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Abstract 

Biological processes are full of variations
and so are responses to therapy as measured
in clinical research. Estimators of clinical effi-
cacy are, therefore, usually reported with a
measure of uncertainty, otherwise called dis-
persion. This study aimed to review both the
flaws of data reports without measure of dis-
persion and those with over-dispersion. 

Examples of estimators commonly reported
without a measure of dispersion include: 

1) number needed to treat;
2) reproducibility of quantitative diagnostic

tests;
3) sensitivity/specificity;
4) Markov predictors;
5) risk profiles predicted from multiple

logistic models.
Data with large differences between

response magnitudes can be assessed for
over-dispersion by goodness of fit tests. The c2

goodness of fit test allows adjustment for over-
dispersion.

For most clinical estimators, the calculation

of standard errors or confidence intervals is
possible. Sometimes, the choice is deliberate-
ly made not to use the data fully, but to skip the
standard errors and to use the summary meas-
ures only. The problem with this approach is
that it may suggest inflated results. We recom-
mend that analytical methods in clinical
research should always attempt to include a
measure of dispersion in the data. When large
differences exist in the data, the presence of
over-dispersion should be assessed and appro-
priate adjustments made. 

Introduction

Biological processes are complex and
therefore full of variations. Clinical respons-
es as captured in clinical research are, there-
fore, equally complex. Statistics give no cer-
tainties, only chances and, consequently,
their results are often reported with a meas-
ure of dispersion, otherwise called uncertain-
ty. Generally, standard errors are calculated
as a measure for dispersion in the data. For
example, in a hypertension study a mean sys-
tolic blood pressure after active treatment of
125 mm Hg compared to 135 mm Hg after
placebo treatment may indicate that either
the treatment was clinically efficacious or
that the difference observed is due to random
variation. To address this important distinc-
tion, the standard errors of the mean are
found to be 5 mm Hg each, and a pooled stan-
dard error is calculated: √ (52+52) = 7.07 mm
Hg. According to the Student’s t-test this
result is statistically insignificant: the t-value
= (135-125)/7.07=1.4, and should have been
larger than approximately 2. With such a
result it is, usually, concluded that the treat-
ment effect does not differ from a placebo
effect, and that the calculated mean differ-
ence is due to random variation rather than a
true treatment effect. 

It is sometimes difficult to assess complex
estimators of clinical efficacy for standard
errors. Consequently, they are then reported
as mean results without further statistical test
or P value. For example, number needed to
treat (NNT) in clinical trials, reproducibility of
quantitative diagnostic tests, sensitivity and

specificity, Markov estimators, and risk pro-
files from multiple logistic models are routine-
ly reported without measure of uncertainty.
Clinical decisions made from such estimators
are, therefore, not entirely in agreement with
evidence-based medicine. As recommended by
the Standards for the Reporting of Diagnostic
Accuracy Studies (STARD) steering group,1

ample efforts should be given to include a
measure of uncertainty in any research result
in order for predictions to be more accurate. 

Another dispersion issue is the use of tradi-
tional standard errors in situations where the
data are over-dispersed. Over-dispersion
describes the phenomenon in which the
spread in the data is wider than compatible
with Gaussian modeling. This phenomenon is
particularly common with logistic models but
can also occur with continuous real data sam-
ples.2 Traditional statistical tests overestimate
the precision of over-dispersed data, meaning
that the calculated P values are too small,
potentially supporting the erroneous conclu-
sion of a significant effect. To date, statistical
software programs do not routinely include
tests for over-dispersion. Therefore, it is
incumbent upon investigators to recognize
over-dispersion and make their own assess-
ments prior to the analysis. 

In the current paper, we will review both the
flaws inherent in data without a measure of
dispersion and that of data with over-disper-
sion. As there are almost no real data exam-
ples assessing these flaws in the cardiovascu-
lar literature, we will give hypothetical exam-
ples. Simple Gaussian distribution based
methods for assessment are used, and most of
them can be readily found in major statistical
packages like SAS,3 and special software pro-
grams for the calculation of confidence inter-
vals like Confidence Interval Analysis.4

Data without measure 
of dispersion

Number needed to treat in clinical
trials 

In order to decide whether the results of a
study are important for future patient care the
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NNT is often calculated. As an example, in a
clinical trial of b-blocker versus placebo for the
prevention of post-infarct arrhythmias, the
proportion of post-infarct arrhythmias is sig-
nificantly lower with the b-blocker than with
placebo, with 51 of 748 (6.8%) in the b-blocker
group and 126 of 764 (16.8%) in the placebo
group (relative risk 2.4, 95% confidence inter-
val 1.8-3.3). With this result, it is interesting to
extrapolate these results to future populations.
The number needed to treat in order to prevent
one arrhythmic patient is often used for that
purpose, and is calculated according to:
NNT =1/ (0.168-0.068) =1/0.1=10

We will need to treat 10 patients with a b-
blocker in order to prevent one arrhythmic
patient. This conclusion, however appealing to
readerships of articles, is not justified, because
it is based on the assumption that the propor-
tions are 100% certain, but the proportions do
have boundaries of uncertainty, the 95% (or
99%) confidence interval, which indicates that
the number could differ considerably from 10.

Using the equation “proportion ±2√ [p (1-
p) /n]” the 95% confidence intervals are calcu-
lated as follows:
0.068 is between 0.051 and 0.085
0.168 is between 0.126 and 0.210

If we include this uncertainty in the calcula-
tion of the NNT, then we can be 95% sure that
the numbers required to prevent one arrhyth-
mic patient range between 1/(0.210-0.051)
=6.3 and 1/(0.126-0.085) =24.4. As we consid-
er the treatment of future patients, it is more
accurate to think of NNT between 6 and 25
instead of an NNT of 10 patients. We should
add that the NNT can also be derived from the
risk difference. The risk difference and its 95%
confidence interval can be calculated in SAS,3

Confidence Interval Analysis,4 and other soft-
ware programs. 

Reproducibility of quantitative
diagnostic tests

Reproducibility, otherwise called reliability,
of diagnostic tests or questionnaires is an
essential prerequisite for implementation. A
routine but incorrect method for that purpose
is the following. We calculate the mean value
of the first set of tests and then from the sec-
ond set of tests. If the difference is small, then
we conclude that the results of the two tests
are reproducible. As an example, in a diagnos-
tic study of patients with Raynaud’s phenome-
non, the reliability of venous occlusion plethys-
mography is assessed by duplicate testing of 6
patients (Table 1). The mean difference
between the duplicate tests is as small as 0.
Yet, the test is poorly reproducible, with a
range of differences between two tests of no
less than -11 to +10 mL/min. 

The mean difference between two sets of
tests is, obviously, not good enough for demon-
strating a high level of reproducibility between
tests. More adequate for that purpose are
methods that assess the spread of differences
between repeated measurements like, for
example, the duplicate standard deviation
(Table 2). For adequate reproducibility the
magnitude of the duplicate standard deviation
should equal 10-20% of the averages of the test
results. Also adequate is the repeatability coef-
ficient that is calculated by the standard devia-
tion of the individual differences between tests
1 and 2: a result equal to 10-20% of the test
averages is considered to be adequate. 

Sensitivity and specificity
In clinical research, use of a “gold standard”

test for making a diagnosis is often laborious
and, sometimes, impossible. Frequently, sim-
ple and non-invasive tests are used. 

Disease Present Yes No 
Test positive a b 
Test negative c d

In the above 2¥2 contingency table: a = the
number of truly positive patients in such a
simple non-invasive test, b = the number of
false positives, c = the number of false nega-
tives, and d = the number of truly negatives. 

Validity of these kinds of tests is often
assessed with sensitivity and specificity.
Sensitivity = a / (a+c) = proportion in a sam-
ple of true positive patients, where the true
positives are the patients with a positive test
and the presence of disease; specificity = d /
(d+b) = proportion of a sample of patients
with a true negative test, where the true neg-
atives are the patients with a negative test
and without the presence of disease.
However, most diagnostic tests have limited
sensitivities and specificities. Levels around
0.5 (50%) mean that no more information is
gained than by flipping a coin. Levels sub-
stantially higher than 50% are commonly
accepted as documented proof that the diag-
nostic test is valid. However, sensitivity/speci-
ficity are estimates from experimental sam-
ples, and scientific rigor requires that the
amount of uncertainty be included in the
results of experimental sampling. Uncertainty
is virtually never assessed in sensitivity/
specificity evaluations of cardiovascular diag-
nostic tests. This is unfortunate as calculated
levels of uncertainty could be used with sta-
tistical testing whether the sensitivity/speci-
ficity are significantly larger than 0.5 or
whether their 95% confidence intervals are
between previously set validation boundaries.
If not, then it is appropriate to reject the diag-
nostic test, because it is too imprecise to pre-
dict the disease. As an example, a d-dimer
test is used as a diagnostic test for the diag-

Table 1. In a diagnostic study of patients
with Raynaud’s phenomenon the reliabili-
ty of venous occlusion plethysmography is
assessed by duplicate testing of 6 patients.

Plethysmographic peripheral arterial 
flows (mL/min)

Patient Test 1 Test 2 difference 
1 1 11 -10
2 10 0 10
3 2 11 -9
4 12 2 10
5 11 1 10
6 1 12 -11 
Mean difference 0 

Table 2. More adequate for assessing reproducibility between tests are methods that
assess the spread of differences between repeated measurements, e.g. the duplicate stan-
dard deviation.

Plethysmographic peripheral arterial flows (mL/min) 

Patients Test 1 Test 2 difference(d) (difference)2

1 1 11 -10 100 
2 10 0 10 100
3 2 11 -9 81
4 12 2 10 100
5 11 1 10 100
6 1 12 -11 121
Averages 6.17 6.17 0 100.3

Duplicate standard deviation = √ ½ Sd2 /n = √ (1/2¥100.3) =7.08 
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nosis of pulmonary emboli.
Emboli Yes No 

(n. of patients)
D-dimer Result
Positive 2 18
Negative 1 182

The sensitivity and specificity in the above
example is calculated to be 0.6666 and 0.911,
respectively. These results could be interpreted
as acceptable, because they are much larger
than 0.5. However, in order to conclude that
they are significantly larger than 0.5 their 95%
confidence intervals should not cross the 50%
boundary. Sensitivity / specificity are propor-
tions and it is fairly straightforward to calcu-
late standard errors from them.5

The equations are:
standard error sensitivity = √ ac / (a+c)3

standard error specificity = √ db / (d+b)3

The 95% confidence intervals of sensitivity
and specificity can be calculated from:
95% confidence interval = sensitivity ±1.96¥
standard error 
95% confidence interval = specificity ±1.96¥
standard error 
sensitivity = 0.666±1.96¥3.672 = between -5.4
and 7.8.
specificity = 0.911±1.96¥0.286 = between 0.35
and 1.47.

These intervals are very wide and do not fall
within the boundary 0.5 to 1.0 (50-100%).
Thus, the sensitivity and specificity are insuf-
ficient. 

Markov predictors
Regression models are only valid within an

observed range of values. The Markov model
goes one step further. It predicts beyond that
range and, in addition, it does so without
accounting for uncertainty. As an example, in
an observational study the presence of heart
failure defined as a B-natriuretic peptide test
above 100 pg/mL is assessed in a group of 500
patients. At time 0 year none of 500 patients
met the criterion. After one year, 50 of 500
(10%) had a positive test. An exponential pat-
tern is assumed. It is concluded that, if after
one year 90% had no heart failure, then:
after 2 years 90%¥90%=81% will have no heart
failure
after 3 years 90%¥90%¥90%=73% will have no
heart failure
after 6.7 years = 50% will have no heart failure 

Markov models are very popular for making
predictions from health statistics or popula-
tion-based studies like the Framingham stud-
ies. It is obvious that such models would be
more accurate if uncertainty were included.
Markov models using multiplication of propor-
tions and standard errors of them can be calcu-
lated using a logarithmic transformation.6 The
natural logarithm of a proportion is given by ln
[a/(a+b)]. We recommend that the standard
error be approached from the equation (ln =

natural logarithm):
standard error ln [a/(a+b)] = 1/a – 1/(a+b) 

From the previously example, the 95% confi-
dence interval of the proportion of patients
who will have no heart failure after 6.7 years
could be calculated: 
ln [a/(a+b)]6.7=6.7 ln [a/(a+b)] 

The standard error of ln [a/(a+b)]6.7=6.7
standard error [a/(a+b)] =6.7 [1/a–1/(a+b)].

The logarithmic transformed 95% confi-
dence interval = 
6.7 ln [a/(a+b)] ±1.96¥6.7 [1/a–1/(a+b)].

The true 95% confidence interval is found by
taking the antilogarithm.

Therefore uncertainty can be included in a
Markov model resulting in more precise pre-
dictions from this clinical estimator.6

Risk profiles from multiple logistic
models

Logistic models are often applied for deter-
mining individual and population risk profiles.
As an example, we will use an observational
study of myocardial infarction in females treat-
ed with estrogen. Additional risk factors are
included (Table 3). The odds of myocardial
infarct in patients with estrogen is 13.5 times
that of patients without. As 4 of the risk factors
are significant, we remove factor 5 and assume
that all of the remaining 4 factors independ-
ently predict an increased risk and that,
together, they predict the following risk: 
the odds ratio (OR) of myocardial infarct with
factors 1-4 = OR1 ¥ OR2 ¥ OR3 ¥ OR4 = 75.9 

For an individual or a group of persons carry-
ing all 4 risk factors the odds of suffering a
myocardial infarction is 76 times that of the
individual / group devoid of the risk factors. But
is this true? Should we not include a boundary
of uncertainty here? The standard error of each
of the risk factors is given in Table 3 and needs
to be incorporated in the final result for the
purpose of accuracy and precision. 

Logistic models for determining risk profiles
use multiplications of odds ratios. If only sig-
nificant predictors are included, we may
assume that they are independent of one
another and a fairly straightforward method is
available for calculating the pooled 95% confi-
dence interval of the multiplication products.

The above example is used once more.
The pooled standard error of the natural log-

arithms of the odds ratio with the factors 1-4
(ln OR factors 1 - 4) is given by (ln means natural
logarithm):
standard error of ln OR factors 1 - 4 = 
√ (standard error1

2 + standard error2
2 + stan-

dard error3
2 + standard error4

2)
The logarithmic transformed 95% confi-

dence interval is found by taking:
ln OR factors 1 - 4 ± 1.96 ¥ pooled standard error of
ln OR factors 1 - 4

In this way, uncertainty can be implied in
the risk profile and better precision for predic-
tions from data can be provided. 

Data with over-dispersion
Over-dispersion depicts the phenomenon

where the spread in the data is wider than
compatible with Gaussian modeling. This phe-
nomenon is particularly common with logistic
models, but can also occur with continuous
real data samples.2 Over-dispersion can be
detected by goodness of fit tests, for example
the Pearson’s c2 goodness of fit test or the
Kolmogorov-Smirnov test.7 To date statistical
software programs do not routinely include
tests for over-dispersion. Thus, investigators
have to make their own assessments prior to
the analysis. 

Table 4 shows a hypothesized example of a 2
¥ 2 multicenter factorial clinical trial of the
effect of a b-blocker and a calcium channel
blocker on hypertension. The analysis requires
the binary logistic model (ln = natural loga-
rithm): 
ln odds of responding = a + b1 ¥1 + b2 ¥2 + b3

¥1 ¥2

¥1 = b-blocker
¥2 = calcium channel blocker

There is a strong difference in the total
numbers of observations per center: between 4
and 81. This could lead to over-dispersion and
the Pearson’s goodness of fit test can be used
to assess the presence of it. The calculation is
given in Table 5. If we add up the other 3 treat-
ment combination results to 10.0, we will end
up with a c2 value of 10.0 +..... = 32. This c2

Table 3. Multiple logistic regression of an observational study of myocardial infarction
in females treated with estrogen. The dependent variable is the myocardial infarction
(yes/no), estrogen use (yes/no), and the other predictors below are included in the
model. 

Risk factors Regression coefficient(b) Standard error P Odds ratio

1.Estrogen 2.60 0.25 <0.0001 13.5
2.Cholesterol 0.81 0.21 0.0001 2.2
3.Obesity 0.50 0.25 0.04 1.6
4.Hypertension 0.42 0.21 0.05 1.5
5.Nicotine 0.53 0.53 ns 
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value should be approximately equal to its
degrees of freedom for the logistic model to
hold. We have, however, 21 (cells) – 4 (treat-
ment combinations) = 17 degrees of freedom.
This would mean that the data are over-dis-
persed. A solution recommended by Hojsgaard
and Halekoh is used.8 The magnitude of the
dispersion can be estimated by the ratio:
c2 number / degrees of freedom = 32/17=1.9

The square root of this ratio (here, √1.9) ,
sometimes called the variance inflating factor
can, subsequently, be used to adjust the stan-
dard errors in the study. ln odds of responding
= a + b1 ¥1 + b2 ¥2 + b3 ¥1 ¥2 (ln = natural log-
arithm). The calculation is given in Table 6. 

The probability of responding to a dummy b-
blocker and calcium channel blocker equals

0.36. This is unchanged after adjustment for
dispersion. However, the 95% confidence inter-
val changes from 0.31-0.42 to 0.28-0.45. In con-
clusion, with over-dispersion the parameter
estimates are not affected but their standard
errors are likely to be underestimated and
should be adjusted to compensate for that flaw. 

Discussion 
This review is far from complete, many more

examples can be given. Data without measure
of dispersion also include pharmacokinetic/
pharmacodynamic parameters in simulated
and real-data drug trials, diagnostic odds ratios
in diagnostic meta-analyses,9 node impurities
with binary partitioning,10 propensity scores
for data matching.11 Also data with over-disper-
sion are very common with current multicen-
ter and international cardiovascular trials,
though rarely assessed for that purpose.2

Conclusions from data without measure of
dispersion should be interpreted with caution
because statistically insignificant differences
may be interpreted as real differences while
they are just a result of random fluctuations.
Random fluctuations should never be the
basis for new treatments. The STARD working
party recently recommended “to include in
the estimates of diagnostic accuracy ade-
quate measures of uncertainty, e.g., 95%-con-
fidence intervals”,1 and rightly so, because
the problem is not sporadically encountered
but can be almost routinely observed in
research reports. For example, even in a jour-
nal like the Journal of the International
Federation of Clinical Chemistry and
Laboratory Medicine out of 17 original papers
addressing novel chemistry methods, 16 com-
municated the above-mentioned flawed
reproducibility assessments while the correct
methods were used in only one.12

What solutions can be given? First, calculat-
ing standard errors or confidence intervals is

often possible. If not, alternative confidence
intervals may be a possibility, for example,
those based on Monte Carlo methods like boot-
strap confidence intervals. Second, sometimes
the choice is deliberately made not to use the
data fully but to skip the standard errors and to
use the summary measures only. Number need-
ed to treat can be considered as such a summa-
ry measure. The problem with this approach is
that without accounting for the uncertainty of
the summary measure the overall results may
produce inflated results because the dispersion
in the data is artificially minimized by removing
this uncertainty. This limitation should be rec-
ognized in research reports. 

Conclusions from data with over-dispersion
should also be interpreted with caution
because the calculated confidence intervals
and P values are too small and the conclusion
of a significant effect may be erroneously
made. The presence of over-dispersion should
be assessed particularly if a strong difference
in numbers of responders or magnitudes of
responses is in the data. Goodness of fit tests
are available for that purpose. The advantage
of the Pearson’s c2 goodness of fit test is that,
in addition to detecting over-dispersion, it
enables adjustment for it. The adjusted mean
of the data remains unchanged while the
measures of dispersion in the data, including
variances and co-variances, log - likelihoods,
Wald – intervals, etc. are simply multiplied by
the square root of the ratio of the c2 value and
its degrees of freedom (variance inflating fac-
tor = c2 / degrees of freedom). 

In conclusion, we recommend that analyti-
cal methods in clinical research should always
try to include a measure of dispersion in the
data. Often standard errors or 95% confidence
intervals can be used for the purpose. With
large differences in the data, the presence of
over-dispersion should be assessed and appro-
priate adjustments made. 
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