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Abstract: Recently, automated cell culture devices have become necessary for cell therapy appli-
cations. The maintenance of cell functions is critical for cell expansion. However, there are risks
of losing these functions, owing to disturbances in the surrounding environment and culturing
procedures. Therefore, there is a need for a non-invasive and highly accurate evaluation method for
cell phenotypes. In this study, we focused on an automated discrimination technique using image
processing with a deep learning algorithm. This study aimed to clarify the effects of the optical
magnification of the microscope and cell size in each image on the discrimination accuracy for cell
phenotypes and morphologies. Myoblast cells (C2C12 cell line) were cultured and differentiated
into myotubes. Microscopic images of the cultured cells were acquired at magnifications of 40× and
100×. A deep learning architecture was constructed to discriminate between undifferentiated and
differentiated cells. The discrimination accuracy exceeded 90% even at a magnification of 40× for
well-developed myogenic differentiation. For the cells under immature myogenic differentiation, a
high optical magnification of 100× was required to maintain a discrimination accuracy over 90%. The
microscopic optical magnification should be adjusted according to the cell differentiation to improve
the efficiency of image-based cell discrimination.

Keywords: image-based discrimination; myoblast; C2C12; optical magnification

1. Introduction

For clinical applications in regenerative medicine, it is necessary to proliferate a large
number of cells while still maintaining their functions as being suitable for therapy. In the
case of pluripotent stem cells (PSCs), such as induced PSCs, it is necessary to proliferate
a large number of cells while maintaining their undifferentiated states. Automated cell
culture devices have been developed for the expansion of PSCs [1] and are commercially
available. PSCs are easily affected by the surrounding environment and culturing proce-
dures; in this context, physical disturbances such as temperature changes and vibrations
can cause PSCs to degenerate and fail to maintain their undifferentiated states, resulting
in a loss of pluripotency. Therefore, it is important to evaluate the cell quality (e.g., by
evaluating cells’ pluripotency). Conventional methods for determining cell quality, such as
those based on polymerase chain reactions, enzyme-linked immunosorbent assays, and
histological evaluation methods with fluorescence staining, are generally invasive. In
general, non-invasive evaluation methods are more desirable for cell quality assessments
in automated culture systems.

The most common method for obtaining a non-invasive evaluation of cell function-
ality is to observe a cell’s morphology in bright field images using an optical microscope.
However, it is difficult to assess cell qualities (phenotype, function, etc.) based only on
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microscopic images without biochemical labeling (such as fluorescent staining), even for a
skilled technician. This is because living cells have rheological properties that dynamically
change their morphologies according to their phenotypes and functions [2]. Consider-
ing this situation, Diane et al. reported the effectiveness of automated discrimination
techniques using image processing based on machine learning, thereby avoiding a de-
pendence on the subjectivity or experience of technicians [3]. Among such techniques
for image-based discrimination, deep learning-based methods, which generate discrim-
ination metrics by extracting features from large amounts of image data, have attracted
considerable attention [4]. In cell discrimination based on image processing with machine
learning, the optimization of the architecture and parameters is important for improving
the discrimination accuracy [5,6]. In image analysis based on deep learning, it is necessary
to acquire a large amount of image data to provide efficient training for extracting the
features of the image data. Furthermore, to accurately evaluate cells during mass culturing
in automated culture devices, it is necessary to rapidly obtain a number of microscopic
images in different culture vessels during the culturing. Therefore, reducing the time
required to acquire microscopic images is important for improving the efficiency of cell
discrimination by deep learning.

Although there have been studies [7] on improving efficiency when collecting im-
age datasets for machine learning, these studies have mainly focused on data extraction
algorithms (such as those based on cell image segmentation), and not on experimental
approaches. In addition, no research has focused on improving the efficiency of acquiring
cell microscopic image data for machine learning by considering the time and acquisition
conditions required for obtaining such microscopic images. In general, the time required to
acquire a microscopic image depends on the optical magnification of the microscope. This
is because a lower optical magnification of the microscope enables a wider field of view
and a corresponding reduction in the image acquisition time. However, a lower optical
magnification decreases the resolution of the microscopic image and can therefore lead to
the loss of detailed information on the cell morphology within the microscopic image.

In this study, we aimed to elucidate the effects of the imaging conditions in phase
contrast microscopy (as commonly used in cell culturing processes) on the accuracy of
cell morphology discrimination. As a fundamental study, the C2C12 cell line was used
for myoblast differentiation culturing. C2C12 cells are mouse skeletal myoblast cells.
They change their phenotypes during the differentiation process from a round shape to an
elongated tubular shape. From the acquired image data, a cell differentiation discrimination
system was established based on deep learning. As a training dataset for the deep learning,
cell microscopic images were obtained at two different optical magnifications, and the
effect of the imaging magnification on the discrimination accuracy was investigated.

2. Materials and Methods
2.1. C2C12 Cell Culture and Myotube Differentiation

In this study, mouse myoblasts (C2C12 cell line; RCB0987, RIKEN Cell Bank, Ibaraki,
Japan) were cultured to construct a dataset for training with a deep learning algorithm
and evaluating the discrimination accuracy. During myogenic differentiation, C2C12
cells change their morphologies to a spindle shape and form myotube-like structures. As
C2C12 cells are a general cell line that is used to observe undifferentiated and myogenic
morphologies by phase-contrast microscopy, microscopic images of the C2C12 cells were
acquired to construct the image dataset for the deep learning and its verification.

The C2C12 cells were initially proliferated in Dulbecco’s Modified Eagle Medium
(DMEM) high glucose (12100-046, Gibco, Waltham, MA, USA) +10% fetal bovine serum +1%
antibiotic-antimycotic (09366-44, Nacalai Tesque, Kyoto, Japan) as a maintenance medium.
After proliferation, the C2C12 cells were differentiated in DMEM high-glucose +2% horse
serum +1% antibiotic-antimycotic as a myogenic differentiation medium [8]. The cells were
cultured in maintenance medium for 2 days to grow to confluence, and then were cultured
in the myogenic differentiation medium to initiate myogenic differentiation. The start date
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of the myogenic differentiation was defined as day 0. The culture medium was changed
every 2 days, and 50 phase-contrast microscopy images were taken on days 3, 6, 9, and 12.
To evaluate the effect of the optical resolution on the discrimination accuracy of the cell
phenotype, the microscopy images were acquired at 40× and 100× optical magnifications,
respectively. A 4× objective lens (NA = 0.13; UPLFLN 4×, Olympus, Tokyo, Japan), 10×
objective lens (NA = 0.25; CACHN 10× PHP; Olympus, Tokyo, Japan), and 10× eyepiece
lens (WH 10×; Olympus, Tokyo, Japan) were used. A phase contrast microscope (CKX41,
Olympus, Tokyo, Japan) and charge-coupled device camera (DP72, Olympus, Tokyo, Japan)
were used to obtain the images.

The C2C12 cells are elongated by differentiation to form myotube-like morphologies
in the myogenic differentiation medium. An ellipse approximation was performed for each
cell, and the length of the major axis and aspect ratio were used as the evaluation indices
for the geometric properties of the cells. As shown in Figure 1, the outer edges of the cells
were extracted on each day, and the ellipse approximation was performed using ImageJ
software (V1.52, NIH, Bethesda, MD, USA). The ellipse approximation was performed for
50 cells in each image, and the major axis length and aspect ratio (major axis/minor axis)
were calculated. In this study, the length of the long axis was used as an evaluation index
for the cell size, and the aspect ratio was used as an index for the cell morphology.

Micromachines 2022, 13, x FOR PEER REVIEW 3 of 10 
 

 

medium. After proliferation, the C2C12 cells were differentiated in DMEM high-glucose 

+2% horse serum +1% antibiotic-antimycotic as a myogenic differentiation medium [8]. 

The cells were cultured in maintenance medium for 2 days to grow to confluence, and 

then were cultured in the myogenic differentiation medium to initiate myogenic 

differentiation. The start date of the myogenic differentiation was defined as day 0. The 

culture medium was changed every 2 days, and 50 phase-contrast microscopy images 

were taken on days 3, 6, 9, and 12. To evaluate the effect of the optical resolution on the 

discrimination accuracy of the cell phenotype, the microscopy images were acquired at 

40× and 100× optical magnifications, respectively. A 4× objective lens (NA = 0.13; UPLFLN 

4×, Olympus, Tokyo, Japan), 10× objective lens (NA = 0.25; CACHN 10× PHP; Olympus, 

Tokyo, Japan), and 10× eyepiece lens (WH 10×; Olympus, Tokyo, Japan) were used. A 

phase contrast microscope (CKX41, Olympus, Tokyo, Japan) and charge-coupled device 

camera (DP72, Olympus, Tokyo, Japan) were used to obtain the images.  

The C2C12 cells are elongated by differentiation to form myotube-like morphologies 

in the myogenic differentiation medium. An ellipse approximation was performed for 

each cell, and the length of the major axis and aspect ratio were used as the evaluation 

indices for the geometric properties of the cells. As shown in Figure 1, the outer edges of 

the cells were extracted on each day, and the ellipse approximation was performed using 

ImageJ software (V1.52, NIH, Bethesda, MD, USA). The ellipse approximation was 

performed for 50 cells in each image, and the major axis length and aspect ratio (major 

axis/minor axis) were calculated. In this study, the length of the long axis was used as an 

evaluation index for the cell size, and the aspect ratio was used as an index for the cell 

morphology. 

 

Figure 1. Measurement of major and minor axes of myotube-like cells using ellipse approximation. 

2.2. Preparation of Training Data from Cell Microscopic Image Data 

The obtained microscopic image data were sufficiently large to increase the 

computational cost for training with a deep learning algorithm. Therefore, the images 

were preprocessed before training as follows. First, the lengths of the major and minor 

axes of the myotube-like cells were measured by approximating them with an ellipse on 

days 3 and 6, as the boundaries of each cell could be individually recognized. To prepare 

the training dataset, images for the training dataset were trimmed randomly from original 

microscopic images to a square of 1.2 times the average length of the long axis, as 

measured in the procedure described above. This process was performed for images at all 

optical magnifications and on all days to create a dataset of 600 images. The images on 

days 9 and 12 were randomly cropped to the same field of view size on day 6, as the ellipse 

approximation was difficult for fully differentiated myotube-like cells. The cells on day 0 

were defined as undifferentiated cells, and those on days 3, 6, 9, and 12 were defined as 

cells in the process of myogenic differentiation. The microscopic images on day 0 were 

also cropped to create a training image dataset of undifferentiated cells. By performing 

the above preprocessing on the microscopic images, a total of 1200 images were obtained 

for the training dataset (including those from days 3, 6, 9, and 12), with 600 

undifferentiated cell images and 600 myotube-like cell images. 
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2.2. Preparation of Training Data from Cell Microscopic Image Data

The obtained microscopic image data were sufficiently large to increase the compu-
tational cost for training with a deep learning algorithm. Therefore, the images were
preprocessed before training as follows. First, the lengths of the major and minor axes
of the myotube-like cells were measured by approximating them with an ellipse on days
3 and 6, as the boundaries of each cell could be individually recognized. To prepare the
training dataset, images for the training dataset were trimmed randomly from original
microscopic images to a square of 1.2 times the average length of the long axis, as measured
in the procedure described above. This process was performed for images at all optical
magnifications and on all days to create a dataset of 600 images. The images on days
9 and 12 were randomly cropped to the same field of view size on day 6, as the ellipse
approximation was difficult for fully differentiated myotube-like cells. The cells on day 0
were defined as undifferentiated cells, and those on days 3, 6, 9, and 12 were defined as
cells in the process of myogenic differentiation. The microscopic images on day 0 were
also cropped to create a training image dataset of undifferentiated cells. By performing the
above preprocessing on the microscopic images, a total of 1200 images were obtained for
the training dataset (including those from days 3, 6, 9, and 12), with 600 undifferentiated
cell images and 600 myotube-like cell images.

2.3. Cell Assessment System Using Deep Learning

For image processing in deep learning, the image is considered as a matrix of pixel
values, and discrimination is performed by repeatedly performing the arithmetic operations
shown in Equations (1) and (2) (Figure 2).

u = w1x1 + w2x2 + w3x3 + b (1)
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z = f (u) (2)
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Figure 2. Basic calculation algorithm of deep learning.

In the above, x is the luminance value of the pixel; w and b are the weights and biases,
respectively, as optimized by learning; and f is the activation function. In this learning
model, the cell image was considered as being in an undifferentiated state if the last
computed value of z was zero, and as being in a differentiated state if it was one. Training
with deep learning involved iteratively adjusting w and b to output the correct answer. The
activation function in the deep learning framework works in the same manner as the action
potential in neurons. The activation function only outputs when the input exceeds the
threshold. The sigmoid and rectified linear unit (ReLU) functions are commonly used as
activation functions. In a sigmoid function, the output varies gradually and smoothly with
respect to the input. When the absolute value of the input is large, the output saturates to a
constant value [9]. In the ReLU function, learning progresses quickly owing to the large
difference between the output and the input, and the computational cost for learning is
lower [10]. In our learning model for cell image discrimination, the ReLU function was used
as the activation function, owing to its fast-learning progress. In deep learning, the most
common learning model used for image discrimination is the convolutional neural network
(CNN) model, which extracts features by repeatedly applying filters to a component matrix
of pixel values [11]. In this study, the learning model was constructed based on AlexNet [12],
a CNN model. As shown in Figure 3, the model used in this study comprised three layers
for convolution, two layers for pooling, and two layers for providing the total combination.
To implement the deep learning model, we used Chainer (from Preferred Networks), an
open-source framework for computing and training neural networks. In our learning
model, the number of layers was set to being relatively small to prevent overtraining.
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2.4. Evaluation of Discrimination Accuracy for Cell Differentiation

In this study, the captured images were divided to generate two datasets to evaluate the
discrimination accuracy: one for training and the other for validation. The discrimination
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accuracy was evaluated during the learning process. The set of 1200 cell microscopic
images was divided into 900 images for training, 100 images for validation, and 200 images
for the final validation of the discrimination accuracy. The images of differentiated and
undifferentiated cells were evenly distributed in each dataset. The model exhibiting the best
discrimination accuracy in the validation process was adopted as the learning model for
the cell image discrimination. Ultimately, 200 images were obtained for the final validation
of the discrimination accuracy, and the correct response rate was evaluated as the accuracy
of our image-based cell discrimination system.

3. Results and Discussion
3.1. Extraction of Shape Changes Owing to Myotube Differentiation of Cells

Figure 4 shows representative images of differentiated myocytes on each day. The
C2C12 cells were elongated by differentiation to form myotube-like morphologies. To
label the microscopic images with a differentiation state, cell morphological changes were
quantified by the ellipse approximation. Figures 5 and 6 show the cell morphological
changes at each point in time during muscle differentiation. The lengths of the major axes
of the cells increase from day 0 to day 9, and the rate of increase decreases from day 9 to
day 12 (Figure 5). The aspect ratios of the cells increase significantly from day 0 to day 6
and increase slightly from day 9 to day 12 (Figure 6). During the myogenic differentiation
of the skeletal muscle-derived myoblast cell line (C2C12 cells), the cells elongate and fuse to
form a myotube-like shape. These results suggest that the C2C12 cells undergo myogenic
differentiation after 12 days of culturing. Therefore, it is possible to label the microscopic
images of undifferentiated and myogenic cells by using the length of the long axis and
aspect ratio as indicators.
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Mean +/− SD, n = 25.

3.2. Influences of Optical Magnification and Cell Morphology in Microscopic Images on
Discrimination Accuracy of Cell Discrimination

Figure 7 shows the discrimination accuracies of the trained models as created from the
datasets of microscopic images at 40× and 100× optical magnifications. The discrimination
accuracies of the models created from the datasets at the 40× optical magnification of
the microscopic images on days 3 and 6 are 50% and 77.5%, respectively. Notably, the
accuracies are greater than 90% when using the dataset of images after day 9. For the
training dataset with 100× optical magnification images, the discrimination accuracy of the
model generated from the dataset on day 3 is 81.5%, and the accuracy is over 90% after day
6. The discrimination accuracy is lower for both models when using the image datasets
from the 40× and 100× optical magnification images on day 3.
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Figure 7. Discrimination accuracy of each microscopic image dataset using our CNN model.

As shown in Figures 5 and 6, the differences between the differentiated and undif-
ferentiated cells regarding the long axis length and aspect ratio are small on days 0 and
3. The differences in the morphologies of the cells in the early stage of differentiation and
those in the undifferentiated state are also small, as the myogenic differentiation has not
yet sufficiently advanced. Therefore, the lower discrimination accuracy on days 0 and 3
is considered to be due to the small differences in cell morphologies. However, on day
6, the discrimination accuracy of the model created from the image dataset at an optical
magnification of 40× is approximately 80%, whereas that using the image dataset at an
optical magnification of 100× is over 90%. This was due to the difference in the resolution
resulting from the optical magnification of the microscope.

To clarify the relationships between the discrimination accuracy and the progression of
the morphological changes caused by myogenic differentiation, the relationships between
the length of the long axis and aspect ratio of the cell and the discrimination accuracy were
evaluated (Figures 8 and 9). For long-axis lengths of up to 300 µm, the discrimination
accuracy is lower at the 40× optical magnification than at the 100× optical magnification,
indicating that the effect of the optical magnification is significant (Figure 8). As for the
aspect ratio, even for image datasets with an aspect ratio greater than 9, which is generally
considered to be sufficiently differentiated, the discrimination accuracy is less than 90%
when the optical magnification is small (Figure 9). In particular, in the microscopic images
on day 6, the aspect ratios of the cells are larger than 9, indicating that the cells have
sufficiently differentiated; however, the discrimination accuracy is approximately 80%.
This is because the cells on day 6 are small in size with a small long axis length; in this
context, the optical image resolution at the 40× optical magnification is insufficient to
identify the cells. In addition to the aspect ratio, the long axis length, an indicator of the cell
size, has a significant effect on the discrimination accuracy for the myogenic differentiation
of C2C12 cells. Furthermore, to increase the discrimination accuracy, the relationship
between the image acquiring conditions (e.g., optical resolution, image aspect ratio, etc.)
and the CNN architecture should be determined.
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Micromachines 2022, 13, x FOR PEER REVIEW 8 of 10 
 

 

To clarify the relationships between the discrimination accuracy and the progression 

of the morphological changes caused by myogenic differentiation, the relationships 

between the length of the long axis and aspect ratio of the cell and the discrimination 

accuracy were evaluated (Figures 8 and 9). For long-axis lengths of up to 300 μm, the 

discrimination accuracy is lower at the 40× optical magnification than at the 100× optical 

magnification, indicating that the effect of the optical magnification is significant (Figure 

8). As for the aspect ratio, even for image datasets with an aspect ratio greater than 9, 

which is generally considered to be sufficiently differentiated, the discrimination accuracy 

is less than 90% when the optical magnification is small (Figure 9). In particular, in the 

microscopic images on day 6, the aspect ratios of the cells are larger than 9, indicating that 

the cells have sufficiently differentiated; however, the discrimination accuracy is 

approximately 80%. This is because the cells on day 6 are small in size with a small long 

axis length; in this context, the optical image resolution at the 40× optical magnification is 

insufficient to identify the cells. In addition to the aspect ratio, the long axis length, an 

indicator of the cell size, has a significant effect on the discrimination accuracy for the 

myogenic differentiation of C2C12 cells. Furthermore, to increase the discrimination 

accuracy, the relationship between the image acquiring conditions (e.g., optical resolution, 

image aspect ratio, etc.) and the CNN architecture should be determined.  

 

Figure 8. Discrimination accuracy of each microscopic image dataset using our CNN model. 

 

Figure 9. Relationship between the aspect ratio of cells and discrimination accuracy. 

Gao et al. classified microscopic images of human laryngeal carcinoma-derived 

epithelial cells (Hep-2) into six classes according to their morphologies, and showed a 

discrimination accuracy of over 90% [13]. As a discrimination accuracy of 90% or higher 

is generally required for cell image discrimination, it is necessary to acquire microscopic 

0

50

100

0 5 10

A
cc

u
ra

cy
 8

%
)

Length of cell major axis (x102 µm)

40 x

100 x

0

50

100

5 7 9 11

A
cc

u
ra

cy
 8

%
)

Aspect ratio (-)

40 x

100 x

Figure 9. Relationship between the aspect ratio of cells and discrimination accuracy.

Gao et al. classified microscopic images of human laryngeal carcinoma-derived epithe-
lial cells (Hep-2) into six classes according to their morphologies, and showed a discrimina-
tion accuracy of over 90% [13]. As a discrimination accuracy of 90% or higher is generally
required for cell image discrimination, it is necessary to acquire microscopic images that en-
able a discrimination accuracy of over 90% to construct a dataset of microscopic images for
training. In this study, to maximize the acquisition efficiency of microscopic images while
maintaining a discrimination accuracy of over 90%, it is desirable to acquire microscopic
images of cells in which the average length of the long axis is greater than 730 µm owing to
myogenic differentiation, using an optical magnification of 40×. However, to identify cells
that have undergone myogenic differentiation (even though they have not yet matured to
form myotubes) at day 6, it is recommended that one use the 100× optical magnification.

4. Conclusions

In this study, the influences of the characteristics of image datasets on the discrim-
ination accuracy of cell myogenic differentiation using a deep learning algorithm were
evaluated. The optical resolution of the microscope and cell size had significant effects on
the discrimination accuracy of C2C12 myogenic differentiation. Specifically, the discrimina-
tion accuracy exceeded 90% even at a low optical magnification (40×) for well-developed
myogenic differentiation and advanced myotube-like tissue formation. In the case of cells



Micromachines 2022, 13, 760 9 of 9

with advanced myogenic differentiation but without sufficient myotube-like tissue forma-
tion, it was necessary to use a relatively high optical magnification (100×) to maintain a
discrimination accuracy over 90%.

Finally, when creating a training dataset for cell discrimination using a deep learning
algorithm, it is important to adjust the microscopic optical magnification according to
the degree of cell differentiation and cell size to improve the time efficiency in image
data acquisition.
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