the LukS246-260 and HlgC239-257
peptides were strongly correlated (r � 0.846, P � 0.0001) (Fig. 6E). The reactivity with
the full-length HlgC showed a weak but significant correlation with the recognition of
the LukS246-260 related epitope (r � 0.505, P � 0.032) (Fig. 6B). However, the reactivity
with the LukS246-260 and the HlgC full-length protein did not correlate with
recognition of the peptide LukSmutHY-GP, which contains the sequence mutations
that eliminate the Tyr and His residues, which we postulated are critical for antibody
binding interactions (Fig. 6C and D). Together, these results suggest that the
immune systems of patients, recovering from clinical S. aureus infections, have
encountered these toxins and developed antibodies against them, which we pos-
tulate leads to the development of IgG antibodies to this conserved hairpin
structure in the HlgC and LukS holoproteins.

We further sought to test whether convalescent patient sera neutralized HlgCB-
mediated cytotoxicity on primary human neutrophils. Indeed, S. aureus postinfection
sera were able to inhibit HlgCB intoxication of human neutrophils, and by using a range
of serum dilutions, we demonstrated that all of these postinfection serum samples
differed in neutralization capacity (Fig. 7).

HlgC241-255 and LukS246-260 are immunogens that induce in vivo responses.
For direct testing of the capacity of the HlgC241-255 and LukS246-260 epitopes to
induce active immune responses, peptides were synthesized as chemical conjugates

FIG 4 Legend (Continued)
LukScyc248-258 and the LukS holoprotein but not the unrelated LukScyc188-213 peptide. (E) The anti-HlgC2 MAb reacted similarly with
the cyclized and noncyclized form of the LukS246-260 subregion and the cyclized form of the homologous HlgC239-257 subregion and
the LukS holoprotein but not the unrelated HlgA123-133 subregion. Concurrently, the HlgC241-255 peptide showed comparable levels of
dose-dependent reactivity to anti-HlgC2 MAb, which documented the Luk subunit cross-reactivity of this neutralizing antibody. (F) The
previously described anti-LukE3 MAb (24) did not recognize the same subregion but did recognize the structurally unrelated HlgA123-133
subregion, which is included here as a binding specificity and isotype control. (G to J) The LukS248-258 His252Gly and Tyr253Pro
substitutions (e.g., the autocyclizing double mutant peptide is designated LukScyc 248–259 mutHY-GP) resulted in loss of reactivity with
each of the anti-HlgC MAbs, shown individually. These panels show that each anti-HlgC MAb requires the presence of both His247 and
Tyr248 to form optimal antibody-peptide complexes. Results represent means with SD error bars for streptavidin-coated microtiter wells,
with each biotinylated peptide loaded in a 1:5 dilution series starting at 10,000 ng/ml and detected with each anti-HlgC antibody at 2 �g/ml,
performed in duplicate. See Table 1 for peptide nomenclature.
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with the KLH carrier protein. Following immunization with outbred Swiss Webster mice,
the mice mounted IgG antibody responses to the immunizing peptides, which were
readily detectable at a dilution of 1:10,000, with cross-reactivity against both peptides
but not against the control LukS mutant peptide with His252Gly and Tyr253Pro
replacements (Fig. 8). Remarkably, the IgG antibodies induced in these same immu-
nized animals also recognized the HlgC and LukS full-length proteins at levels well
above background (Fig. 8). As anticipated, immunization of mice with the HlgC241-255
epitope peptide also induced IgG antibodies with preferential recognition of HIgC
compared to LukS (Fig. 8B). Similarly, mice immunized with the LukS246-260 peptide
induced an antibody response that displayed greater reactivity with the LukS holopro-
tein than with HlgC (Fig. 8A). These results suggest that epitope-based immunization
induces antibody responses that recognize the parental HlgC and LukS full-length
proteins.
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DISCUSSION

S. aureus is a major health threat, and it remains unclear which antigens need to be
recognized by the immune system for effective host protection from invasive disease.
For our investigations into the antigenic basis of potency and cross-reactivity of
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antibody against the leukotoxins, we generated four different neutralizing MAbs by
immunizing mice with the HlgC toxin subunit. On the basis of the expressed VH:VL
gene rearrangements, these antibodies appeared to be derived from two different
clonal lineages, and all four antibodies recognized the same or closely related antigenic
binding sites, suggesting that these MAbs arose by convergent somatic clonal selection
to recognize an immunodominant epitope.

The B-cell epitope(s) of these anti-HlgC MAbs was investigated using a pComb-Opti8
LukS gene fragment phage-display library. This system provided initial evidence iden-
tifying the LukS240-259 subregion as the epitope recognized by the MAbs. Indeed, the
synthetic peptides, LukS246-260 and the highly homologous HlgC241-255, displayed
the same MAb immunoreactivity as the parental protein, HlgC. Furthermore, mutagen-
esis studies revealed that the binding interactions of the four anti-HlgC MAbs all require
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FIG 7 Serum IgG from patients recovering from invasive S. aureus infection neutralizes HlgCB-mediated neutrophil intoxication ex vivo. Convalescent patient
sera that tested positive for recognition of the peptide were further examined for the capacity of these sera to neutralize HlgCB intoxication on neutrophils.
All six patients displayed various degrees of HlgCB neutralization. (A) The serum from patient 1 displayed the greatest range of neutralization with greater than
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the LukS His252 and Tyr253 residues of LukS or the homologous residues in the context
of the HIgC subregion. Furthermore, these small subregion peptides compete with the
binding of the MAbs with the LukS and HIgC full-length proteins. Interestingly, this
epitope contains residues also implicated in host cell receptor binding by the toxin (27),
which suggests the molecular basis on which these antibodies neutralize toxin activity.

These Luk subunits, LukS and HlgC, were also recognized by most sera from patients
recovering from invasive clinical S. aureus infections. Furthermore, murine immuniza-
tion with synthetic peptides derived from this epitope induced high titers of IgG
response that were cross-reactive with the peptides and the recombinant proteins,
LukS and HlgC; these binding interactions were also dependent on the same critical
amino acid residues, His 252 and Tyr253 (Fig. 8). Notably, conservation of the same His
and Tyr residues in LukS and HlgC is required for immune recognition by the anti-HlgC
MAbs, the polyclonal sera from peptide-immunized mice, and serum antibodies from
patients recovering from S. aureus infections. These findings indicate that both murine
immunity and human immunity involved recognition of the same neutralization-
associated B-cell epitope, HlgC239-257/LukS246-260.

The representation of recirculating S. aureus Luk-specific memory B cells does not
appear to differ greatly between convalescent patients and healthy adults who pre-
sumably have had remote prior S. aureus exposure (3). However, there could be
important differences in the associated immune protection linked to binding specificity
and neutralization capacity. Since little was known about the structural basis of
antibody-mediated HIgC toxin immune recognition and neutralization (23, 28, 29), our
study was designed to elucidate the structure-function relationships between the
anti-HlgC MAbs and HlgC. Indeed, our results serve to support data presented in our
earlier report indicating that human memory anti-Luk responses are commonly cross-
reactive between different structurally related Luk PFT subunit members (3). In addi-
tion, we now document that such primary sequence-dependent B-cell epitopes are also
prominent contributors to antibody-mediated neutralization of HlgCB cytotoxicity for
human polymorphonuclear leukocytes (hPMNs). All efforts to develop a protective
vaccine have failed to date, and it can also be argued that single-component vaccines
may be inadequate to overcome the multitiered assault associated with S. aureus
invasive infection. Indeed, the prevention of different staphylococcal clinical infections
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FIG 8 Cross-reactive neutralizing anti-HlgC MAb epitope immunization induces IgG responses to S.
aureus holotoxin. Murine immunization with (A) KLH-LukS246-260 or (B) KLH-HlgC241-255 peptide
conjugates induced serum antibodies to both LukS246-260 and HlgC241-255, as well as to the holopro-
teins HlgC and LukS. Notably, reactivity with the replacement mutant LukS248-258HY-GP was greatly
diminished compared to the reactivity seen with the peptides with fully native sequences. indicating that
Luk conserved residues His252 and Tyr253 contributed to the immunogenicity of this epitope. Reactivity
was detected in duplicate with a multiplex bead assay.
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may require vaccines incorporating different antigens, such as for bacteremia or SSTIs
(30, 31), and pairing with an adjuvant that induces a Th1-biased or Th17-biased
response may further enhance host protection (32, 33).

Our studies provide further validation of newly developed tools that should be
widely applicable for the evaluation of the “fitness” of potential vaccine components of
an antistaphylococcal antibody response for recognition of neutralization-associated
epitopes. Notably, these validated peptide epitopes can also be used as metrics to
guide preclinical reverse vaccinology efforts that seek to mold inducible antibody
responses with enhanced protective features against S. aureus infections. In this study,
we have identified an immunogenic neutralization B-cell epitope that may be envi-
sioned to have utility as a component in a safe, targeted, multicomponent vaccine.
Taken together, our results provide validation for a phage-display-based approach to
identify functional minimized Luk PFT epitopes linked to neutralizing antibodies. A
future integrated approach may also seek to improve immunization outcomes with
minimized epitopes expressed in engineered scaffolds (34), an approach that can
potentially stabilize the most desirable conformations of the immunizing peptides. An
effective protective vaccine may also utilize a regimen with initial vaccination with
full-length holoproteins followed by boosting with a multicomponent formulation of
scaffolded neutralizing epitopes for targeting sites that promote toxin neutralization,
similar to strategies that are being evaluated for HIV protection (35–37).

Whereas S. aureus infection results in immune exposure to an immense range of
protein products, these include a B-cell toxin(s) postulated to interfere with the
generation of antigen-specific long-lived plasma cells required for augmentation of
host immune defenses (9, 38, 39). To develop an effective protective vaccine, we would
focus on efforts designed to enhance vaccine-induced responses directed against
minimal epitopes that provide immune protection through neutralization of prominent
staphylococcal exotoxins.

In conclusion, we report here the independent recognition of a minimal B-cell
epitope by four members of a panel of structurally divergent anti-HlgC monoclonal
antibodies. Importantly, the immune systems of humans recovering from invasive S.
aureus infections also recognize this immunodominant HlgC241-255/LukS246-260
epitope. Immune recognition of the HlgC241-255/LukS246-260 epitope is dependent
on two key residues, His252 and Tyr253, which are conserved in both HlgC and LukS.
Finally, we show that the immunodominant epitope in the HlgC241-255/LukS246-260
subregions is immunogenic in mice. Taking the results together, we have identified an
important exotoxin determinant that is highly relevant to host defense from infection
and that can be exploited in future therapeutic vaccine studies.

MATERIALS AND METHODS
Ethics statement. Animal experiments were reviewed and approved by the Institutional Animal Care

and Use Committee of New York University Langone Health (NYULH). All experiments were performed
according to NIH guidelines, the Animal Welfare Act, and U.S. federal law.

Leukopaks were obtained from deidentified healthy adult donors with informed consent from the
New York Blood Center. Deidentified samples are exempted from the ethics approval requirements by
the NYULH Institutional Review Board.

Generation of murine MAbs reactive with HlgC. Monoclonal antibodies (MAbs) reactive with the
HlgC subunit of the Luk family were generated by immunization of BALB/c mice with recombinant HlgC,
using a previously reported standard protocol (24).

Monoclonal antibody gene sequence determinations. For determination of antibody gene rear-
rangements coding for MAbs, we applied a method incorporating rapid amplification of cDNA ends
(RACE) along with constant-region primers for unbiased generation of H and � chain amplimers for
Sanger sequencing, as previously reported (24, 40, 41). Alignments to closest germ line genes used the
Immunogenetics (IMGT) tool suite (42).

Neutrophil intoxication and cell lysis assay. The capacity of a purified recombinant Luk to induce
ex vivo death of primary human neutrophils was assayed as previously described (25), with primary
neutrophils from four healthy donors assessed separately. Unless otherwise indicated, all studies used
recombinant HIgCB holotoxin at 0.85 �g/ml (24 nM), which pilot studies demonstrated caused �90% cell
death as measured by the CellTiter 96 AQueous ONE Solution cell proliferation assay (CellTiter; Promega).
Neutralization studies were performed with a MAb or with serum samples at multiple concentrations/
dilutions in duplicate. After empirical definition of an effective toxin dose, and of the level of each MAb
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responsible for 50% toxin neutralization, inhibition studies were repeated under conditions that included
individual synthetic peptides with Luk subregion peptides over a range of concentrations.

Gene fragment library generation and biopanning. The pComb-Opti8 vector was constructed and
a gene fragment library was generated from the gene for the Panton-Valentine S leukocidin subunit
(LukS) as described previously (24). Briefly, a pComb3X filamentous phagemid system (43) was modified
by use of custom oligonucleotides to introduce a flexible linker and truncated gene VIII optimized for
expression of fusion proteins with this major coat protein (44), with the resulting vector termed
pComb-Opti8, with gene fragment libraries generated as previously described (24).

Immunoassays. Direct binding and competition assays were adapted from earlier described meth-
ods (3, 24, 45, 46). Phage binding enzyme-linked immunosorbent assays (ELISA) have been previously
described (24).

Bioinformatic analysis of biopanning of recovered clones. The sequences of all hits from the
phage display were aligned with the whole parent leukotoxin sequence using zero-end gap (ZEGA)
global sequence alignment (47). Most hits contained a continuous fragment identical in sequence with
a fragment in the hololeukocidin subunit, enabling easy identification and visualization by PyMOL
(Schrodinger Inc., New York, NY) of the three-dimensional (3D) structural location of the hit peptide
(epitope) within the holoprotein crystallographic structures for LukS (4IYA) (48) and HlgA (4P1Y) (49).
These structural locations were then examined for surface exposure or burial to narrow the range of the
exact continuous, surface-exposed loop peptide fragments likely to represent the MAb antigenic target.

Design and synthesis of peptide probes. For each subregion sequence under analysis, predicted
solubility was calculated for the sequences of the exact continuous surface-exposed loop peptide
fragments, as recently described (24). When the solubility was acceptable, each sequence was rendered
as a full-atom 3D structure computationally and was subjected to ab initio folding, which accurately
predicts the dynamic 3D conformation of the free peptide as if it were in solution (50–61). Ab initio
folding used a conformational search algorithm (Biased-Probability Monte Carlo search [62]) to generate
all the possible 3D conformations of the peptide. The energy of each conformation, which included
thermodynamic and physics-based components, was then calculated (63–66). The lowest energy con-
formation was thereby identified. In the case of candidate linear B-cell epitopes, this conformation was
compared to the in situ conformation within the holodomain, using superimposition and contact area
algorithms (ICM-Pro software; Molsoft LLC, La Jolla, CA). Modeling studies confirmed that, as isolated
peptides, each of these candidate epitopes retained a 3D structure mimicking that in the holotoxin. Ab
initio folding was also used to evaluate the conformational effects of the specific Gly and Pro mutations
in the peptides. To facilitate coating onto neutravidin/streptavidin on beads or on microtiter wells for
ELISA, these peptides were then commercially synthesized (InvivoGen) with N-terminal biotin followed
by a SerGlySerGly linker adjacent to the PFT subunit subregion of interest (24).

Murine immunization to assess immunogenicity. Aliquots of HlgC241-255-KLH or LukS246-260-
KLH, were separately emulsified in adjuvant (TiterMax Gold; Sigma). Six-week-old ND4 Swiss Webster
outbred female mice were prebled and then primed and subsequently boosted twice at 2-week intervals;
the mice were then bled and sera prepared and stored at 80°C until used. IgG antibody responses in each
serum were evaluated using a previously described multiplex bead assay (24, 45, 46, 67).

Statistical analysis. Data are presented as means � standard deviations (SD) or as medians and
interquartile ranges. The Student unpaired t test with Welch correction was used in 2-group comparisons
of normally distributed data, whereas the Mann-Whitney nonparametric test was used when the
normality assumption was not met. To test for correlations between two variables, the Spearman test was
used. P values were considered significant at 0.05 for two-tailed tests. Prism software Version 7
(GraphPad) was used for all analyses or as indicated.
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