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Abstract
The skin is home to a community of skin microbiota including bacteria, viruses and 
fungi, which are widely accepted to be of importance for skin homeostasis but also 
associated with skin diseases. Detailed knowledge on the skin microbiota composi-
tion and its changes in a number of skin diseases is available. Yet, specific interac-
tions between microbes and the host skin cells or how they communicate with each 
other are less well understood. To identify, understand and eventually therapeutically 
exploit causal relationships of microbial dysbiosis with disease, studies are required 
that address the receptors and mediators involved in host- microbe interactions. In 
this perspective article, we provide an outlook on one of such receptors, namely the 
aryl hydrocarbon receptor (AHR). The AHR is well known for being a ligand- activated 
transcription factor regulating the proliferation, differentiation and function of many 
cell types present in the skin. Its targeting by anti- inflammatory therapeutics such 
as coal tar and Tapinarof is effective in atopic dermatitis and psoriasis. AHR signal-
ling is activated upon binding of wide variety of small chemicals or ligands, includ-
ing microbiota- derived metabolites. New evidence has emerged pointing towards a 
key role for epidermal AHR signalling through skin microbiota- derived metabolites. In 
response, AHR- driven expression of antimicrobial peptides and stratum corneum for-
mation may alter the skin microbiota composition. This a self- perpetuating feedback 
loop calls for novel therapeutic intervention strategies for which we herein discuss 
the requirements in future mechanistic studies.
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1  |  INTRODUC TION

The skin is continuously challenged by the outside environment 
and harbours multiple receptors that aid in the communication 
with the environment and contribute to host defence. The aryl 
hydrocarbon receptor (AHR) has for many years after its dis-
covery primarily been considered a receptor for xenobiotic pol-
lutants, whose activation results in xenobiotic metabolism and 
elimination, but also taking part in cellular and tissue toxicity.1 The 
principle of AHR activation is well known. In brief, small molecu-
lar weight chemicals non- covalently bind to a pocket in the AHR 
protein, resulting in the release of chaperoning proteins, translo-
cation to the nucleus, dimerization with its partner molecule, aryl 
hydrocarbon receptor nuclear translocator (ARNT) and ultimately 
the transcription of target genes. This basic signalling mechanism 
is fine- tuned by a plethora of cell- specific factors, such as com-
petition for transcription co- factors, possibilities to interact with 
other signalling pathways such as NFkB2 and target gene accessi-
bility.3 Importantly, the role of ligand characteristics (eg affinity, 
degradability and chemistry) for the dynamics of the signalling4 
outcome needs further research.

Importantly, many natural and physiological AHR ligands and 
their sources were identified over the years (reviewed by Murray 
and Perdew5). Key physiological events are mediated or co- regulated 
by AHR signalling, which in the in skin encompass cellular prolifer-
ation,6 differentiation,7- 9 maturation10,11 and migration.12 Here, we 
focus on the evidence for AHR activation by skin microbiota as well 
as potential consequences of this activation for both host and micro-
biota related to skin health and disease.

2  |  HOST AHR SIGNALLING VIA SKIN 
MICROBIOTA

AHR ligands produced by skin microbiota may permeate through the 
stratum corneum, epidermis and skin appendages such as hair folli-
cles, sweat and sebum glands, which serve as a port d’entree for skin 
microbiota to colonize the deeper layers of the skin. Most well known 
and studied microbial metabolites that modulate AHR through direct 
ligand binding are tryptophan metabolites, like indoles and kynure-
nines, mostly identified from (murine) gut microbiome studies.13 The 
AHR activating potential by tryptophan metabolites is complex as 
weak agonist (like indole) in the presence of a potent agonist will ex-
hibit antagonist activity.14 However, the differences in ligand affinity 
between mouse and human AHR should be taken into consideration 
here as indole exhibits greater agonist activity towards the human 
AHR compared to the mouse AHR.15 Short- chain fatty acids (SCFA) 
produced by microbes, like butyrate, can enhance AHR activation 
indirectly when AHR ligands are present.16- 18 Recently, evidence for 
quorum sensing by AHR was demonstrated for Pseudomonas aerugi-
nosa whereby the AHR controls infection dynamics and orchestrates 
host defence.19 Most studies on the AHR- microbiome axis focus on 
the gut, where the AHR has been firmly established as a key receptor 

for gut microbial metabolites and regulator of organ homeostasis 
through modulating intestinal immunity,20 enhancing epithelial bar-
rier functioning21 and inducing xenobiotic metabolism,22 a topic re-
cently reviewed by Dong and Perdew.23 Besides local tissue- specific 
AHR targeting via microbial metabolites, systemic entry of me-
tabolites formed at barrier organs, resulting in cross- compartment 
effects of gut microbiota on many organs (eg gut- brain axis,24 gut- 
lung axis,25 gut- skin axis26), has far- reaching implications for under-
standing mechanisms of disease, and for the development of disease 
therapeutics and prevention strategies. Similar effects could hold 
true for skin- derived AHR ligands which may enter the bloodstream, 
although direct evidence is not yet available.

All barrier organs, and, in particular, the skin are continuously 
challenged by the exposome (or the collection of all environmental 
factors impacting human health) which also impacts the microbiome 
in its composition and metabolism, exemplified by dietary intake,27 
environmental pollution28,29 and UV exposure.30,31 Epidemiological 
and experimental studies on exposome- associated AHR ligands 
(eg certain pollutants and dietary compounds, or UV radiation- 
generated endogenous tryptophan metabolites) and signalling thus 
need to consider the additional influence of exposome- mediated al-
terations in the microbiome and changes in microbial- derived AHR 
ligands thereof.

Studies addressing the AHR activating potential and downstream 
effects by skin microbiota are mostly performed by exposure of 
AHR reporter cells or primary skin cells to whole bacteria, bacterial 
lysates or purified metabolites,32- 35 after which known AHR ligands 
with differences in receptor affinity and turnover times, like TCDD 
or FICZ are used to substantiate findings.36 Skin microbiota include 
a substantial fungal community, which is dominated by Malassezia 
species.37 Malassezia produce a variety of indole metabolites having 
AHR activating potential (eg indirubin, Malassezin, FICZ).35 Although 
Malassezia dysbiosis is associated with skin diseases (eg seborrheic/
atopic dermatitis),38,39 in dept studies on the effects of the me-
tabolites formed by the different Malassezia species in skin or co- 
cultures of Malassezia isolates with (organotypic) skin are scarce.40 
Evidence from studies on skin commensal bacteria indicate that AHR 
activation after skin cell exposure to commensal bacteria (eg S. epi-
dermidis, S. warneri and C. aurimucosum 32,36) or specific microbial 
metabolites (eg indole- 3- aldehyde34) contributes to epidermal skin 
barrier function,36,41 negatively regulates immune cell responses10 
and dampens (experimentally induced) skin inflammation.34 These 
effects are generally seen also for non– microbial- derived AHR li-
gands that are able to activate the AHR which provide a rationale 
to the therapeutic targeting of AHR for two major inflammatory 
skin diseases, atopic dermatitis and psoriasis42,43,44 both character-
ized by skin barrier defects and chronic inflammation. Furthermore, 
AHR activation upregulates antimicrobial peptides expression in 
keratinocytes, potentially altering skin microbiota composition and 
restoring dysbiosis in atopic dermatitis.45 Recently, also for hidrade-
nitis suppurativa, another severe inflammatory skin condition, AHR 
therapeutic targeting was proposed. Changes in the skin microbiota 
are characteristic for the disease, with fewer bacteria present known 
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to produce beneficial AHR ligands from tryptophan suggesting a 
loss of AHR- mediated host- microbe communication through altered 
tryptophan catabolism.33 Altered tryptophan metabolism is a fea-
ture also associated with dysbiosis in atopic dermatitis.46,47 Hence, 
altered levels or composition of microbial- derived AHR ligands may 
contribute to disease pathophysiology. In other words, due to dys-
biosis, ligand availability changes, which normally drive constitutive 
AHR signalling required for epidermal structural integrity and bar-
rier function, as wells as skin immunity. This concept was recently 
underscored by the finding that high levels of CYP1A1 enzymatic 
activity lead to exaggerated skin inflammation and phenocopy AHR 
deficient mice.48 The authors proposed that CYP1A1 may deplete 
the AHR natural ligand pool in the skin (eg microbial metabolites or 
the UV- irradiation generated molecule FICZ)) by phase I metabo-
lism and thereby release the break that AHR normally holds on skin 
inflammation. Unfortunately, metabolomic analysis to determine 
actual metabolite levels, composition and source were lacking and 
remain to be further explored. The need for active AHR signalling 
as protection against overt skin inflammation is further indicated 
by the vemurafenib- induced inflammatory skin rashes in melanoma 
patients. Vemurafenib was found to act as an AHR antagonist and 
elevated pro- inflammatory molecules in keratinocytes in vitro.49

3  |  MECHANISTIC INSIGHTS AND 
THE CHALLENGES OF E XPERIMENTAL 
APPROACHES

Overall, mechanistic insights into the molecular signalling events 
that drive AHR- mediated effects in skin are still under- explored. This 
is of particular interest given the promiscuity of the AHR towards 
various ligands and its canonical (through dimerization with ARNT) 
and non- canonical signalling pathways, as mentioned before. Up or 
downstream interaction of AHR with signalling pathways important 
for skin structure and function demonstrate the need for in depth 
molecular analysis to pinpoint AHR’s mode of action in host- microbe 
interactions. Herein, the setup of studies is a crucial factor in provid-
ing key evidence for microbiota- driven AHR activation contributing 
to skin homeostasis. The interspecies differences in receptor affinity 
known for the murine and human AHR16,50 should be taken into con-
sideration when extrapolating study findings from mouse to human. 
Alternatively, humanized AHR mice or low affinity (human) variant 
(Ahrd/d)51 may better predict AHR activation from host- microbe in-
teractions and its consequences for human health and disease. In 
addition, human organotypic skin models for microbiome research 
emerge as alternatives to mouse models.52 Studies using purified 
metabolites at artificial concentrations and specific time of dosage 
indeed provide proof- of- concept on the potential for AHR activa-
tion. However, the resulting effects may not reflect the actual mode 
of action as metabolite concentration, turnover, bioavailability and 
interaction with other microbial metabolites and host proteins are 
not captured. In addition, studies on single bacterial (laboratory) 
strains or mixtures thereof may be less representative as bacterial 

transcriptomes are influenced by the host environment and tissue 
state. Indeed, individual clinical isolates may differ, and reflect inter-
personal differences regarding the production of metabolites capa-
ble of AHR activation.53

To date, only few studies exist addressing AHR signalling in skin 
investigated patient cohorts33,34,48 from a microbiome perspective. 
Because these had only small sample numbers (<20 per group), 
there is a need for integrated multi- omics approaches to investigate 
and correlate microbiome composition (16S rRNA gene sequenc-
ing or ideally metagenomics) with microbial metabolome and host 
transcriptome/epigenome. Given the wide expression of AHR in a 
multitude of cell types in skin, conventional transcriptomics studies 
using bulk RNA from full skin biopsies may mask potential cell type- 
specific effects hence favouring single- cell approaches. Functional 
analysis of in vivo host- microbe signatures in organotypic models 
of human skin can provide proof- of- principle data to pinpoint the 
role of the AHR using genome editing strategies or selective AHR 
inhibition. The first would be preferred given potential unspecific 
targeting by pharmacological inhibitors that might mask the actual 
AHR- mediated signalling events and its downstream cellular effects.

4  |  SELF-  PERPETUATING FEEDBACK 
LOOP FROM AHR AC TIVATION TO 
MICROBIOME COMPOSITION

Besides the above- discussed function of the AHR in communicating 
signals from the microbiome to the host, the known downstream 
effects of AHR activation on the epidermis and stratum corneum 
formation could provide a feedback mechanism controlling the skin 
microbiome composition. Although ligand promiscuity of microbial 
metabolites may also be a factor to consider, AHR activation is in-
volved in the transcription of genes for epidermal differentiation 
proteins,8,54 lipid synthesis 55,56 and sebocyte differentiation.57 
Expression of these genes may change stratum corneum structure, 
lipid and amino acid content, skin surface pH and sebum levels. Of 
note, these are all processes, which ultimately can affect the skin 
microbiome composition.58 Specifically, the induction of filaggrin 
may be of importance considering the key functions of this protein 
in generating natural moisturizing factor (NMF) by its proteolytic 
cleavage and deamination during keratinocyte terminal differentia-
tion.59 NMF is important for skin barrier function and NMF levels 
inversely correlate to AD disease severity.60 Recently, adhesion of 
Staphylococcus aureus to the stratum corneum was found to cor-
relate to NMF levels.61 Low levels of NMF are found in skin of 
atopic dermatitis (AD) and ichthyosis vulgaris (IV) patients which 
harbour loss- of- function mutations in the filaggrin gene60 or have 
downregulated filaggrin levels due to the local inflammatory mi-
lieu.62 Skin microbiome dysbiosis in IV patients is characterized by 
a low abundance of specific bacteria, called gram- positive anaero-
bic cocci (GPAC).63 GPAC abundance correlated to NMF levels in 
a dose- dependent manner, possibly due to their nutrient require-
ment for histidine, one major constituent of NMF. Also in AD, GPAC 
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are less abundant.46 It would be highly interesting to investigate 
if AHR targeting drugs in AD, like in the Tapinarof trials, restore 
microbial dysbiosis, whether GPAC levels return to normal, and if 
this coincides with normalized filaggrin expression and NMF lev-
els in the stratum corneum. The study on the effects of coal tar 
treatment (and AHR activation) on the microbiome of AD patients 
and healthy volunteers did not detect differences in GPAC before 
or after treatment, albeit this study was underpowered to detect 
such differences and the time period of treatment may have been 
too short.45 Of note, therapeutic AHR ligands like polycyclic hydro-
carbons in coal tar and Tapinarof may also exert direct effects on 
the microbiome by their antimicrobial activity,64 adding even more 
complexity to the various modes of AHR- directed host- microbe in-
terplay, its involvement in disease pathophysiology and therapeutic 
potential (Figure 1).

Next to the potential AHR- mediated changes on the feeding 
ground of skin microbiota, the innate host defence mechanisms by 
means of the skin AMP repertoire can be modulated by AHR sig-
nalling.45 Major epidermal AMPs like beta- defensins, S100 proteins 
and SKALP/elafin are inducible by AHR ligands, although this induc-
tion could coincide with the driving forces of AHR agonist on ke-
ratinocyte terminal differentiation. This AHR- mediated expression 
of genes within the epidermal differentiation complex (EDC) locus 
on chromosome 1 including filaggrin, hornerin and late cornified 
envelope proteins8,54,65 further aids in the antimicrobial defence. 

For long, these proteins were considered classical terminal differ-
entiation proteins, involved in structural integrity of the epidermis 
and formation of cornified envelopes. Recent findings highlight their 
antimicrobial activity 66,67 and classifying them as so- called cationic 
intrinsically disordered AMPs or CIDAMPs.67

These studies clearly point towards a concept where the AHR 
provides the skin with a communication hub for bi- directional in-
teractions with its microbiota. Considering that the AHR is uti-
lized as a target for intervention, mostly using specific agonists for 
dampening skin inflammation, we must consider the additional ef-
fects of this new drug class on the microbiome, which could feed 
into a self- perpetuating feedback loop— either beneficial or like a 
vicious circle. Therapeutic approaches can be topically, or via the 
diet, exploiting the gut- skin axis. Beyond using AHR agonists, pro-
biotic bacteria (with known potential for AHR metabolite formation) 
might be useful in manipulating the microbiome- AHR- skin health 
axis.36 Alternatively, prebiotic strategies steering the growth of skin 
microbes, which produce desirable AHR- modulating metabolites 
may provide new therapeutic modalities for the dermatology field. 
Herein, it is of importance to critically address the characteristics of 
the induced ligand- activated AHR signalling considering the adverse 
effects of uncontrolled AHR activation in the skin.12,64,68 Finally, 
several lines of evidence provide a mechanistic and therapeutic ra-
tionale for specific lifestyle interventions in patients with chronic 
inflammatory skin conditions. These are (i) anti- inflammatory effects 

F I G U R E  1  Concept of a microbiota- AHR feedback loop that is important for the maintenance of skin homeostasis. AHR ligands 
derived from skin bacteria or fungi contribute to AHR signalling in the skin. AHR signalling in turn controls expression of skin barrier 
genes such as filaggrin and antimicrobial peptides. In addition, the AHR also plays a role in modulating immune cell function, and thus 
inflammatory responses to an insult. The green arrows denote the default, healthy situation. While the red arrows denote pathophysiology 
in inflammatory skin disease, such as atopic dermatitis or psoriasis, or where environmental pollutants such as diesel exhaust cause 
inflammation. Therapeutic opportunities are proposed, such as in 1) skin barrier repair, 2) anti- inflammatory drugs, 3) pro- pre- antibiotics and 
4) AHR ligand/antagonist supplementation or AHR signalling modulators (eg CYP1A1 inhibitors). The presence of non– microbiota- derived 
AHR agonists present in skin, from other environmental sources or dietary- derived agonists reaching the skin are not depicted here. The 
required level of AHR signalling to maintain skin homeostasis is unknown
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of dietary intervention studies with AHR ligands, (ii) the ability to 
modulate AHR ligand production in the gut by dietary intake and (iii) 
the known systemic entry of AHR ligands produced in the gut (or 
via second- pass effects in the liver) and beneficial effects on skin 
function.

5  |  CONCLUSION

The ligand- activated transcription factor AHR is a sensor for parts 
of the exposome, and intrinsically important for skin health and 
homeostasis, but may also mediate adverse functions depend-
ing on the context, for example chronic exposure to xenobiotic li-
gands. Evidence emerges that microbes of the skin are a relevant 
source of AHR ligands, thereby ensuring that their own habitat 
remains stable. In inflammatory skin diseases with characteris-
tic dysbiosis, such as atopic dermatitis or psoriasis, this balance is 
perturbed. Understanding that the relationship between AHR and 
the skin microbiota is reciprocal will help define future experi-
ments and research. Ultimately, therapeutic approaches might seek 
to balance the skin microbiome and re- balance its AHR- beneficial 
signature.
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