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Abstract: The sinkhole attack in an edge-based Internet of Things (IoT) environment (EIoT) can
devastate and ruin the whole functioning of the communication. The sinkhole attacker nodes (SHAs)
have some properties (for example, they first attract the other normal nodes for the shortest path to
the destination and when normal nodes initiate the process of sending their packets through that path
(i.e., via SHA), the attacker nodes start disrupting the traffic flow of the network). In the presence
of SHAs, the destination (for example, sink node i.e., gateway/base station) does not receive the
required information or it may receive partial or modified information. This results in reduction of
the network performance and degradation in efficiency and reliability of the communication. In the
presence of such an attack, the throughput decreases, end-to-end delay increases and packet delivery
ratio decreases. Moreover, it may harm other network performance parameters. Hence, it becomes
extremely essential to provide an effective and competent scheme to mitigate this attack in EIoT. In this
paper, an intrusion detection scheme to protect EIoT environment against sinkhole attack is proposed,
which is named as SAD-EIoT. In SAD-EIoT, the resource rich edge nodes (edge servers) perform
the detection of different types of sinkhole attacker nodes with the help of exchanging messages.
The practical demonstration of SAD-EIoT is also provided using the well known NS2 simulator to
compute the various performance parameters. Additionally, the security analysis of SAD-EIoT is
conducted to prove its resiliency against various types of SHAs. SAD-EIoT achieves around 95.83%
detection rate and 1.03% false positive rate, which are considerably better than other related existing
schemes. Apart from those, SAD-EIoT is proficient with respect to computation and communication
costs. Eventually, SAD-EIoT will be a suitable match for those applications which can be used in
critical and sensitive operations (for example, surveillance, security and monitoring systems).

Keywords: sinkhole attack; internet of things (IoT); intrusion detection; edge computing; NS2
simulation; security

1. Introduction

Internet of Things (IoT) objects include smart sensors (devices) which are capable of gathering and
transmitting the sensing information in an IoT network where the human involvement is minimally

Sensors 2020, 20, 1300; doi:10.3390/s20051300 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-5113-3223
https://orcid.org/0000-0001-9898-0921
https://orcid.org/0000-0003-0034-6266
https://orcid.org/0000-0002-5196-9589
https://orcid.org/0000-0001-8657-3800
https://orcid.org/0000-0002-0406-6547
http://dx.doi.org/10.3390/s20051300
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/5/1300?type=check_update&version=2


Sensors 2020, 20, 1300 2 of 27

required. In a generalized IoT architecture presented in Figure 1 [1,2] consists of various scenarios like
smart home, smart transportation and smart community. All these scenarios are installed with smart
devices such as smart home appliances, smart traffic management appliances and smart environment
monitoring devices. These devices are placed and installed in order to communicate with other
heterogeneous devices over the Internet via the gateway node(s) (GWN) where the traffic goes out and
comes in. In this scenario, various users (i.e., smart home users) use the GWNs to access the real-time
information via smart devices deployed in the network [1,3,4]. IoT based applications become the
essential requirement of the society as they provide people a dependable, responsive and ingenious
network connectivity which helps in controlling the remote smart IoT devices in a real time fashion.

Figure 1. Generic Internet of Things (IoT) architecture (adapted from [1]).

In an edge-based communication network, the data is processed near the edge (i.e., edge device)
where the data is being generated unlike the centralized data-processing facility. This further improves
response time of the network and also saves the bandwidth. In edge computing, there is a corner
(i.e., edge) where the data traffic goes out and comes in, which is also named as edge router (device or
node) or simply a gateway. In an edge-based IoT communication environment, edge node performs
heavy computations on data on behalf of the smart IoT devices which have limited computational,
communication and storage resources. The data analysis is performed near the sensing devices
which speed up the process of data analysis and further reduce the decision making time [5,6].
Edge-based IoT communication environment (EIoT) is better than the cloud-based architecture
because of its enhanced and improved performance with moderate cost. EIoT may have different
applications such as smart cities, smart health care system and smart environment monitoring like
the cloud computing communication environment. However, at the same time, EIoT suffers from
several privacy and security problems. EIoT consists of different devices such as edge router (gateway
node), various users and smart devices. Most of the time interested users can access real-time data
possessed by the smart devices [3,5–8]. For such kind of communication environment, edge computing
provides additional benefits such as “enhanced security, decreased bandwidth and reduced latency”.
Henceforth, it is promising communication technology for different IoT applications.
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Edge-based IoT architecture for smart home scenario is presented in Figure 2. In this scenario,
certain smart devices are deployed to monitor and support the day-to-day activities inside a home.
The smart devices (i.e., IoT sensors) sense, process and send the data of home appliances to the nearby
node (edge device). The edge server receives and further processes the data and forwards it to the
cloud server. The authenticated (genuine) smart home users can access the data of the smart home
through the cloud servers. The advantage of this architecture is that the resource rich edge devices
can do processing on behalf of resource constrained smart devices. Furthermore, edge devices can
also be utilized for other types of tasks, such as for the detection of intrusion in the network as they
are powerful devices (resource rich nodes) of the network. Hence, the same approach is followed in
this paper.

Figure 2. Edge-based IoT architecture for smart home scenario.

Additionally, Figure 3 is also provided which consists of different kinds of devices (for example,
edge router (gateway) and smart devices, i.e., IoT sensors and cloud servers). The task of an IoT
sensor is to sense, process and transmit the data of environmental phenomena (i.e., humidity level,
temperature, pressure, etc.) to the edge node. IoT smart devices (IoT sensors) are resource-constrained
with limited memory, battery backup and processing capability, whereas the edge node is rich in
resources (in terms of memory, battery power to sense and process the data and long communication
ranges). Then an edge node processes and analyzes the received data and after that it transmits
the processed data to the remote server(s) over the cloud. However, such type of communication
environment is vulnerable to various security threats which lead to significant security problems as
different attacks (for instance, routing attacks, sybil attack, data leakage, replaying of old messages,
man-in-the middle, impersonation, physical capturing of smart devices, password guessing and
privileged insider attacks) are possible [1,3,6,9].

Zhao et al. [10] designed a mechanism to detect location injection attacks (LIAs), called ILLIA.
ILLIA is based on the “k-anonymity-based privacy preservation against LIA in continuous
location-based services (LBSs) queries”. They emphasized that the attackers attempt to attack some
particular users who they are interested in. Such type of user is referred to as high-risk user. ILLIA has
the ability to protect LIA without having advance knowledge of how fake locations are exploited.
At the same time, ILLIA also maintains high quality of services.
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Figure 3. Edge-based Internet of Things (IoT) environment (EIoT)-communication under the normal
flow of traffic.

Wang et al. [11] proposed another intrusion detection approach, known as MIASec. It provides
“input data indistinguishability” and defends against membership inference attacks in “Machine
Learning as a Service (MLaaS)”. In a “membership inference attack”, an attacker is provided with
given black-box access to a target classifier and inclines to infer if a specific record is covered in the
training set or not.

1.1. Attack Schema of Sinkhole Attack in Edge-based IoT Environment

A possible scenario of sinkhole attack in EIoT environment provided in Figure 4 represents the
flow of network traffic under the presence of SHAs. The communication scenario of EIoT under the
normal flow of traffic has been presented in Figure 3. Each IoT smart device (i.e., IoT sensor) can sense
and transmit the information to the destination (i.e., edge device/node) under the normal flow of
traffic. After collecting the data from different IoT devices, an edge node can process and analyze the
data and then transmit the information to the cloud server for further processing and storage.

Figure 4. EIoT-communication in the case of sinkhole attack.

An adversary, say A, can physically capture some IoT smart devices as the devices are installed
(deployed) in an unattended (hostile) environment where 24× 7 h physical monitoring may not be
feasible. It further helps A to physically capture some nodes (IoT sensors). Thus, A can extract the
stored sensitive information by applying power analysis attacks [12,13]. A can also install malicious
sinkhole attack by launching script in the IoT devices which can execute the attack [14–18]. Then,
A can deploy these malicious nodes in the target area to launch the required attack. When SHAs start
working in the network, the confidential information may be leaked, delayed or lost [17], which can
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further trouble the entire functioning of the network. Therefore, a robust mechanism to defend against
SHAs is required. Hence, intrusion detection technique for EIoT has become one of the primary
research problems in recent years [14–17,19–24].

1.2. Goal of Designing Proposed Scheme

Sometimes IoT devices are installed in an “unattended (hostile) environment” (for example,
smart security and surveillance), where the ceaseless physical monitoring of these devices [25–28] is
not possible. Amay take the advantage of lack of physical monitoring and captures some legitimate
IoT sensor nodes. It is worth noticing that the SHAs have several interesting properties, such as they
first attract the other normal nodes for the shortest path to the destination, and when normal nodes
start sending their packets through that path (i.e., via SHA), the SHAs start disrupting the flow of the
traffic. As a result, the SHAs may or may not forward the packets to the destination. Moreover, it may
forward the packets selectively (for example, forwarding of packets of a particular network service
(i.e., UDP packets) and restricting the others (i.e., TCP packets)). The packets are passed through
the SHAs, which may delay, drop or modify the information inside these packets. An EIoT network
consists of resource rich edge nodes (servers) and resource constrained sensing devices. The resource
rich edge nodes can be used to detect the presence of attacker nodes. In our proposed architecture,
the edge nodes are assumed to be the destination nodes, which receive the packets from the other
neighbour nodes. In the presence of SHAs in EIoT, an edge node may not receive the information
or it may receive modified or partially modified information. It then degrades the performance,
efficiency and reliability of the communication happening in EIoT. In the presence of SHAs, there are
various chances: (a) decrement in throughput of the network, (b) increment in end-to-end delay and (c)
decrement in packet delivery ratio. The sinkhole attack has been investigated in recent years in wireless
sensor networks and several solution were proposed. However, the chance of occurrence of sinkhole
attacks in IoT environment is also high. The sinkhole attack detection techniques for Wireless Sensor
Networks (WSNs) are not directly applicable in IoT. Therefore, a new scheme to mitigate sinkhole
attacks in IoT is required. Hence, an effective intrusion detection scheme for protecting sinkhole attacks
in an EIoT communication environment has been designed.

1.3. Attack Model

The widely followed “Dolev-Yao threat model (known as the DY model)” [29] can be used in the
designing of SAD-EIoT, where “any two communicating entities communicate over an insecure public
channel” [30]. Thus, the communication channel is treated as insecure and also the end-point entities
(i.e., IoT sensors) are not considered to be trusted. Other possibilities of the sinkhole attack can also
be considered. It is possible that an attacker A can physically capture some IoT smart devices (for
example, IoT sensors) and take out the desired sensitive information from its memory [12,13]. A can
clone new malicious nodes with sinkhole attack functionality by making use of extracted information.
After the manufacturing of these malicious devices (i.e., SHAs), A can directly deploy them in the
network [16,17,24]. As discussed in Section 1.1, under the successful execution of a sinkhole attack
in EIoT, the data packets may get lost, dropped, delayed or modified. This may cause degradation
in the performance of the communication in EIoT. Furthermore, this may cause the reduction in the
throughput and packet delivery ratio of the network along with the increment in end-to-end delay.
Hence, a strong intrusion detection mechanism to protect against the sinkhole attack is desirable in
EIoT environment.

1.4. Research Contributions

The research contributions made in the proposed scheme are provided below.

• A new intrusion detection scheme for the detection of sinkhole attack in edge-based IoT
environment (SAD-EIoT) has been proposed.
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• SAD-EIoT is shown to be secure against sinkhole attacks in EIoT. It is validated through security
analysis and also the results obtained through the NS2 simulation.

• Furthermore, SAD-EIoT is compared with other closely related existing techniques. The conducted
comparison demonstrates that SAD-EIoT performs better than other existing techniques.

1.5. Structure of the Paper

The remainder of the paper is organised as follows. In Section 2, the background study of other
related existing techniques is provided. Section 3 gives in-depth details of the designed intrusion
detection scheme for sinkhole detection (SAD-EIoT) in EIoT environment. The research process
and research methodology of SAD-EIoT is also explained here. Section 4 contains the details of
various mathematical models. Section 5 contains the security analysis of SAD-EIoT, which proves
that SAD-EIoT is competent and efficient enough to defend sinkhole attacks. The simulation study
of SAD-EIoT using the widely-used NS2 tool is further provided in Section 6. Next, the performance
comparison of SAD-EIoT with other closely related existing schemes is provided in Section 7. Finally,
the work is concluded in Section 8.

2. Background

This section contains the background study of the various types of available intrusion detection
techniques for Internet of Things and and wireless sensor network. The details are as follows.
Salehi et al. [31] designed a mechanism to detect sinkhole attack in Wireless Sensor Networks (WSNs).
In the proposed mechanism, the attackers’ nodes are detected by considering the flow of packets
in the network. First, the intrusion region is identified and then after collected data evaluation,
the malicious nodes are identified. However, the presented mechanism raises the high false positive
rate. Wang et al. [32] proposed a method to mitigate anomalies in a cluster-based WSN. A real time
data monitoring system is used to analyse the data packets in the network, where any type of node
(edge nodes, source nodes and sensors) can be compromised by an attacker node. Three types of
detection schemes such as intelligent hybrid intrusion detection system (IDS), hybrid IDS and misuse
IDS were used. The attacker nodes are identified by the misuse of data identification and anomaly
detection. However, their implemented mechanism provides marginally improved detection rate.

Hamedheidari et al. [20] suggested a technique to defend WSN against the sinkhole attacks
which uses mobile agent to inform the neighbours to prevent the attack. However, the overheads
induced by the mobile agents reduce the performance of the network. Wang et al. [33] used “Gaussian
distribution technique” for detection of intrusions. They discussed two methods to defend malicious
nodes, called “single-sensing” and “multiple-sensing”.

Wang et al. [34] discussed the expected probability of “Intrusion Detection”. The provided
solution uses parameters, such as node density, range in heterogeneous and homogeneous WSN for
sensing anomalies. The calculated probability is used to analyse the efficiency and performance of the
proposed method. To protect WSN from “misleading attackers in a multihop routing”, Zhan et al. [35]
also suggested a framework named as“Trust-Aware Routing (TARF)”, which is capable of resolving the
intrusions in dynamic sensor networks. Without making use of “time synchronisation and geographic
location of the sensor nodes”, the trusted and energy saver routes can be identified.

Shin et al. [36] discussed various structures of “Wireless Industrial Sensor Networks (WISN)”.
They proposed a hierarchical design to mitigate the attacks. “One-hop clustering” was the key point,
which was utilised in the presented design. To mitigate the hierarchical anomalies, the logical protocols
were used. Yu et al. [37] provided information about different kinds of intrusions and also the
methods used to resolve them. A comprehensive literature survey was provided to highlight the
existing standard and associated techniques in two different categories, which are for securing data
and its routing.

Liu et al. [38] demonstrated an intrusion detection system to prevent sinkhole attack for the
“Internet of Things (IoT)” communication. Their proposed scheme not only detects the SHAs but also
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bypasses the attack region by making use of routing mechanisms named as “hop-by-hop basis and
multihop basis”. The location of the attacker nodes is also determined by their presented scheme.
However, their scheme exhibits high computation and communication costs. Chen et al. [39] proposed
a “Low-rate Denial of Service (LDoS)” attack mitigation technique which can be used for both WSN
and IoT. They combined “Hilbert Huang transformation and trust evaluation” methods to find LDoS
attacker nodes in WSN.

Fang et al. [40] examined the need for cyber security in “information-centric networking (ICN)”.
They analysed the typical attack behaviours and defence methods. Furthermore, they presented a
“Fast and Efficient Trust Management Scheme (FETMS)” for mitigating the On-Off attack with the help
of communication trust, data trust and reputation values. Pongle et al. [41] investigated the possible
attacks on “IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN)” and “IPv6 Routing
Protocol for Low power and Lossy Networks (LLNs), called RPL”. They highlighted the possible
techniques to mitigate these attacks. The emphasis was on protecting the RPL network from various
attacks, such as Sybil, blackhole, wormhole and clone ID attacks.

Yang et al. [42] did a survey on IoT communication environment. They identified some constraints
for IoT devices, for example, computing resources and battery lifetime, and some solutions were also
suggested. Lyu et al. [43] proposed a “selective authentication based geographic opportunistic routing
(SelGOR)” to mitigate the DoS attacks, which can fulfil the requirements of authenticity, integrity and
reliability in WSNs. By “statistic state information (SSI)” of links between nodes, SelGOR took the
advantage of an SSI-based trust model to increase the network efficiency in terms of data delivery.
SelGOR used an entropy-based algorithm to maintain integrity which was also able to detect DoS
attacker nodes to improve the performance.

He et al. [44] proposed a scheme called “sector-based random routing (SRR)” to resolve the source
location privacy problem. Under the implementation of the proposed method, the energy consumption
is also reduced. As per SRR mechanism, the routing paths are disappeared by dividing the network
into several sectors, which further improves the security.

Airehrour et al. [45] proposed a SecTrust-RPL protocol that used “SecTrust” system. It identifies
some nodes to make decisions for routing using trust. The trust computation was done through
exchanged packets between the nodes to determine the trustworthiness. It can identify the attacker
nodes and also improve the throughput of the RPL. Sicari et al. [46] proposed a technique to mitigate
DoS attack against the IoT middleware, called “networked Smart object (NOS)”. They designed a
variable number of dynamic virtual ports on each NOS, and the second thing is that it binds the
identifier virtual port of each NOS’s port to UID, which was more tedious to predict by attacker nodes.

Bhosale et al. [47] implemented an intrusion detection technique in which they compared
“Received Signal Strength Indicator (RSSI)” value of neighbour nodes and the victim nodes with
the threshold values. They kept the record of the broadcasting node’s RSSI value, from where
the victim packet was disseminated. It helped to locate the presence of attacker node in their
technique. Liu et al. [48] developed a detection mechanism for low rate DOS attack. They used
the expired state entries and proposed an “enhanced distributed low-rate attack mitigating (eDLAM)”
method to mitigate the attacks. Their presented eDLAM can detect an attack based on expired
state-entry numbers.

Raoof et al. [49] presented a comparative analysis of “Routing Protocol for Low-Power and Lossy
Networks (RPL)”. Some of the routing attacks along with the mitigation methods were also discussed.
Mayzaud et al. [50] presented a method to mitigate version number attacks in RPL networks. This was
based on “distributed monitoring architecture” which conserves the energy of resource constrained
nodes for the “Advanced Measurement Infrastructures (AMI)”. Their detection procedure is performed
by the source node after collecting the detection information from all deployed nodes. In addition,
Wazid et al. [16,17,24] also discussed intrusion detection schemes for detection of various attacks,
including sinkhole, blackhole, hybrid anomaly as well as routing attacks in hierarchical WSNs and
edge-based IoT (EIoT) networks.
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In Table 1, the comparison to existing intrusion detection techniques is provided. It contains
different parameters such as “name of the technique/protocol”, “its goal”, “method used” and “its
outcomes and limitations”.

Table 1. Comparison of existing techniques.

Protocol Goal Method Used Outcomes and Limitations

Wang et al. [34] Intrusion detection Single and multi sensing
detection methods

Performed intrusion detection with
low detection rate

Wang et al. [32] Intrusion detection Misuse based IDS method Performed intrusion detection with
low detection rate along with high
computational cost

Wang et al. [33] Intrusion detection Gaussian and uniformly
distributed method

Performed intrusion detection with
low detection rate (in the case of
lower number of nodes)

Salehi et al. [31] Intrusion detection Information flow based detection Performed intrusion detection with
high false positive rate

Wazid et al. [17] Sinkhole node
detection in WSN

Cluster based sinkhole node
detection

Performed sinkhole node detection
with high computation cost

Wazid et al. [18] Routing attack
detection in IoT

RAD-EI Performed routing attack detection
with high computation cost

3. The Proposed Sinkhole Attack Detection Scheme

In this section, the different phases of the proposed “sinkhole attack detection scheme for
edge-based IoT environment”, called SAD-EIoT, are explained. The different message formats required
to describe SAD-EIoT are also presented. Furthermore, the notations and their significance shown
in Table 2 are used in the proposed SAD-EIoT.

Table 2. Notations utilised in SAD-EIoT.

Symbol Description

ENj jth edge node
Si ith IoT smart device (sensor node)
SHAk kth sinkhole attacker node⋃

l List of suspected SHAs
SHAlist List of SHAs
IDSi , IDENj Identities of Si and ENj, respectively
SKENj ,Si Shared secret key between ENj and Si
RENSi Energy remaining value at an IoT sensor Si
RSi Rank of an IoT sensor Si
RLSi , RUSi

Lowest and highest values of ranks of Si, respectively
HCSi Hop count for Si from ENj
HCθ Threshold value of hop count for the network
µsdq, µsr Messages containing status & data query and status response, respectively
µd, µin Messages containing only data and information, respectively
sdqrq, srp Information contents in messages µsdq and µsr, respectively
data Message µd’s data content
WTWTθ Waiting time and its threshold at ENj, respectively
PDn, PDa, PDs Packet delivery ratios under normal circumstance of traffic,

attack condition and under SAD-EIoT, respectively
DR Detection rate/true positive rate (TPR)
FPR False positive rate
TP, FP True and false positives, respectively
TN, FN True and false negatives, respectively
νn, νa, νs End-to-end delay (in seconds) in normal condition,

attack condition and under SAD-EIoT cases, respectively
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Table 2. Cont.

Symbol Description

Λn, Λa, Λs Throughput in bits per second (bps) in normal condition,
attack condition and under SAD-EIoT cases, respectively

|µd| “Total data packets transmitted by IoT sensing devices”
|µd′ | “Total confirmed data packets received at ENj”
|µdpa| “Total data packets that are not transmitted to edge node” by attacker nodes
|µdpa′ | “Total data packets that are not transmitted to edge node” by authentic attacker nodes (TP)
|µd1
| “Total data packets that are not transmitted to edge node” by attacker nodes (FN)

µin “Information message transmitted by each ENj” to all regular IoT sensing nodes
Tsendi

, Treci “Sending and receiving time” of a data packet, say i, respectively
h(·) “One-way collision-resistant cryptographic hash function”
p Total packets
pkt, pkts A data packet and its corresponding size
h̄ Hashed message authentication code (HMAC)
X||Y Concatenation of data X with data Y

3.1. Network Scenario

For an edge-based IoT environment, Figure 3 suggests that there is a resource-rich edge
device (node/router) which works like a gateway node. For instance,“Personal Digital Assistant
(PDA)” can be configured as an edge node [51–53]. In an edge-based IoT environment, there are
resource-constrained IoT smart devices (i.e., IoT sensors) with limited resources (for instance,
MICAz motes [53]). The IoT sensors can be deployed randomly or manually in a required area
(i.e., in a forest for environment monitoring) based on application scenarios. After deployment,
the first task of sensing devices is to find the neighbours in its communication range. To perform such
a task, IoT sensors can broadcast “HELLO messages” (containing their identity) to other nodes in their
communication ranges. After receiving “HELLO messages” from the neighbouring sensing nodes,
each IoT sensor constructs a neighbour list [54]. Every edge node ENj also finds its “physical neighbors”
(for example, the IoT sensors). ENj is responsible for anomaly detection in the network. For ensuring
secret communications among an edge node and IoT sensing devices, and also among different IoT
sensors and itself, a key management protocol, namely the “unconditionally secure deterministic key
management” suggested by Das [52] can be utilised. Assume that SKSi ,Sj and SKENj ,Si are two different
symmetric (secret) keys among two neighbouring IoT sensing nodes, say Si and Sj and among an
edge node ENj and its neighbour IoT sensing node Si. The method for key establishment can be
defined on the basis of deterministic key management scheme available in [52]. With the help of the
established secret keys, neighbour nodes can securely communicate with each other in the edge-based
IoT environment. The delay between Si and ENj can be computed by using the technique given
in [17,55].

Assume each transmitted packet of a sensing node contains a distinct sequence number and the
sequence numbers are kept in an ascending order. Next, tx(j, k) denoted as a packet j’s receiving time
on a node k corresponding to the “perfect clock tr(j, k)” and the packet j’s transmitting time on the
node k. The transmission or reception time of a message is considered as the “time just before the first
byte of a packet (message) is sent or received”. Let a and b represent the source and destination nodes
along with a chosen path. If tr(j, a) is another parameter denoting the packet j’s generation time on a,
the packet j’s “end-to-end delay for a path” is calculated as [16,17,24]:

td(j) = tr(j, b)− tr(j, a).
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Now, if the packet j’s waiting time at node k on the path is represented by tw(j, k),
then tw(j, k) = tx(j, k)− tr(j, k). It is important to notice that waiting time tw(j, k) incorporates node’s
backoff time for competing for the channel. Therefore, end-to-end delay is calculated as

td(j) =
n−1

∑
k=1

tw(j, k),

where the number of total nodes in that path is denoted by n. Since the IoT sensors do not have
tamper-resistant hardware in general due to the cost factor, an adversary A gets a chance to extract all
the required information from the memory of a physically captured IoT sensor node [12,13]. A can
then store the extracted information in the memory of the newly manufactured (cloned) IoT sensor
node and can also load the sinkhole attack functionality program required to launch that attack in
the network.

3.2. Process Involved in SAD-EIoT

The process involved in SAD-EIoT is explained using a sequence diagram of sinkhole attack
detection through SAD-EIoT (see Figure 5). Its details are given below.

Edge node keeps all the important information, such as identity (IDSi ) of every IoT sensing node
Si, ranks information and its battery level. As per the nature of sinkhole attack, the malicious node
(sinkhole attacker node, say SHAk) advertises a shortest path to the destination (i.e., edge node) and
the neighbouring IoT sensor nodes get attracted towards that path and send their packets to SHAk as
they assume that the shortest path to the destination is through SHAk. After receiving the data from
neighbour IoT sensors, SHAk can play with the communication. SHAk can perform the following
malicious tasks:

• Dropping of the packets
• Modification of information in the packets
• Forwarding the packets selectively (i.e., forwarding of UDP packets and dropping of TCP packets)
• Forwarding the packets with some delay

Figure 5. Sequence diagram of sinkhole attack detection through SAD-EIoT.

The sinkhole attack can disturb the overall configuration of the network as it affects most of the
important network parameters. For instance, it may reduce the throughput (sometimes, it tends to zero
when SHAk drops all packets) and increase the end-to-end delay along with extremely low packet
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delivery ratio [16,17,22,24]. Since an edge node is resource rich in the network, it can be easily used for
detection of sinkhole attacks. The detection of sinkhole attack is executed in the following two phases:

Phase 1 (Identifying the presence of sinkhole attacker nodes): In this phase, we identify the
existence of SHAs in the network by applying the steps in Algorithm 1. The parameters, such as node
identity IDSi , hop count from ENj (HCSi ), remaining energy at the nodes RENSi and rank information
RSi are used. An IoT node Si is recognised as a suspected SHA, if following conditions hold [9,17,18]:

• HCSi < HCθ

• RENSi < RENSiθ

• RSi /∈ {RLSi , RUSi
}

Here, HCθ and RENSiθ
are threshold values of the network hop count and remaining energy,

respectively. RLSi and RUSi
are lower and upper limits of ranks for a particular node (i.e., Si),

respectively. A node loses some energy whenever it transmits or receives packets and the edge
node knows about the initial battery status of all the nodes. If an attacker node provides modified
battery status to the edge node, in turn that edge node can calculate the battery (energy) value using
the available technique in the literature. A similar approach can be applicable for hop counts and rank
information. By the end of this phase, a list

⋃
l of suspected attacker nodes is prepared, if they exist in

the network.
Phase 2 (Confirming the existence of sinkhole attacker nodes): In this phase, the confirmation

of identified nodes as the sinkhole attacker or some battery drained nodes is done. The steps stated in
Algorithm 2 are required to perform this task. In this phase of attack detection, the possible cases are
outlined below.

• Case 1: If ENj does not get messages from a doubtful node Si, it attempts to figure out that node
Si as SHAk or normal (genuine) node which has depleted its entire battery (might be a node
failure). In such a situation, ENj transmits µsdq to Si and waits some time for its response. If the
condition WT > WTθ holds, where WTθ is the waiting time’s threshold, it will indicate the expiry
of waiting time. If both response message (µsr) as well as data message (µd) from Si are not
received by ENj, it makes a decision as the Si’s failure. Note that additional factors like network
congestion have been included in WTθ .

• Case 2: If ENj gets µsr, but the µd is not received by ENj, Si is identified as the “sinkhole attacker
node” SHAk. It is also determined that SHAk is a kind of SHA which consumes all packets and
does not forward them towards the destination (i.e., ENj).

• Case 3: If ENj receives the µsr and also (µd) from Si, it checks the integrity of µd by using hashing
algorithm (i.e., SHA-1 or SHA-256 [56]). If the integrity does not hold, Si is treated as the SHAk
which has modified µd.

• Case 4: ENj receives µsr and also µd from Si, but the quality of service of the network is not up to
the mark [57]. Since ENj is a powerful node, it can run some technique to maintain the quality of
the service of the network [57]. For example, SHAk may forward the UDP packets but not the
TCP packets. If all these features are included then it becomes a sign of selective forwarding of
packets (a kind of packet forwarding attack) [57–59]. For the detection purpose, ENj can execute
the following steps if the count of packets for a particular service (i.e., TCP) does not exceed the
threshold value of count of packets in a particular duration of time. EN considers Si node as the
SHAk. Further, note that the threshold value of count of packets in a particular duration of time
is an empirical value which can be set at the EN at the time of the deployment of the nodes in
the network.

• Case 5: When the µsdq is transmitted by ENj to Si, it waits some time for the response message.
If the condition WT > WTθ holds, it will indicate the expiry of waiting time. If ENj receives
µsr, it waits for receipt of µd from Si. If ENj receives µd after the expiry of the waiting time
(i.e., WT > WTθ), the node Si is detected as the SHAk because it delays the packets before
forwarding them towards the destination (i.e., ENj).
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As the detection work proceeds with the time, EN tries to detect malicious sinkhole (attacker)
nodes and also adds them to the list of sinkhole attacker nodes SHAlist. In the “anomaly alarm system
phase”, ENj ignores the detected SHAki

, where i = 1, 2, . . . , n and raises an alert to warn the other
legitimate nodes about the existence of SHAs. After that, the legitimate IoT devices remove the entry
of SHAk node from its neighbour list and start sending their packets to the other possible route(s).

The sequence diagram of sinkhole attack detection through SAD-EIoT provided in Figure 5
is helpful to explain the overall communication process of SAD-EIoT. It has the following
important stages:

• Network analyser: An edge node ENj performs the analysis of the network behaviour. ENj then
identifies normal and abnormal activities of the network.

• Anomaly detector: For the detection of SHAs, two different phases are used, namely Phase 1 for
identifying the existence of SHAs and Phase 2 for confirming the existence of SHAs. ENj does
the work of sinkhole node detection by using the steps of SHA existence algorithm in EIoT
(Algorithm 1). After the completion of all steps mentioned in Phase 1, a list of doubted nodes

⋃
l

is constructed that may or may not have the attacker nodes. To confirm the existence of SHAs in
the network, ENj executes the steps of SHA confirmation algorithm in EIoT (see Algorithm 2).
After the successful completion of Phase 2, a list of confirmed SHAs and SHAlist is obtained
which contains the entries for all types of SHAs which exist in the network.

• Alarm system: After the successful completion of both phases of SHAs detection, the list
SHAlist is generated. The ENj blacklists these malicious nodes and also sends alarm messages
to other legitimate IoT devices (i.e., IoT sensor nodes). Then, these legitimate nodes remove the
entries of SHAs from their neighbour list and start sending their packets to the other possible
available route(s).

3.3. Formats of Messages Used in Sinkhole Attack Detection

SAD-EIoI uses four messages which are also utilised in some existing techniques: [16–18,24],
namely, (i) “status and data query message µsdq”, (ii) “status response message µsr”, (iii) “data message
µd” and (iv) “information message µin”. The structures of these different messages are provided below.

• Status and data query message µsdq: The message µsdq is shown in Figure 6. ENj transmits µsdq to
all IoT devices (sensors). This message is constructed using the different fields, such as an ENj’s
identity IDENj , an IoT device Si’s identity IDSi , the information field sdqrq and also the hashed
message authentication code (h̄msdq), where h̄msdq = h(SKENj ,Si ||IDENj ||IDSi ||sdqrq).

• Status response message (µsr): The structure of µsr provided in Figure 7 is composed of different
fields, such as IDSi , “remaining energy (battery power)” RENSi of Si, “rank information” RSi of Si,
the information field srp and h̄msq = h(SKENj ,Si || IDSi ||RENSi || RSi ||srp). Si sends the message µsr

to ENj. For saving energy, an IoT sensing device can utilize any one of the modes (“sleep”, “idle”
and “working”) [60,61]. For the detection of sinkhole attack, the information about the two modes
is needed (i.e., “idle” and “working”), because sensing devices cannot respond when they are in
the sleeping state. The srp may contain two response types: 0 (idle state) and 1 (working state).

IDENj IDSi sdqrq h̄msdq.

Figure 6. Assembly of status and data query message (µsdq).

IDSi RENSi RSi srp h̄msq

Figure 7. Structure of status response message µsr.

• Data message (µd): The structure of µd provided in Figure 8 is composed of different fields,
for example, IDSi , RENSi and RSi of Si, vSi as the sensing data needs to be transmitted to EN,
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and h̄md = h(SKENj ,Si ||IDSi ||RENSi ||RSi ||v). Note that session key SKENj ,Si can be used to
encrypt the data, if it is required.

IDSi RENSi RSi vSi h̄md

Figure 8. Assembly of data message µd.

• Information message (µin) : After performing the detection of SHAs, ENj sends the information
message to alert the other legitimate IoT sensors. The structure of µin provided in Figure 9 is
also composed of different fields, like IDENj and detection information field Υin contains the
information of the detected SHAs.

IDENj Υin

Figure 9. Structure of information message (µin).

3.4. Research Methodology of SAD-EIoT

In this section, the research methodology of SAD-EIoT is discussed. SAD-EIoT can detect the
sinkhole attacker nodes in an EIoT environment efficiently. The detection procedure happens in
two phases. Phase 1 identifies the SHAs by the “sinkhole attacker node existence algorithm”,
whereas Phase 2 allows to see the existence of the doubted nodes (either normal or SHAs) are
identified by using the “sinkhole attacker node confirmation algorithm”. These phases are discussed
in the subsequent sections.

3.4.1. Sinkhole Attacker Node Existence Algorithm in EIoT

The “sinkhole attacker node existence algorithm in EIoT” is discussed in Algorithm 1 which is
used to recognise the existence of the suspected SHAs. It utilises various parameters, such as node
Si’s identity IDSi , hop count HCSi from ENj, remaining energy at nodes RENSi and rank information
RSi . This algorithm finds the SHAs, in the case of a sensor node Si, if the conditions HCSi < HCθ ,
RENSi < RENSiθ

and RSi /∈ {RLSi , RUSi
} are satisfied, where HCSiθ

and RENSiθ
are threshold values

of hop count and remaining energy, respectively. Moreover, (RLSi , RUSi
) is a pair of lower and upper

limits of rank for a particular node Si. Algorithm 1 also provides a list of suspicious attacker nodes,
say

⋃
l , if these suspicious SHAs exist in the network.

Remark 1. If the “hop count” HCSi of an IoT sensing node Si from ENj is less than the network hop count
threshold HCθ , that is, if HCSi < HCθ , Si may be considered as SHA.

Example 1. To validate the statement of Remark 1, the scenario provided in Figure 4 should be considered. If a
node Si is far away from a destination ENj, that is, its hop count value from ENj is high, chances are that this
will not be an exact SHA. In order to be an exact SHA, this particular node should be as close as possible to
the destination ENj. If a sinkhole attacker node is closer to ENj, it can get a greater number of packets from the
neighbour nodes and it may further damage the network operations quickly. Otherwise, if the SHA is far away
from the destination ENj, in that case it will not get a greater number of packets. In this situation, the damage
to the network will be minimum. Thus, an attacker’s advantage to launch the sinkhole attack will be very low.
The empirical threshold value of hop count of the network, HCθ , can be set at the time of the deployment of the
IoT sensors and it can be compared to the hop count value for that particular node HCSi to identify a sign of
intrusion in the network. Therefore, if HCSi < HCθ holds, Si can be treated as a suspected SHA.

Remark 2. If the “remaining energy under the normal behaviour and abnormal behaviour of an IoT sensing
node Si” are RENSiθ

and RENSi , respectively, the criteria RENSi < RENSiθ
needs to hold for a sinkhole attack.
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Example 2. To justify Remark 2, the scenario available in Figure 4 should be considered. A node Si receives
a lower number of messages if it is a normal node. However, if it is a SHA, it will definitely receive a greater
number of messages as per the mechanism of a sinkhole attack. When a node receives a greater number of packets,
its battery depletion will be greater as compared to the normal node. Suppose ENj sets a threshold value of
remaining energy for a particular node Si as RENSiθ

and in actual scenario it is RENSi . So, if a node Si is a
SHA, the condition RENSi < RENSiθ

turns out to be valid. Otherwise, Si is a normal sensor node of EIoT.
Therefore, in the case of sinkhole attack, the condition RENSi < RENSiθ

becomes true.

Algorithm 1 Sinkhole attacker node existence algorithm in EIoT.

1: for each edge node ENj in edge-based IoT environment do

2: ENj sends status and data query message (µsdq) to the IoT sensors, Si.
3: After receiving µsdq, each Si computes h̄′msdq = h(SKENj ,Si ||IDENj ||IDSi ||sdqrq) using the shared

secret key SKENj ,Si with ENj.
4: if (h̄′msdq = h̄msdq) then

5: µsdq is valid and Si responses with status response message µsr = 〈IDSi , RENSi , RSi , srp, h̄msq〉

to ENj using its “current remaining energy” RENSi and “rank information” RSi .
6: After receiving µsr, ENj recomputes h̄′msq = h(SKENj ,Si || IDSi ||RENSi || RSi ||srp) using the

“shared secret key SKENj ,Si ” with Si.
7: if (h̄′msq = h̄msq) then

8: µsr is a genuine message.
9: end if

10: end if
11: Each Si in edge-based IoT environment sends message µd = 〈IDSi , RENSi , RSi , v, h̄md〉, if it has

anything to send, to ENj using its “current remaining energy” RENSi and “rank information”

RSi .
12: After receiving µd from Si, ENj recomputes h̄′md = h(SKENj ,Si ||IDSi ||RENSi ||RSi ||vSi ) using the

“shared secret key SKENj ,Si ” with Si.
13: if (h̄′md = h̄md) then

14: µmd is valid.
15: end if
16: Based on information gathered by IoT sensor Si, ENj checks following condition.
17: if ((HCSi < HCθ) & (RENSi < RENSiθ

) & (RSi /∈ {RLSi , RUSi
})) then

18: Node Si is considered as a suspected SHA.
19: Add Si in

⋃
l .

20: Execute sinkhole attacker node confirmation algorithm provided in Algorithm 2.
21: end if
22: end for

3.4.2. Sinkhole Attacker Node Confirmation Algorithm in EIoT

The “sinkhole attacker node existence algorithm in EIoT” provides a list of suspected attacker
nodes. However, to prove a suspected node is an attacker node, the sinkhole attacker node confirmation
algorithm in EIoT, which comes under Algorithm 2, is required.
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To perform this task, ENj executes the following steps. If an edge node ENj does not receive data
packets from a suspicious node Si, it will try to segregate that node Si as SHAk or normal (genuine)
node which completely drained its battery (due to node malfunctioning). In such case, ENj sends µsdq
to Si and waits for some time for its response. If WT > WTθ holds, it indicates the expiry of waiting
time. If ENj does not get µsr and also µd from Si, it is the case of failure of Si. Note that in the threshold
value of waiting time other factors, such as network congestion, are also included. If ENj receives
µsr, but not µd, Si is confirmed as SHAk. It is also determined that SHAk is a kind of SHA which
consumes all packets and does not forward them towards the destination (ENj). If ENj receives the µsr

and also µd from Si, ENj checks the integrity of µd by using hash algorithm (i.e., SHA1 or SAH256) [56].
If the integrity does not hold, Si is treated as the SHAk which can modify µd. Another case is that
ENj receives µsr and also µd from Si but the quality of service of the network is not up to the mark
[57]. ENj is a powerful node which can keep the quality of the communication up to the mark [57].
For example, SHAk may forward the UDP packets but not the TCP packets. If all these features are
included then it becomes a sign of selective forwarding of packets (a kind of packet forwarding attack)
[57–59]. For the detection purpose, ENj can execute the following steps if the count of packets for a
particular service (i.e., TCP) is less than the threshold value of count of packets in a particular duration
of time, that is, PCSi < PCSiθ

. Then ENj considers Si node as SHAk. Further note that the threshold
value of count of packets in a particular duration of time is an empirical value which can be set at ENj
at the time of the deployment of the different nodes. When ENj transmits the µsdq to Si, it waits for
some time for its response. If WT > WTθ holds, where WTθ is the “threshold value of the waiting
time”, it indicates the expiry of waiting time. If ENj receives µsr, it waits for the receiving of µd from
Si. If ENj receives µd after the expiry of the waiting time (WT > WTθ), the node Si is identified as
SHAk which can delay the packets before forwarding them towards the destination (ENj). After the
detection, ENj blacklists and adds SHAs to the list SHAlist.

Algorithm 2 Sinkhole attacker node confirmation algorithm in EIoT

1: for each edge node ENj in edge-based IoT environment do

2: if edge node ENj does not receive any message then

3: ENj transmits µsdq to a node Si.
4: Set WT as WT = WT + 1.
5: if WT > WTθ then

6: if ENj receives µsr but not µd from node Si then

7: Si considered to sinkhole attacker node SHAk which drops packets.
8: else if ENj receives both µsr & µd from node Si and h̄′md 6= h̄md then

9: Si considered to be SHAk which modifies the packets.
10: else if ENj receives both µsr & µd from node Si and PCSi < PCSiθ

then

11: Si considered to be SHAk which selectively forwards the packets.
12: else if ENj receives both µsr & µd from node Si and WT > WTθ then

13: Si considered to be SHAk which delays packets before forwarding them.
14: else

15: Edge node ENj does not receive the messages µsr and µd from the node Si.
16: Failure of a node is detected.
17: end if
18: end if
19: ENj blacklists the detected nodes and adds its entry in the list SHAlist, and broadcasts its

identity IDSHAk to all legitimate IoT sensors.
20: end if
21: end for
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4. Mathematical Models for SAD-EIoT

In this part of the paper, the various mathematical models utilised in SAD-EIoT such as
packet delivery ratio, “throughput” and end-to-end delay for edge-based IoT environment are
explained [16,17,24].

4.1. Packet Delivery Ratio

Suppose the symbols PDn, PDa and PDs are respectively the “packet delivery ratios” associated
with the normal flow, sinkhole attack and SAD-EIoT. Further, assume that |µd|, |µd′ |, |µdpa|, |µdpa′ | and
|µd1 | represent the count of “data packets” sent by IoT sensing devices, “authentic packets” received
by an edge node, |µdpa|, “data packets that are not transmitted by sinkhole nodes”, “data packets
that are not transmitted by the sinkhole nodes (TP)” and “data packets that are not transmitted by
sinkhole nodes (FN)”, respectively. Thus it is clear that |µd1 | = |µdpa|− |µdpa′ |. The estimation of
“packet delivery ratio (PD)” with respect to “normal traffic flow” is given as [16,17,24]:

PDn =
|µd′ |
|µd|

.

Under sinkhole attack, PD can be computed as

PDa =
|µd′ | − |µdpa|
|µd|

.

PD under the proposed method “SAD-EIoT” can also be formulated as

PDs =
|µd′ | − |µd1 |
|µd|

.

The packet loss rate is an additional important network parameter that is explained as the number
of lost packets per unit time and it can be computed as

νlp
Td

where the “total time (in seconds)” is
Td and the total lost packets is denoted by νlp. It is also very important for a dependable network
communication to keep packet loss rate as low as possible. The mathematical model for packet loss
rate can be defined in a similar way as the packet delivery ratio.

4.2. Throughput

Let Λn, Λa and Λs represent the “throughput of the network” under the various scenarios,
for example, “normal flow”, sinkhole attack and SAD-EIoT, respectively. Let us assume Tn, Ta and
Ts are the “packets delivery time” under “normal flow”, sinkhole attack and SAD-EIoT, respectively.
Then, the throughput under normal flow of traffic as follows [16,17,24]:

Λn =
|µd′ | × pkts

Tn
.

Similarly, the throughput under sinkhole attack can be computed as

Λa =
pkts × (|µd′ | − |µdpa|)

Ta
,

and the throughput under the deployment of SAD-EIoT is represented by

Λs =
pkts × (|µd′ | − |µd1 |)

Ts
,

where a data packet size is represented by pkts.
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4.3. End-to-End Delay

Let νn, νa and νs be the “end-to-end delays” under different scenarios such as “normal flow”,
sinkhole attack and SAD-EIoT, respectively. Then, the end-to-end delay under normal flow of traffic
can be approximated as [16,17,24]:

νn = ν,

where ν can be represented as

ν =

p
∑

i=1
(Treci − Tsendi

)

p
,

Treci is the “receiving time”, Tsendi
is the “sending time” of a “packet i” and p is the “total number

of packets”.
The end-to-end delay under sinkhole attack is approximated as

νa = νn′ + νnsha ,

where n denotes total IoT sensing nodes in the network, nsha is the count of sinkhole nodes,
n′ = n− nsha counts towards “number of normal nodes for sinkhole attack scenario” and νnsha is
the “delay corresponding to nsha sinkhole attacker nodes”. Finally, the “end-to-end delay under the
proposed SAD-EIoT” can be computed as

νs = νn′′ + νFNra ,

where FNra is the “number of nodes identified as normal nodes” by SAD-EIoT, but these are actually
sinkhole nodes, n

′′
= n− nFNsha is the normal node count in SAD-EIoT and νFNsha represents the delay

associated with FNsha nodes. Hence, if the count of false negative nodes is zero, the end-to-end delay
will be νs = νn.

5. Analysis of SAD-EIoT

In this part of the paper, the analysis of the security of SAD-EIoT, along with its communication
and computational costs is conducted.

5.1. Security Analysis

For an IoT sensing node, say Si, the corresponding edge node has the responsibility to keep
information like its identity (IDSi ), its “remaining energy RENSi ”, hop count value HCSi and “rank
information RSi ”. If a SHA is placed successfully in EIoT then it can start to damage normal network
operations (i.e., transmitted packets can be dropped, delayed, updated or selectively forwarded).
Designed SAD-EIoT has the capability to detect SHAs. This work is divided into two phases. In “phase
1”, it first identifies the existence of suspected SHAs in EIoT by using the steps of “Sinkhole attacker
node existence algorithm in EIoT (Algorithm 1)”. This algorithm uses parameters, such as node
Si’s identity (IDSi ), its “remaining energy RENSi ”, hop count value HCSi and “rank information
RSi ”. A node Si is identified as a suspected SHA if HCSi < HCθ , RENSi < RENSiθ

and RSi /∈ {RLSi ,
RUSi
} where HCθ and RENSiθ

are threshold values of network hop count, remaining energy and RLSi ,
RUSi

are lower and upper limits of ranks for a particular node (i.e.,Si). After successful execution of
phase 1, the “sinkhole attacker node confirmation algorithm in EIoT (Algorithm 2)” is accomplished
in phase 2. If an edge node ENj does not receive messages from a particular node Si, then first it
confirms the node Si is SHA or “a case of node failure”. To confirm this ENj sends the messages
µsdq to node Si, and starts the “waiting time counter”. If waiting time is over and ENj does not
receive µsr and µd from IoT sensor Si, then it is determined that this is a case of node failure (i.e.,
Si is a failure node). Otherwise, if ENj receives the µsr, but it does not receive µd, Si is detected as
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SHA which has the capability to drop the packets. All these analyses are preformed by using the
above two cases discussed in Section 3.4.2. Similarly, the security of SAD-EIoT for other types of
SHAs can be confirmed. Therefore, designed SAD-EIoT is capable enough to defend edge-based IoT
communication environment from different types of SHAs.

5.2. Communication Cost

For the communication cost analysis, n nodes in edge-based IoT environment are considered.
In a scenario of a normal flow of traffic, each edge node ENj sends n number of messages µsdq” to
IoT sensors. Then IoT sensors have to reply with n number of “status response messages” to ENj.
Moreover, ENj also receives at most n number of “data messages µd”. Therefore, total number of
messages exchanged in the case of normal flow of traffic can be estimated as 3n. Whereas in the case
of sinkhole attack, ENj only gets n + (nsad − nss f ) “data messages µd” where nsad are the messages
dropped by sinkhole attacker nodes (SHAs) which drop the packets and nss f are the messages dropped
by SHAs which selectively drop (in selective forwarding case) the packets. The total number of
different messages exchanged under sinkhole attack can be estimated as (n+ n+(n+(nsad− nss f ))) =

3n− nsad − nss f .
Under the scenario of SAD-EIoT, when ENj does not receive the data messages from some of

the SHAs, it resends nsad + nss f number of µsdq messages only to sinkhole message dropping attacker
nodes and sinkhole selective forwarding attacker nodes. The sinkhole message dropping attacker and
sinkhole selective forwarding attacker nodes send only µsr messages but not µd messages. Note that
ENj receives nsadl and nsmd data messages from SHAs which delay the packets and SHAs which
modify the packets. Whereas ENj only receives nsad + nss f number of µsr messages. After the
successful completion of both phases of proposed mechanism, ENj identifies the different types of
sinkhole nodes and sends n − (nsadl + nsmd + nsad + nss f ) information messages to alert the other
legitimate nodes of the network. Where nsadl are messages corresponding to SHAs which delay the
packets and nsmd are SHAs which modify the packets. It is understood that ENj does not transmit any
information messages to SHAs. Hence, as a result, the total number of messages exchanged under
the implementation of SAD-EIoT can be estimated as [n + n + (nsadl + nsmd) + (nsad + nss f ) + (nsad +

nss f ) + (n− (nsadl + nsmd + nsad + nss f ))] = 3n + nsad + nss f .
It is assumed that identity, “hash digest (output) (if we apply SHA-1 hash algorithm)”, “remaining

energy field”, “rank information field” and data fields in various types of messages are of 32 bits,
160 bits, 32 bits, 32 bits and 160 bits, respectively. Therefore, different messages’ sizes can be estimated
as µsdq, µsr, µd and µin require 384 bits, 416 bits, 416 bits and 192 bits, respectively.

5.3. Computation Cost

As discussed earlier, SAD-EIoT is divided into two phases. In the first phase of SAD-EIoT,
the presence of suspected attacker nodes are detected using the steps of the “sinkhole attacker node
existence algorithm in EIoT”. Further note that these nodes may or may not be the attacker nodes.
If SHAs exist in EIoT, this will be confirmed by Algorithm 2. First Algorithm 1 is executed and then
Algorithm 2 will be executed. The different steps of Algorithm 1 and Algorithm 2 are executed in
linear time, which can be executed with time complexity O(n), where n is number of IoT sensing nodes
installed in EIoT. Thus, the cumulative time complexity of SAD-EIoT is estimated as O(n) which is
needed for an ENj.

Remark 3. It is important to notice that in designed SAD-EIoT, an IoT sensor node Si needs to send one
“status response message µsr” and one µd to an edge node ENj. Furthermore, Si needs to compute “two HMAC
operations” in the transmission of µsr and µd messages. Apart from that Si needs another HMAC operation in
the validation of µsdq message. Hash function computations are very lightweight which again surges in very low
computational cost for Si node. The provided estimation infers that SAD-EIoT is very helpful and handy for
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the “extremely resource-constrained IoT sensors in EIoT” due to low computational cost and lower number of
messages exchanged.

6. Practical Implementation of SAD-EIoT

In this part of the paper, the designed SAD-EIoT is practically implemented using the widely-used
NS2 2.35 simulation software tool [62].

6.1. Simulation Environment

SAD-EIoT is implemented on Ubuntu Linux 14.04 LTS platform using the NS2 simulation software
tool [16–18]. The considered deployment area is 650 × 250 m2. In the considered deployment field,
121 nodes which consist of different devices such as cloud server, IoT sensor nodes and edge router are
placed. This deployment field consists of one cloud server along with six edge nodes. Table 3 consists
of values of different simulation parameters used in the practical demonstrations. The “Constant
bitrate (CBR)/UDP (User Datagram Protocol)” is treated as the traffic type. The considered routing
protocol is “Ad Hoc On-Demand Distance Vector (AODV)” which is applicable for routing methods in
wireless communications. That supports both “unicast as well as multicast routing” mechanism [63].
The communication range of an IoT device (sensor) is taken to be 100 m.

Table 3. Parameters used in simulations.

Parameter Description

Platform Ubuntu 18.04 LTS
Network area 650× 250 m2

Number of nodes 121 nodes
Number of attacker nodes 24
Time considered for simulations 1800 s
Traffic type CBR/UDP
Packet transmission rate 25 Kbps
IoT device’s communication range 100 m

6.2. Simulation Scenarios

The simulations of EIoT environment are performed for different cases such as normal traffic flow,
under sinkhole attack and under the deployment of SAD-EIoT. The information about the different
scenarios is provided below.

• Scenario of normal flow of traffic: The scenario of EIoT in the case of normal flow of traffic is
simulated, containing all 121 normal nodes. Therefore, traffic of the network flows normally
without any problem.

• Scenario of sinkhole attack: The scenario of EIoT under sinkhole attack is further simulated
which consists of 20% attacker nodes i.e., 24 IoT sensor nodes becomes SHAs. Remaining nodes
are normal nodes out of 121. The 24 attacker nodes contain various types of nodes like the
“sinkhole attacker nodes which drop the packets”, “sinkhole nodes which delay the messages”,
“sinkhole nodes which modify the messages” and “sinkhole nodes which selectively forward
the messages”.

• Scenario of SAD-EIoT: The EIoT scenario under sinkhole attack along with the implementation
of SAD-EIoT is further simulated. For the detection of SHAs, each edge node transmits
and receives various types of messages in EIoT. After performing the detection process ENj
blacklists all detected SHAs and also informs other legitimate IoT sensor nodes through alert
(information) messages.
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6.3. Discussion on Simulation Results

In this part of the paper, the following statistics for SAD-EIoT are accomplished: (i) packet delivery
ratio, (ii) end-to-end delay (in seconds), (iii) “throughput” (in bps), (iv) packet loss rate, (v) “detection
rate (DR)”, (vi) “false positive rate (FPR)”.

6.3.1. Effect on Packet Delivery Ratio

The packet delivery ratio is formulated as “the ratio of packets received at the base station to
packets transmitted by source nodes” (for example, from Si to ENj). Table 4 provides packet delivery
ratio in different instances, such as normal flow of traffic, under sinkhole attack and “under deployed
SAD-EIoT”. From Table 4 and Figure 10, it is confirmed that the packet delivery ratio for the instances
under normal flow of traffic, under sinkhole attack and “under SAD-EIoT” are 0.81, 0.29 and 0.77,
respectively. Thus, it is observed that the packet delivery ratio is indubitably improved under the
deployment of “SAD-EIoT” as compared to the case of sinkhole attack.
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Figure 10. Comparison of packet delivery ratios.

6.3.2. Effect on Packet Loss Rate

The packet loss rate is also one of the important network parameters. It is estimated as the
“number of packets lost per unit time”. It is required that for a reliable communication of the network,
the packet loss rate should be as least as possible. Table 4 and Figure 11 show that the packet loss rate
(packets per second pps), under normal flow of traffic, under sinkhole attack and “under SAD-EIoT”
are 0.005, 0.012 and 0.006, respectively. Thus, it is observed that the packet loss rate is indubitably
reduced under the deployment of “SAD-EIoT” as compared to the case of sinkhole attack.
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6.3.3. Effect on End-to-End Delay

The end-to-end delay is estimated as “the average time taken by the data packets to arrive at
the base station, for example, ENj from Si”. Table 4 represents the “end-to-end delay (in seconds)”,
under normal flow of traffic, under sinkhole attack and “under the deployment of SAD-EIoT”. Table 4
and Figure 12 confirm that the end-to-end delay, under normal flow of traffic, under sinkhole attack
and “under SAD-EIoT” are 0.72803, 0.80338 and 0.74485, respectively. Thus, it is cleared that the
end-to-end delay is indubitably reduced under the deployment of “SAD-EIoT” as compared to the
case of sinkhole attack.
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Figure 12. Comparison of end-to-end delays.

6.3.4. Effect on Throughput

Throughput is “the number of bits transferred per unit time”. Table 4 represents the throughput
(in bps), under normal flow of traffic, under sinkhole attack and “under the deployment of SAD-EIoT”.
From Table 4 and Figure 13, it is confirmed that the “throughput”, under normal flow of traffic,
under sinkhole attack and “under SAD-EIoT” are 12.48, 2.88 and 11.84, respectively. Thus it is



Sensors 2020, 20, 1300 22 of 27

observed that the end-to-end delay is indubitably improved under the deployment of “SAD-EIoT” as
compared to the case of sinkhole attack.
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Figure 13. Comparison of throughput.

The diverse statistics of SAD-EIoT as per the various scenarios are provided in Table 4.

Table 4. Obtained statistics of EIoT for different cases.

Parameter Case of Normal Flow Case of Sinkhole Under the Deployment
of Traffic Attack of SAD-EIoT

Packet delivery ratio 0.81 0.29 0.77
Packet loss rate (in pps) 0.005 0.012 0.006
End-to-end delay (in seconds) 0.72803 0.80338 0.74485
Throughput (in bps) 12.48 2.88 11.84

6.3.5. Effect on Detection Rate and False Positive Rate

The other essential performance parameter of an IDS is the DR (which is also known as “true
positive rate (TPR) or sensitivity or hit rate” or “false positive rate or fall out (FPR)”). It is very
essential to consider this parameter in the evaluation of performance of a proposed intrusion detection
scheme. DR can be estimated as “the number of attackers detected by an IDS divided by the total
number of attackers present in the test sample” which is formulated as

DR =
TP

TP + FN
,

whereas FPR is estimated as “the number of nodes falsely detected as attacker nodes” which is
formulated as

FPR =
FP

TN + FP
.

The obtained results are briefed as follows:

• A confusion matrix of the obtained results is constructed and its details are provided in Table 5.
The provided matrix clears that SAD-EIoT detects 23 SHAs.

Thus, there is a total of 23 TP nodes (actual attackers), one FP node (normal nodes), 96 TN nodes
(normal nodes) and one FN node (actually an attacker but identified as a normal node).

• There are in total 24 SHAs and 81 normal nodes. Accordingly, DR and FPR are 95.83% and
1.03% respectively.
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Table 5. Confusion matrix for SAD-EIoT.

Actual Value

Predicted value
Positives Negatives

Positives TP: 23 FP: 01
Negatives FN: 01 TN: 96

7. Comparative Analysis of SAD-EIoT with Other Related Existing Schemes

In this part of the paper, the results of SAD-EIoT are compared with other closely related schemes
proposed by Salehi et al. [31], Wang et al. [32], Wang et al. [33], Wang et al. [34], Wazid et al. [17]
and Wazid et al. [18]. The comparative analysis of outcomes is presented in Table 6. The following
observations have been made:

• The DR for Salehi et al.’s scheme [31], Wang et al.’s scheme [32], Wang et al.’s scheme [33],
Wang et al.’s scheme [34], Wazid et al.’s scheme [17], Wazid et al.’s scheme [18] and SAD-EIoT are
93.00, 90.96, 86.00, 83.00, 95.00, 95.00 and 95.83, respectively.

• The “false positive rate (FPR)” for Salehi et al.’s scheme [31], Wang et al.’s scheme [32],
Wazid et al.’s scheme [17], Wazid et al.’s scheme [18] and SAD-EIoT is 10.00, 2.06, 1.25, 1.23
and 1.03, respectively.

Therefore, the designed SAD-EIoT performs better than other related existing schemes.

Table 6. Accuracy comparison among existing schemes and SAD-EIoT.

Scheme [31] [32] [33] [34] [17] [18] SAD-EIoT

“Detection rate (DR) (in %)” 93.00 90.96 86.00 83.00 95.00 95.00 95.83
“False positive rate (FPR) (in %)” 10.00 2.06 N/A N/A 1.25 1.23 1.03

Note: N/A: not available.

The comparison of computational complexities of existing schemes and SAD-EIoT is provided
in Table 7. The computational complexities for the schemes of Salehi et al. [31], Wang et al. [32],
Wang et al. [33], Wang et al. [34], Wazid et al. [17], Wazid et al. [18] and SAD-EIoT are O(n2), O(n2),
O(n2), O(n2), O(n2), O(n2) and O(n) respectively. Here, n denotes the total number of deployed
IoT sensing nodes or sensor nodes in the specified area. The complexities for other existing schemes
are quadratic whereas for SAD-EIoT they are linear. Hence, SAD-EIoT performed better in terms of
computational costs.

Table 7. Comparison of computational complexity among existing schemes and SAD-EIoT.

Scheme [31] [32] [33] [34] [17] [18] SAD-EIoT

Computational complexity O(n2) O(n2) O(n2) O(n2) O(n2) O(n2) O(n)

Note: N/A: not available.

8. Concluding Remarks

As discussed in this work, the performance of edge-based IoT communication degrades very
rapidly under the presence of various sinkhole attacker nodes (SHAs). Most of the existing schemes
for sinkhole node detection are not effective as they cannot identify all possible types of SHAs in EIoT.
Moreover, the existing intrusion detection schemes have other limitations, such as inefficiency in terms
of communication and computation costs. To overcome this problem, an efficient intrusion detection
scheme for the detection of various kinds of SHAs in EIoT (SAD-EIoT) is proposed. SAD-EIoT requires
a lower number of exchanged messages that further causes reduction in overall communication cost.
Furthermore, SAD-EIoT achieves around 95.83% detection rate and 1.03% false positive rate, which is
considerably better than other related existing schemes. The performed security analysis also confirms
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the resilience of SAD-EIoT against sinkhole attack. Apart from these characteristics, in SAD-EIoT,
the resource-constrained IoT devices (sensors) need less computation and communication costs
because the resource-rich edge node only executes the steps of SHAs detection algorithm. Eventually,
SAD-EIoT will be a suitable match for those applications which can be used in critical and sensitive
operations (for example, surveillance, security and monitoring systems).

In the future, a testbed for the proposed SAD-EIoT scheme along with detection of a greater
number of attacks, such as blackhole, greyhole, wormhole and other routing attacks in IoT environment
can be implemented and analysed.
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