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The mechanical properties of coated layers are one of the important factors for the long-term success of orthopeadic and dental
implants. In this study, the mechanical properties of the porous coated layer were examined via scratch and nanoindentation tests.
The effect of compression load on the porous coated layer of sulphonated poly ether ether ketone/Hydroxyapatite was studied to
determine whether it changes its mechanical properties. The water contact angle and surface roughness of the compressed coated
layer were also measured. The results showed a significant increase in elastic modulus, with mean values ranging from 0.464 GPa
to 1.199 GPa (p<0.05). The average scratch hardness also increased significantly from 69.9 MPa to 95.7 MPa after compression, but
the surface roughness and wettability decreased significantly (p<0.05). Simple compression enhanced the mechanical properties of
the sulphonated poly ether ether ketone/hydroxyapatite coated layer, and the desired mechanical properties for orthopaedic and
dental implant application can be achieved.

1. Introduction advantages because they can be designed to match tissue

properties, can be anisotropic with respect to mechanical

Success in orthopaedic and dental implant depends on
several parameters that may be improved by considering
both biologic and mechanical criteria [1]. The use of syn-
thetic polymers and composites for biomaterial applications
has continued to expand. Fiber-reinforced polymers offer

properties, can be coated for attachment tissues, and can be
fabricated at relatively low cost. Expanded future applications
for orthopaedic and dental implant systems are anticipated
as interest in combination synthetic and biological compos-
ites increases. The more inert polymeric biomaterials include
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polytetrafluoroethylene (PTFE), polyethylene terephthalate
(PET), polymethylmethacrylat (PMMA), ultra-high molec-
ular weight polyethylene (UHMW-PE), polypropylene (PP),
polysulfone (PSF), and poly ether ether ketone (PEEK). These
are thermal and electrical insulators, and when constituted as
a high molecular weight system without plasticizers, they are
relatively resistant to biodegradation [2]. The low elasticity
modulus, excellent chemical stability, transparency to radio
waves, and compatibility with reinforcing agents (such as
carbon fiber) make poly ether ether ketone (PEEK) an ideal
choice for medical applications, such as dental implants [3-5].
Despite these excellent properties, PEEK is still categorized
as bioinert due to its very low reaction with the surrounding
bone tissue [6]. There are several methods to improve the bio-
activity of PEEK, such as selective wet-chemistry [7], graft-
ing [8, 9], and hydroxyapatite (HA) coating [10]. In our
previous studies, the bioactivity of PEEK was increased via
sulphonation and deposition of HA crystalline particles on
the sulphonated layer [11, 12]. The main advantage of our new
method was the fact that the deposition process took place
at room temperature, which caused no damage to the heat-
sensitive PEEK. Our new method consists of two steps includ-
ing sulphonation for activating the surface of PEEK and de-
position of HA particles on the activated sulphonated PEEK
(SPEEK) layer. The diffusion of sulphuric acid in the PEEK
caused a porous coated layer [11]. The porous coated layer
is a potential for bone interlocking; however, the modulus
is expected to be relatively low for load-bearing applications
such as orthopaedic and dental applications.

An adequate elastic modulus of the coating layer is
important as it affects load distribution and stress shielding
at the interface layer between a coated implant and the sur-
rounding bone [13]. Also, the success of a particular implant
in vivo depends on adequate adhesion of the coating layer
[14]. Some standards must be considered for the HA coatings
on medical implants, such as the thickness, porosity, rough-
ness, pore size, and adhesion of the coating layer, to ensure
the quality of their performance [15, 16]. However, the coated
layer in our new type of coated layer consists of SPEEK and
HA, and the existing standards are not suitable to evaluate its
performance qualification.

In our previous study, we studied the feasibility of chang-
ing the mechanical property of the porous coated layer of
SPEEK/HA via compression [17]. In this study, mechanical
and bioactivity properties of the porous coated layer of
SPEEK/HA were examined at different sulphonation times
and enhanced via compression using a hydraulic press to
ensure that it qualified for orthopaedic and dental implant
application. Microscratch and nanoindentation tests were
conducted to evaluate the mechanical properties of the coated
layer. The water contact angle and surface roughness were
measured. The wettability and surface roughness of the coat-
ed layer were also examined to determine the level of bioacti-
vity of a particular material.

2. Materials and Methods

The PEEK substrates (Optima® Invibio) discs were ground
by 400-grit silicon carbide paper. The PEEK samples were
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immersed in concentrated sulphuric acid (95-97%) for three
different durations, 3, 5, and 10 min, in ambient temperature.
The samples were then immersed with distilled water at
room temperature until no traces of acid were obtained, and
the SPEEK samples were left to dry at room temperature
overnight. The SPEEK disc samples were then immersed in a
10% wt/v suspension of hydroxyapatite 21223 (Sigma Aldrich,
USA) in water for 5h and continuously stirred via a magnetic
stirrer. After 5h, the samples were removed, washed, and
ultrasonically cleaned with deionized water for 10 min to
remove any excess HA particles that were not chemically con-
nected to the samples. The samples were then dried at room
temperature overnight [11]. A compressive load of 15 MPa,
equal to the ultimate compressive strength of cancellous bone
[18], was applied to the surface of the coated layer via a hy-
draulic press for 10 minutes.

2.1. Nanoindentation Test. The Hysitron TI 750D Ubi nano-
mechanical test system with a Berkovich indenter tip was used
for the nanoindentation test. Three nanoindentation tests were
conducted per sample. Based on Buckle’s one-tenth rule for
the evaluation of the mechanical properties of a coating layer,
the maximum indentation depth must be less than one-tenth
of the thickness of the coating layer to prevent the effect of
the substrate in the resultant force curve [19]. The maximum
applied load of 200 N was chosen based on a preliminary
experiment considering the one-tenth indentation rule [19].
The loading rate was chosen as 0.5 4N/s, and the holding time
was 300 s.

The Oliver-Pharr model was used to calculate Young’s
modulus of the coated layer from the indentation force
curve. In nanoindentation studies of polymeric materials, the
elastic properties of the indenter can be ignored due to the
large differences in the elastic modulus between the tip and
the sample [20]. The following Oliver-Pharr equations were
based on this assumption [21]. For the Berkovich indenter,
which was used in the nanomechanical test system, the
projected contact area (A.) was obtained from the contact
depth (8.) via [22]

A, = 24,58 ®

The contact depth (8.) was obtained from (2) at the
peak load (d,,,,), where the stiffness (S) was calculated by
measuring the slope of the unloading part of the force curve
at &,y

O, = Oppay — E—2%, (2)
N
where F_,. is the load at the maximum indentation depth.
The geometric constant of ¢ is 0.75 for the Berkovich indenter
tip [23]. Finally, to calculate Young’s modulus of the coated
layer, (3) was utilized:

_SVm
E_z\/A_C 3)

2.2. Scratch Test. The progressive scratch test was carried out
using microscratch test equipment from Micro Materials, Ltd.
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One scratch test was made per sample. The stylus speed was
setat 2 um/s, with a chosen scratch length of 600 ym. Normal
load was not applied to the stylus for the first 60 ym. The load
was then increased linearly from 0 to 500 mN, with a loading
rate of 2mN/s between 60 and 560 ym scratch length and
remained constant in the last 40 yum of the scratch length.
A conical spherical Rockwell stylus with a radius of 25 ym
and a conical angle of 90° was used in this test. The scratch
tracks were analyzed using optical microscope images during
which the scratch width was measured and the coating failure
point determined. The point at which the stylus reached the
substrate was determined through manual observation from
the optical microscope images by the changes in color from
white (coating layer) to beige (substrate).

Based on the literature, there are more than 250 methods
available to determine the adhesion between a coating and
the coated layer [24], of which the scratch test is the most
effective technique [25, 26]. The test consists of applying a
continuously increasing load on the coating surface by a
stylus scratching point, while the sample is displaced at a
constant speed. The scratching point causes increasing elastic
and plastic deformation until damage occurs in the surface
region.

Based on the American Society for Testing Materials
(ASTM) [27], scratch hardness (H,) is defined as “the normal
load of the stylus over the load-bearing area”. To calculate the
scratch hardness, (4) was used [27]:

4Fq

H, = —1,
S nw?

(4)
where F was the normal load (in Newtons), w was the width
of the scratch (in millimeters), and g was a dimensionless
parameter which varied between one (for full elastic recovery
of the sample) and two (for samples with no recovery). In this
study, the g parameter was assumed to be 2 because of plastic
deformation of the sample during the scratch test [27].

For the graphical determination of the scratch hardness,
the plot of F-(rrw?/4) for the sample was drawn, and the slope
of the linear fit to the graph gives the scratch hardness of the
material [27]. To calculate the scratch hardness of the coated
layer, the data of the scratch test for the scratch distance before
the critical point must be used.

Nanoscale morphology of the coated layer before and
after compression and the morphology of the scratches were
probed using a scanning electron microscope (SEM) (Hitachi
Tabletop, TM-3000).

An atomic force microscope (AFM) (SPA-300 HV; Seiko)
was used to analyze the surface roughness. The AFM was
run in the force-curve mode, and a scan size of 5 ym x 5 ym
was used to calculate the arithmetic mean of the surface
roughness (Ra). Thirty lines, each with a length of 3 ym, were
used to calculate Ra [11].

The Sessile method was used to measure the water contact
angle of the surface of the modified PEEK. Contact angle
goniometer equipment (OCA 15 plus, Data Physics) was
used for the measurement. The ASTM D7334-08 standard,
in which deionized water was used as the liquid and the
chosen drop size was 0.5 + 0.1 ul, was used in this test.
For each sample, 10 points were randomly chosen from the

sample’s surface to measure the contact angle [11]. The data
of this study were analyzed by SPSS Statistics 22 (IBM, USA)
using one-way analysis of variance (ANOVA) and Tukey’s test
followed by post hoc least significant difference (LSD), with a
significance level set at p<0.05.

3. Results and Discussion

3.1. Surface Morphology. Figure 1shows the surface morphol-
ogy of the coated layer with a 3 min sulphonation time before
and after a 15MPa compressive load. The load caused an
increase in the density of the coated layer. Agglomeration of
HA particles in the samples before compression could still be
found after the load was removed, but with a reduction in size.

3.2. Surface Roughness. Figure 2 shows the three-dimen-
sional height image of the surface of the samples after apply-
ing the compression load via AFM. The surface morphology
of all three different samples was almost the same, indicating
the independence of sulphonation time on surface roughness
after compression. Before compression, the surface roughness
increased with increasing sulphonation time [11]. The line
of the AFM tip is visible on the sample image due to the
soft properties of the coated layer and the force mode which
was used for this analysis. The calculated arithmetic mean of
the surface roughness obtained via AFM for the compressed
samples was 20.4, 22.2, and 20.9 nm for the 3, 5, and 10 min
sulphonation times, respectively. These three mean values
did not show significant difference (p>0.05); however, they
showed significant decrease in comparison with uncom-
pressed samples (from 34.1, 30.9, and 45.2nm for 3, 5, and
10 min sulphonation times, respectively) [11]. This decrease
in surface roughness was due to the compaction of the soft
and porous coated layer under the compression load. This
condition is less desirable for cell attachment and could
not provide a scaffold for mechanical interlocking between
mineralized bone and the implant [28].

3.3. Scratch Study Results and Discussions. Figure 3 shows
a graph of the penetration depth-normal load against the
scratch distance of the samples. As explained above, the
scratch normal load begins after 60 ym from the beginning of
the scratch length from 0 linearly to 500 mN at the 560 ym
length of the scratch and remains fixed for the last 40 ym of
the scratch.

Different criteria may be used to probe the failure point
in the scratch test. The point of failure may be defined as
the onset of microcracking, crazing, fish-scale formation,
ploughing, or the point at which the coating is penetrated,
revealing the underlying substrate [27]. For brittle coating
layers, such as ceramics, failure occurs at two critical loads;
the first is the cohesive failure at the coating layer (LCI),
and the second is the adhesive failure where the load causes
the coating to peel off, exposing the substrate (LC2) [29].
Cohesive failure may not occur in some soft coating layers,
in which the stylus reaches straight to the substrate without
any cracking, fish scaling, ploughing, etc. [27].

The penetration depth must increase with increasing
normal load. However, the accumulation of the detached
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FIGURE 2: AFM 3D height images of the treated PEEK with (a) 3-, (b) 5-, and (c) 10-minute sulphonation times after applying the compression

load.

coating and substrate material ahead and under the stylus
(macro-chip) pushes the stylus up, affecting the penetration
depth. For most of the samples, the upward force caused by
the macro-chip formed under the stylus (Figure 4) overcomes
the effect of increasing the normal load due to the reduction
of the penetration depth of the stylus at the last part of
the scratch distance. Once the ultimate shear strength of
the coating layer material was exceeded, plastic deformation
occurred causing the materials to slip on each other, forming
macro-chips. Due to the compliant property of the substrate,
the macro-chips surrounding the stylus continued to remove
the substrate material after full delamination of the coating.
Wrinkles are also visible at the edges of the scratch track.
Similar results were observed for samples after compression.
The sample with 5 min sulphonation time shows a continuous
increase in penetration depth as the normal load increases

due to the formation of macro-chips ahead of the stylus
(Figure 4). These results would be different if tested on a
brittle coating layer as there would be no macro-chip material
ahead or under the stylus and the only factor affecting the
penetration depth would be the normal load [30, 31]. Macro-
chips can only be found for the scratch testing of compliant
coating layers [32].

Figure 5 shows the scratch hardness measurement results
on the coated layer at different sulphonation times before
and after being compressed. The scratch hardness increased
from 75.3, 78.1, and 56.2 MPa to 92.1, 99.6, and 95.3 MPa,
respectively, after being compressed for the samples at 3, 5,
and 10 min sulphonation time. The mean value of the scratch
hardness of compressed samples significantly increased
(36.9%) in comparison with uncompressed samples (p<0.05).
The scratch hardness results indicate that compression load
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FIGURE 5: Scratch hardness of the treated layer for different sulphon-
ation time, without and with applying compression load.

can be used for improving the mechanical properties of the
coated layer.

Figure 6 shows the horizontal load versus scratch dis-
tance for different sulphonation times. The horizontal load
increased as the applied normal load increased during the
scratch test and showed an abrupt drop in load when delam-
ination occurred on the substrate surface. In some samples,

the critical point was reached with only the penetration of the
stylus into the coated layer without any delamination. In these
cases, no abrupt changes were observed in the horizontal
load graph. The amount of the horizontal load of the first
part of the horizontal load/scratch distance graph, before
the critical point (before penetration of the stylus into the
sample which is =200 ym), is very important because it can
be used to calculate the coefficient of the friction. The results
showed that the horizontal load of the samples increased
after compression of the coated layer. Two important factors
affect the horizontal load of soft and rubbery materials, such
as our coated layer: first surface roughness [33] and second
elastic modulus of the coated layer [34]. As shown above, the
surface roughness of the samples decreased with the applied
compression which caused a reduction in the horizontal
load. However, the compression changed the mechanical
properties of the coated layer comprising the elastic modulus,
which affected the horizontal load and resulted in the increase
in the horizontal load after compression.

3.4. Nanoindentation Study Results and Discussions. Figure 7
shows the modulus of elasticity of the coated layer with
different sulphonation times with and without compression.
The elastic modulus of the coated layer significantly increased
(threefold) for 5min compared to a 3-min sulphonation
time (p<0.05). However, increasing the sulphonation time to
10 min did not increase the elastic modulus further (p>0.05).
After the compression process, all samples, irrespective of
the sulphonation time, produced similar magnitudes of
elastic modulus. Compression caused the coated layer to
become more compact. The applied compression resulted
in a significant increase of the mean elasticity modulus
of the coated layer from 0.464 GPa to 1.199 GPa (p<0.05).
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The improvement in mechanical properties can be varied
to produce coated layers with different elastic moduli based
on the requirements for the orthopaedic and dental implant
application.

3.5. Water Contact Angle Analysis. Figure 8 shows the effect
of sulphonation time and compression load on the water
contact angle of the coated PEEK samples. The water contact
angle results for the samples before applying the compression
load showed a low water contact angle and the expected
improvement in the wettability due to the surface treatment
[11]. After applying compression load on the coated layer,
the mean of the water contact angle significantly increased
(59%) (p<0.05). However, this is still lower than the contact
angle of bare PEEK, which is 72° [11]. It was also noticed
that the water contact angle was constant with sulphonation
time variations from 3 to 10 min before and after compression
(p>0.05). The two main parameters of surface roughness
and surface chemistry affect the water contact angle. The
absorption of the water droplet traces in the compact layer
(after compression), in comparison to porous surface layers
before applying the compression load that permeated the
water droplet, can reduce the water contact angle. However,

the compression can also change the surface chemistry by
increasing the water contact angle due to the soft properties of
the SPEEK in comparison to HA particles. The increasing the
water contact angle leads to reduced osseointegration [35],
which is undesirable.

4. Conclusion

The nanoindentation and scratch hardness study revealed
the sulphonation time did not have a uniform trend in
mechanical properties of coated layer. The elastic modulus of
coated layer increased via increasing the sulphonation time
from 3 to 5 minutes; however, increasing the sulphonation
time to 10 minutes did not increase the elastic modulus
further. The scratch hardness of the coated layer increased
via increasing the sulphonation time from 3 to 5 minutes;
however, increasing the sulphonation time to 10 minutes
decreased the scratch hardness. The applied compression
resulted in a significant increase of mean elasticity modulus
of coated layer from 0.464 GPa to 1.199 GPa, and enhanced
the mean scratch hardness of the samples from 69.9 MPa to
95.7 MPa, as the porosity was reduced through compaction.
After compression, the surface roughness decreased due
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to the compaction of the porous coated layer. The mean
elastic modulus of the coated layer for different sulphonation
times increased from 0.464 GPa to 1.199 GPa. The water
contact angle for 3, 5, and 10 min sulphonation times after
compression increased from 37.2° to 58.9°, which is lower
than the value for the bare PEEK of 72°. The mechanical
properties of PEEK with chemical deposition of HA on its
surface can be enhanced through simple compression and
reach the requirements for orthopaedic and dental implant
application. However, the improvement comes at the expense
of achieving lower wettability.
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