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Abstract: The aim of this study was to investigate the relationship between heart rate and heart rate
variability (HRV) with respect to individual characteristics and acute stressors. In particular, the
relationship between heart rate, HRV, age, sex, body mass index (BMI), and physical activity level
was analyzed cross-sectionally in a large sample of 28,175 individuals. Additionally, the change in
heart rate and HRV in response to common acute stressors such as training of different intensities,
alcohol intake, the menstrual cycle, and sickness was analyzed longitudinally. Acute stressors were
analyzed over a period of 5 years for a total of 9 million measurements (320 ± 374 measurements per
person). HRV at the population level reduced with age (p < 0.05, r = −0.35, effect size = moderate)
and was weakly associated with physical activity level (p < 0.05, r = 0.21, effect size = small) and
not associated with sex (p = 0.35, d = 0.02, effect size = negligible). Heart rate was moderately
associated with physical activity level (p < 0.05, r = 0.30, effect size = moderate) and sex (p < 0.05,
d = 0.63, effect size = moderate) but not with age (p = 0.35, r = −0.01). Similar relationships between
BMI, resting heart rate (p < 0.05, r = 0.19, effect size = small), and HRV (p < 0.05, r = −0.10, effect
size = small) are shown. In response to acute stressors, we report a 4.6% change in HRV (p < 0.05,
d = 0.36, effect size = small) and a 1.3% change in heart rate (p < 0.05, d = 0.38, effect size = small)
in response to training, a 6% increase in heart rate (p < 0.05, d = 0.97, effect size = large) and a
12% reduction in HRV (p < 0.05, d = 0.55, effect size = moderate) after high alcohol intake, a 1.6%
change in heart rate (p < 0.05, d = 1.41, effect size = large) and a 3.2% change in HRV (p < 0.05,
d = 0.80, effect size = large) between the follicular and luteal phases of the menstrual cycle, and a
6% increase in heart rate (p < 0.05, d = 0.97, effect size = large) and 10% reduction in HRV (p < 0.05,
d = 0.47, effect size = moderate) during sickness. Acute stressors analysis revealed how HRV is a
more sensitive but not specific marker of stress. In conclusion, a short resting heart rate and HRV
measurement upon waking using a smartphone app can effectively be used in free-living to quantify
individual stress responses across a large range of individuals and stressors.

Keywords: heart rate variability; heart rate; training; stress; sickness; menstrual cycle

1. Introduction

Autonomic control impacts heart rhythm in response to stress [1–4]. In particular, the
heart has its own pacemaker, beating at approximately 100 beats per minute. However,
heart rate at rest is typically lower than the intrinsic firing rate of the sinoatrial node
(the pacemaker) due to the influence of the autonomic nervous system (ANS) via its
two main branches: the parasympathetic system and the sympathetic system. Normally,
the parasympathetic branch of the ANS slows down heart rate and increases heart rate
variability (HRV), while the sympathetic branch of the ANS increases heart rate and reduces
HRV [1,5]. When measuring physiology in a resting state, there are differences between
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resting heart rate and HRV due to increased parasympathetic influence during different
phases of the cardiac cycle [6]. For example, parasympathetic activity is higher during the
exhale phase of the breathing cycle [7,8]. Additionally, the influence of the parasympathetic
system on heart rhythm is almost instantaneous [3,9], resulting in large differences in beat-
to-beat heart rate. However, by definition, resting heart rate averages out any beat-to-beat
differences in consecutive heartbeats. As a result, parasympathetic modulation in response
to stress tends to be better captured by HRV with respect to heart rate [10]. For these
reasons, resting heart rhythm and, in particular, HRV, have been widely investigated in
relation to acute stressors.

When considering training as an acute stressor, the rationale behind monitoring recov-
ery using resting heart rate or HRV is therefore coupled with how the ANS responds to
such stressors. In the context of physical exercise, intense training shifts the ANS towards a
sympathetic dominance [11–13], which is reflected in the higher heart rate and in the lower
HRV 24–48 h after training [11,14]. Reductions in HRV and increases in heart rate as mea-
sured at rest first thing in the morning on the day after high-intensity aerobic exercise have
been reported across a wide range of individuals [10,14]. However, heart rate increases
after training are often very small and of limited practical applicability [10,15]. Similarly,
other stressors have been investigated acutely. For example, alcohol intake was reported
to suppress HRV while impacting heart rate to a lesser extent [16]. On the other hand,
resting heart rate has been proposed as a clear marker able to detect infections as well as
recovery from an infection [17], changes that typically are also reflected in HRV [18]. When
analyzing acute stressors, it is of interest to establish whether the relationship between
resting heart rate, HRV, and the stressor is reproducible across a wide range of individuals.
Unfortunately, most studies to date focused on a homogeneous sample, typically of male
and relatively young individuals [19], therefore limiting our understanding of the relation-
ship between, e.g., training, sickness, alcohol intake, and resting heart rate and HRV in
other groups of the population. In the context of a longitudinal analysis in response to
stressors, the menstrual cycle should also be considered, given that several studies have
shown how HRV is slightly suppressed during the luteal phase of the menstrual cycle [20].

Apart from the mechanisms influencing heart rhythm in response to stress, stratifying
population-level data across different subgroups of individuals (e.g., based on sex, activity
level, age, or body mass index (BMI)) can provide useful insights into the differences
between resting heart rate and HRV. For example, previous research has highlighted how
HRV reduces with age [21]. Additionally, the link between cardiorespiratory fitness and
resting heart rate seems stronger than for HRV, despite a few studies showing increased
HRV in response to an exercise program [22]. Typically, women have higher resting heart
rates than men [23]. It follows from the inverse relationship between resting heart rate
and HRV that HRV should be slightly lower in women. However, according to published
literature [24], this is not necessarily the case.

In recent times, monitoring resting heart rate and HRV unobtrusively in real-life
settings, outside of the lab, has finally become a practical possibility. Data can be acquired
using validated smartphone apps [25,26] longitudinally over periods of weeks or months,
providing novel insights on an individual’s response to training and lifestyle stressors. As
a result, monitoring physiological stress and recovery status by means of an HRV measure-
ment is becoming more common among elite athletes as well as sports enthusiasts [15].
However, while technological advancements have made it very easy to acquire high-quality
heart rate and HRV data in resting conditions, many questions remain unanswered when
it comes to the use of resting heart rate and HRV as well as their differences both at the
population level and within individuals (i.e., in response to stressors).

Thus, the aim of this cross-sectional and longitudinal analysis is to provide a more com-
prehensive view of the relationship between resting heart rate, HRV, acute stressors, and
population-level characteristics, analyzing data acquired on a large sample of individuals
in real-life settings.
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2. Materials and Methods
2.1. Data Acquisition

Physiological data (resting heart rate and HRV) and annotations (individual character-
istics and stressors) were collected using the HRV4Training app, as detailed below.

2.1.1. Heart Rate and HRV

Resting heart rate and HRV were collected daily using the validated HRV4Training
app [25–27]. The HRV4Training app is a commercially available mobile phone app that
allows for non-invasive measurements of resting heart rate and HRV using either the phone
camera or an external sensor (see Figure 1). Users included in this study downloaded
the HRV4Training app from the Apple Store or Google Play out of their own interest
and explicitly agreed to provide collected measurements and annotations for research
purposes via a consent form embedded in the app. The app instructed users to perform
the measurement right after waking up while still lying down to limit the effect of other
stressors (e.g., caffeine intake or physical activity). Instructions were provided to reproduce
conditions similar to measurements at rest in supervised settings. HRV features that are
representative of parasympathetic activity and that are typically reported in the scientific
literature are the high-frequency power (HF) and the square root of the mean squared
difference between beat-to-beat intervals or rMSSD [28]. However, rMSSD might be
preferable as it is less dependent on breathing rate [29] and better standardized. Thus, only
rMSSD is reported in this work. Measurement duration was configurable between 1 and
5 min since 1 min measurements were previously validated and considered of sufficient
duration for accurate HRV analysis of time-domain features such as rMSSD [30,31].

Figure 1. Screenshots of the HRV4Training app. The image on the left side shows the measurement
screen, displaying the photoplethysmographic signal acquired via the mobile phone camera. The
middle image shows an example of the questionnaire that is used after the measurement to annotate
stressors such as training intensity, alcohol intake, sickness, or the menstrual cycle. The third image,
on the right, shows a historical view of the data.

2.1.2. Users

Users with at least 60 resting heart rate and HRV measurements were included in the
analysis so that individual responses to various acute stressors (alcohol intake, sickness,
the menstrual cycle, and training) could be investigated in relation to multiple instances
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of the same stressors, as opposed to individual instances typically reported in laboratory
studies (see Figure 2). Additionally, all measurements that resulted in more than 10%
RR intervals being discarded after applying the artefact correction method described
in [25] were excluded. After applying the inclusion criteria, 28,175 users (22,750 male and
5425 female) were included, for a total of 9,032,749 measurements (320 ± 364 measurements
per user). Mean age across the entire population was 37 ± 12 years, and mean BMI was
23.8 ± 3.2 kg/m2. The user-reported training habits were as follows: 667 users reported
training occasionally, 1551 users reported training 1–2 times per week, 11,973 users reported
training 3–4 times per week, and 13,614 users reported training daily. The BMI categories
were underweight (BMI below 18.5 kg/m2, n = 314), normal (BMI between 18.5 kg/m2 and
25 kg/m2, n = 16,838), overweight (BMI between 25 kg/m2 and 30 kg/m2, n = 6808), and
obese (BMI above 30 kg/m2, n = 1145).

2.1.3. Individual Characteristics

Users filled in a questionnaire upon registering an account in the HRV4Training app,
including individual characteristics analyzed in this paper. In particular, users reported
their age, physical activity level (one of the following: not training, training occasionally,
training 2–3 times per week, training 4–5 times per week, and training daily), sex, weight,
and height, from which BMI was derived.

2.1.4. Acute Stressors

Training days were manually annotated in the app while answering a short ques-
tionnaire, which is shown to the user right after the measurement. Training intensities
were selected among four categories: rest, easy, average, and intense. Training intensities
were then clustered in two groups: low intensity, comprising rest days and training days
annotated as easy, and high intensity, comprising training days annotated as average or
intense by users (see Figure 2). While training can be quantified in many different ways,
the main goal of the proposed clustering was to quantify the effect of low intensity against
high-intensity exercise on resting physiology, as typically adopted in a polarized training
model [32]. Additionally, users reported alcohol intake, menstruation days, and sickness.

1. Collect daily HRV 
measurements and training 
intensities for > 60 days

2. Compute HRV difference from 
the previous day

Low load

High load…

… Difference after low load

Difference after high load

HRV measurements

3. Compute average difference for 
each category (e.g. low or high load)

Average difference after low load

Average difference after high load

4. Repeat for all users …

Figure 2. Procedure used for the analysis of acute stressors. First, HRV (and resting heart rate) data
and annotated training intensities were collected. Then, day-to-day differences in HRV (and resting
heart rate) were computed. Differences were then averaged across categories, e.g., to compute the
average day-to-day change in HRV (or heart rate) in response to either easy or high training intensity.
The procedure is repeated for each individual so that we can determine the stress response for each
stressor at the population level.
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2.2. Data Analysis
2.2.1. Population Level Analysis

Individuals were clustered into different subgroups, two for sex (male/female), four
for age (20 to 30 years old, 30 to 40 years old, 40 to 50 years old, and 50 to 60 years old),
and four for fitness level (training occasionally, 1–2 times per week, 3–4 times per week, or
daily). Linear models using either heart rate or HRV as dependent variables and individual
characteristics (sex, physical activity level, age, and BMI) as independent variables were
built to determine the variance explained by such models.

2.2.2. Analysis of Acute Stressors

The relation between physiological data and training was analyzed by first computing
day-to-day differences in heart rate and HRV for each individual. Subsequently, the change
in resting heart rate and HRV on days following training of different intensities was
analyzed for each user (see Figure 2). Additionally, the relationship between resting heart
rate, HRV, and training was analyzed by age group and sex. The same procedure was
used to analyze the relationship between heart rate, HRV, and alcohol intake. For sickness
data, the percentage change was computed with respect to the non-sick condition. For the
menstrual cycle, user-reported menstruation days were used to define the duration of a
cycle and to determine the change in resting heart rate and HRV during the follicular and
luteal phases, with respect to the users’ average (see Figure 3).

2.2.3. Statistics

Summary statistics are reported as mean ± standard deviations for each measure
and subgroup. Mean resting heart rate and HRV were computed for each individual. The
results for all acute stressor analyses are reported in percentage with respect to the user’s
average heart rate and HRV. Reporting the results as percentages can ease interpretation and
comparison of the sensitivity of each marker with respect to a specific stressor. Comparisons
between two groups for the population level analysis as well as for acute stressors were
carried out using t-tests, with a significance level of 0.05. One-way ANOVA was used to
compare three or more groups. Effect sizes are reported using Cohen’s d (d) or Pearson’s
correlation coefficient (r) [33,34].

1. Collect daily HRV 
measurements and annotated 
menstruation days for > 180 days 
per person

2. Estimate follicular and luteal 
phases (first and second half 
between tagged cycles)

Menstruation tag: YES

Menstruation tag: NO…

Follicular phase

Luteal phase

HRV measurements for a typical cycle

3. Compute average HRV for each 
phase (follicular and luteal)

Average HRV during follicular phase

Average HRV during luteal phase

4. Repeat for all users …

…

1st menstruation day

Figure 3. The procedure used for the analysis of the menstrual cycle. First, HRV (and resting heart
rate) data, and annotated menstruation days were collected. Then, the beginning of each cycle was
defined as the first menstruation day, and the following days, up to the next cycle, were split into
two to estimate the follicular and luteal phases. Average heart rate and HRV were computed for each
phase (follicular and luteal) and for each user.
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3. Results
3.1. Population Level Analysis

The mean rMSSD over the entire dataset was 69 ± 37 ms while the mean heart rate
was 57 ± 8 bpm. The resting heart rate and HRV clustered by sex are shown in Figure 4.
Heart rate was 56 ± 7 bpm for male users and 61 ± 8 bpm for female users (p < 0.05,
d = 0.63, effect size = moderate). rMSSD was 67 ± 34 ms for male users and 68 ± 34 ms for
female users (p = 0.35, d = 0.02, effect size = negligible).
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Male Female
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Heart rate by sex

0
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200

250

Male Female
Sex
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ds

rMSSD by sex

Figure 4. Resting heart rate and HRV by sex. Heart rate is on average 5 bpm higher in female users,
while HRV is very similar between male and female users, on average.

Resting heart rate and HRV clustered by BMI are shown in Figure 5. Heart rate was
59 ± 9 bpm for the underweight BMI category, 56 ± 8 bpm for the normal BMI category,
59 ± 7 bpm for the overweight BMI category, and 62 ± 8 bpm for the obese BMI category
(p < 0.05, r = 0.19, effect size = small). rMSSD was 67 ± 34 ms for the underweight BMI
category, 69 ± 35 ms for the normal BMI category, 64 ± 34 ms for the overweight BMI
category, and 56 ± 30 ms for the obese BMI category (p < 0.05, r = −0.10, effect size = small).
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Figure 5. Resting heart rate and HRV by BMI. Resting heart rate is the lowest for the normal category,
and similarly, HRV is the highest for the normal category. The largest deviation for both heart rate
and HRV is found in the obese category, with the highest resting heart rate and lowest HRV.

There was almost no correlation between heart rate and age (p = 0.35, r = −0.01),
while the correlation between rMSSD and age was moderate (p < 0.05, r = −0.35, effect
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size = moderate). The relationships between heart rate, rMSSD, and the four age groups
used in this study are shown in Figure 6.

30
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rMSSD by age

Figure 6. Relationship between heart rate, HRV and age by age group. Resting heart rate does not
change across age groups while HRV is clearly reduced.

The correlation between heart rate and physical activity level was computed as the
square root of the explained variance of a linear model, where the dependent variable was
heart rate and the independent variable was physical activity level, resulting in r = 0.30
(p < 0.05, effect size = moderate). For rMSSD, the correlation with physical activity level
was r = 0.21 (p < 0.05, effect size = small). The relationship between heart rate, rMSSD, and
physical activity level is shown in Figure 7.
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Figure 7. Relationship between heart rate, HRV, and physical activity level. While both resting
heart rate and HRV show more positive physiological profiles for the most active individuals, the
relationship is stronger for resting heart rate.

In Figure 8, the relationship between resting heart rate, rMSSD, and both age and
physical activity level is shown. The correlation between resting heart rate and physical
activity level remains in the range between 0.29 and 0.31 for each age group, while the
correlation between rMSSD and physical activity level is the strongest for the youngest age
group (r = 0.22 for the 20- to 30-year-olds) but decreases to r = 0.13 for the 50 to 60 years
old group. Finally, population-level variables (sex, physical activity level, age, and BMI)
can explain 19% of the variance in resting heart rate and 15% of the variance in rMSSD.
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Figure 8. Relationship between resting heart rate, rMSSD, and both age and physical activity level.
The association between heart rate and physical activity level remains strong across all age groups,
while for rMSSD, it becomes weak for older individuals.

3.2. Analysis of Acute Stressors

Acute responses to training were evaluated for two cases—low vs. high training
intensity—as well as for the four-category split—rest, low, average, or high training inten-
sity. For the low vs. high intensity split, overall, across all age groups and participants, the
heart rate change between low- and high-intensity sessions was 1.3% (p < 0.05, d = 0.38,
effect size = small). In particular, heart rate was reduced by 0.6% after low-intensity train-
ing but was increased by 0.7% after high-intensity training. On the other hand, the rMSSD
change between low-intensity and high-intensity sessions was 4.6% (p < 0.05, d = 0.36,
effect size = small). In particular, rMSSD was reduced by 3% after high-intensity training
and was increased by 1.6% after low-intensity training. The results as well as sex and age
differences are shown in Figure 9. Female responses were slightly, smaller while the change
in heart rate further reduced with age, going from 0.8% for the 20–30 age group to 0.3% for
the 50–60 age group (p < 0.05). rMSSD reductions after high-intensity training remained
fairly constant across age groups (2.8–3.2%, p = 0.54).
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Figure 9. Relation between HR, HRV, and training load split into two categories, analyzed on the
entire dataset and grouped by sex or age group. HR is consistently increased on days following
higher intensity training load, while rMSSD is consistently reduced. Relative changes in rMSSD
are larger, highlighting how HRV can be more discriminating for training intensity. Additionally,
percentage changes in heart rate reduced with age while remaining constant for rMSSD. Error bars
indicate the standard error.

The results for the four-category split are reported in Figure 10, showing an improved
physiological profile after rest days (−0.6% heart rate, +1.6% rMSSD, p < 0.05) and increased
physiological stress after hard training (+1% heart rate, −4.8% rMSSD, p < 0.05).

For the menstrual cycle analysis, users that annotated at least five cycles were included,
which resulted in 639 users. The results are shown in Figure 11, where changes across
all cycles are reported for all included users. Resting heart rate differed by 1.6% between
the follicular and luteal phases, with an increase across the cycle (p < 0.05, d = 1.41, effect
size = large). On the other hand, rMSSD changed by 3.2% between the follicular and the
luteal phase, with a decrease across the cycle (p < 0.05, d = 0.80, effect size = large).
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Figure 10. Relation between HR, HRV, and training intensity split into four categories. HR is
consistently increased on days following higher training intensity, while rMSSD is consistently
reduced. Relative changes in rMSSD are larger, highlighting how HRV can be more discriminative of
training intensity. Error bars indicate the standard error.
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Figure 11. Relation between HR, HRV, and the menstrual cycle. In particular, the difference between
the follicular and luteal phases, with respect to an user’s average heart rate and HRV, is reported.

In terms of responses to alcohol intake, overall, across all age groups and partic-
ipants, heart rate increased by 6% after high alcohol intake (p < 0.05, d = 0.97, effect
size = large), while rMSSD reduced by 12% after high alcohol intake (p < 0.05, d = 0.55,
effect size = moderate; see Figure 12). A similar response was found in male and female
users, while a decrease in the sensitivity to the stressor was shown with increasing age.
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Figure 12. Relation between HR, HRV, and alcohol intake on the entire dataset and grouped by sex
or age group. HR is consistently increased on days following higher alcohol intake, while rMSSD is
consistently decreased. Error bars indicate the standard error.

For sickness, overall, across all age groups and participants, heart rate increased by 6%
with respect to when not sick (p < 0.05, d = 0.97, effect size = large), while rMSSD reduced
by 10% when sick with respect to the baseline category of not sick (p < 0.05, d = 0.47, effect
size = moderate; see Figure 13).
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Figure 13. Relation between HR, HRV, and sickness intake on the entire dataset and grouped by sex
or age group. HR is consistently increased when sick, while rMSSD is consistently decreased when
sick. Additionally, percentage changes in heart rate remain similar across age groups, while they
reduce for rMSSD. Error bars indicate the standard error.

4. Discussion

In this paper, the relationship between heart rate and HRV with respect to individual
characteristics as well as acute stressors, was analyzed in a large sample of 28,175 in-
dividuals in free-living. Data acquisition and analysis were standardized by collecting
measurements upon waking and by analyzing resting heart rate and rMSSD as the only
HRV features. The relationship between heart rate, HRV, age, sex, BMI, and physical
activity level was analyzed cross-sectionally, resulting in novel insights such as the reduced
association between HRV and physical activity level with older age, which does not impact
heart rate. Additionally, the change in heart rate and HRV in response to common acute
stressors such as training of different intensities, alcohol intake, the menstrual cycle, and
sickness was analyzed over a period of up to 5 years per person. Acute stressors analysis
revealed how HRV is a more sensitive but not specific marker of stress. Below, our findings
are discussed.

4.1. Population Level Analysis

The analysis of the relationship between resting heart rate, HRV, and population-level
characteristics such as sex, age, BMI, and physical activity level highlighted important
differences between measurements of resting physiology. In particular, at the population
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level, HRV reduces with age (p < 0.05, r = −0.35, effect size = moderate) and is weakly
associated with physical activity level (p < 0.05, r = 0.21, effect size = small) and not
associated with sex (p = 0.35, d = 0.02, effect size = negligible), while heart rate shows a
stronger association with physical activity level (p < 0.05, r = 0.30, effect size = moderate)
and sex (p < 0.05, d = 0.63, effect size = moderate) but shows no relationship with age
(p = 0.35, r = −0.01). These findings confirm what was previously reported in laboratory
studies and shed additional light on the relationship between resting physiology and
population-level characteristics.

It is well known that age is the strongest parameter behind differences in HRV at
the population level, while it has a lower impact on heart rate [35]. A low HRV is seen
in aging individuals as well in chronic disease and might be associated with autonomic
dysfunction or with the deterioration of underlying regulatory mechanisms [35]. Novel
insights into the relationship between resting physiology and physical activity level are
reported in this work. In particular, at a younger age, a stronger association between
HRV and physical activity level was present (r = 0.22). However, this relationship is
reduced for older age groups (r = 0.13), as shown in Figure 9. The reason behind the
diminishing relationship between physical activity level and HRV with age is unknown.
However, a plausible explanation may be due to the relationship between hypervolemia
with exercise and baroreceptor sensitivity. It is well established that a potent stimulant for
hypervolemia is endurance exercise. Indeed, 24–48 hours post-exercise, there have been
observed increases in blood plasma volume (BPV) [36]. Previous literature showed a large
correlation between the relative change in rMSSD and change in blood plasma volume
(r = 0.85) during recovery from exercise [37]. Such relationships between BPV and HRV
are observed due to the increased blood volume and mean arterial pressure resulting in
decreased sympathetic outflow to the sinoatrial node and increase in parasympathetic
activity [38]. As individuals age, baroreceptor sensitivity is reduced [39], likely reducing
the association between increases in BPV and increases in HRV. This may result in the
diminished relationship between HRV and physical activity level observed in this study
with aging. On the other hand, our data show that the relationship between resting heart
rate and physical activity level remains relatively strong and consistent for each age group
(r = 0.29–0.31). The relationship between physical activity and resting heart rate is well
established, with lower resting heart rates typically reported in response to a training
program. Physiologically, as the heart becomes larger, stroke volume increases and cardiac
output can be the same at a lower heart rate. This process does not necessarily impact
HRV [40]. Furthermore, as resting heart rate is less affected by transient changes in BPV,
the relationship between increases in physical activity level and lower resting heart rate is
plausibly maintained as populations age.

A similar association between BMI, resting heart rate (p < 0.05, r = 0.19, effect
size = small) and HRV (p < 0.05, r = −0.10, effect size = small) was reported, with a
suboptimal physiological profile (higher heart rate and lower HRV) associated with both
overweight and underweight categories. When analyzing the relationship between age,
resting heart rate, and HRV in relation to sex, similar results were reported for male and
female users. These results are expedcted and consistent with published literature.

Finally, linear models with either resting heart rate or HRV as dependent variables
and all population level characteristics—age, sex, BMI, and physical activity level—as
independent variables were fitted. For both heart rate and HRV, the variance explained
by age, sex, BMI, and physical activity level was relatively low (19% for heart rate and
15% for rMSSD). These results are expected given the known influence of genetic factors
on heart rhythm [41,42]. Additionally, the lower explained variance for HRV is consistent
with previous research highlighting how genetics can explain up to 60% of the variability
in HRV metrics, while environmental and health parameters typically explain less of this
variance (e.g., 11% in [43]). This is consistent with our experience and current analysis,
where even large differences in physical activity level had a minor impact on HRV. On the
other hand, HRV was able to capture day-to-day stressors within individuals with high
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sensitivity, and might therefore be better suited for such day-to-day stress assessment, as
covered in the next section.

4.2. Acute Stressors Analysis

The relationship between resting heart rate, HRV, and acute stressors such as training,
sickness, and alcohol intake was analyzed. The sensitivity of resting heart rate and HRV
towards the detection of such stressors is reported, including breakdowns by sex and
age. It is important to note that, when looking at acute stressors, oversimplifications are
introduced. Any given day, multiple stressors will play a role (exercise, alcohol intake, sick-
ness, as well as other stressors that might not have been tracked, e.g., travel, psychological
stressors, etc.), and therefore, it is not possible to isolate acute day-to-day responses to a
single stressor outside of controlled laboratory environments. However, this issue was
mitigated by including at least two months of data per person, with an average of almost
one year of daily measurement per person, so that the response to the same stressors could
be analyzed repeatedly over time. The effectiveness of this approach is shown in the results
reported, as the physiological responses to isolated stressors are consistent with those in
published literature. In particular, an analysis of acute stressors revealed how HRV is
a more sensitive marker of stress with respect to heart rate, as shown by larger relative
changes. Our data showed a 4.6% change in HRV (p < 0.05, d = 0.36, effect size = small) and
a 1.3% change in heart rate (p < 0.05, d = 0.38, effect size = small) in response to training, a
6% increase in heart rate (p < 0.05, d = 0.97, effect size = large) and a 12% reduction in HRV
after high alcohol intake (p < 0.05, d = 0.55, effect size = moderate), a 1.6% change in heart
rate (p < 0.05, d = 1.41, effect size = large) and a 3.2% change in HRV (p < 0.05, d = 0.80,
effect size = large) between the follicular and luteal phases of the menstrual cycle, and a
6% increase in heart rate (p < 0.05, d = 0.97, effect size = large) and 10% reduction in HRV
(p < 0.05, d = 0.47, effect size = moderate) during sickness. Despite the higher sensitivity of
HRV, effect sizes were typically larger for resting heart rate, potentially due to how HRV
is impacted more in response to stressors not included in this work (i.e., due to lack of
specificity).

4.2.1. Strength of the Stressor

When it comes to the strength of the stressor, clear differences are reported. High
alcohol intake and sickness trump changes due to training or the menstrual cycle, as these
are much greater stressors that typically occur on less frequent occasions. This is somewhat
expected as physiology should typically reflect homeostatic control and, therefore, be
relatively stable over time. When it comes to training, an improved physiological profile
after rest days (−0.6% heart rate, +1.6% rMSSD) and increased physiological stress after
hard training (+1% heart rate, −4.8% rMSSD) was reported. Percentage changes in rMSSD
are approximately 3–4 times larger than changes in resting heart rate across the various
categories, while effect sizes are rather similar. Given that HRV is a more sensitive marker
(both physiologically and, as derived in the current dataset, showing a larger percentage
change for all stressors), day-to-day changes might be due to a number of stressors. The
similar effect size for resting heart rate and HRV responses in the context of training (and
reduced effect size for HRV when it comes to other stressors) could be due to the lack of
specificity of HRV with respect to a given stressor. On the other hand, heart rate changes
are minor and typically only associated to strong stressors, therefore resulting in larger
effect sizes. Finally, when clustering the training response by age group, the change in
heart rate reduces with age. This reduction seems to point out how assessing training
responses and guiding training based on heart rate alone could be ineffective for older
individuals. On the other hand, the change in HRV remains constant for each age group,
and HRV could therefore be more helpful in guiding training at any age. Breakdown by
sex of the reported acute responses shows minor differences, with slightly smaller changes
for women in response to all stressors analyzed. The reason behind this difference could be
due to changes in resting heart rate and HRV associated with the menstrual cycle. Changes
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across the menstrual cycle were analyzed in this work using annotated menstruation days.
Both heart rate and HRV were impacted, resulting in a less favorable physiological profile
during the luteal phase of the menstrual cycle, consistently with published literature [20].
These changes might explain part of the loss of sensitivity in resting heart rate and HRV
in response to other stressors. However, the difference could also simply be due to other
characteristics of the sample analyzed due to the nature of this observational study.

4.2.2. Interpretability

When considering any index that is used to indicate a need for an intervention or
changes in behavior, both the signal (how much the index changes) and noise (the relia-
bility and error), are important considerations. For example, whilst an index may have
a low typical error of estimate, if the index has limited change with a given stressor, it
is difficult to draw meaningful conclusions and therefore influence behavioral change.
The typical errors of an estimate for resting heart rate and HRV (rMSSD) are 10% and
12%, respectively [28]. The signal-to-noise ratio is very close at 0.7 and 0.8, with a slightly
better signal-to-noise ratio for HRV, while the reported effect size in this study is also
similar between resting heart rate and HRV. Such data are very important, as they allow
practitioners to establish thresholds to identify meaningful change. When combining this
information with the smallest worthwhile change (the smallest practical or meaningful
change), which was reported at 2% for resting heart rate and 3% for HRV [28], the results
can be better contextualized. In particular, in this study, greater changes in HRV than
resting heart rate were found in response to a variety of stressors. For certain stressors,
able to disrupt resting physiology to a greater extent, the change in both resting heart rate
and HRV is well above the smallest worthwhile change (alcohol intake resulted in a 6%
change in heart rate and 12% change in HRV, while sickness resulted in a 6% change in
heart rate and 10% change in HRV). However, for other stressors, HRV is a more sensitive
measure than resting heart rate as only the change in HRV is above the smallest worthwhile
change (training resulted in a 1.3% change in heart rate and 4.6% change in HRV while
the menstrual cycle resulted in a 1.6% change in heart rate and 3.2% change in HRV). This
suggests that HRV is a more practically useful measure than resting heart rate to identify
when a change in behavior may be required.

4.2.3. Implications for HRV-Guided Training

HRV-guided training has gained much interest within the research literature [44–46].
This concept involves prescribing training and specifically training intensity based on
changes in HRV, with generally higher-intensity training being prescribed when HRV is
high- and low-intensity training when HRV is low. Such decisions are made based on
changes above and below threshold values, constructed at an individual level. Indeed in a
recent systematic review and meta-analysis [47], it was shown that, across eight studies,
HRV-guided training had a significant, medium-sized positive effect on the improvement
of sub-maximal physiological parameters. Furthermore, there were fewer non-responders
to HRV-guided training, meaning that the use of this approach induced more consistent
favorable effects. However, many studies that investigated HRV-guided training, scheduled
enforced rest days rather than scheduling them when required based on individual HRV
responses. For example, in [45], the authors enforced one rest day every week, ensuring the
same amount of training and rest days for the HRV-guided training group and traditional
training group. Given these data and observed sensitivities of both HRV and resting heart
rate, the next step with HRV-guided training may be to alter training intensity based on
substantial changes in HRV and to prescribe full rest days based on substantial changes in
resting heart rate.

4.3. Limitations

Despite the large, heterogeneous sample of participants and five-year-long data collec-
tion period, there are limitations in our study. In terms of data collection, using a validated
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measurement and providing instructions to users does not ensure that such instructions are
followed. However, potential validity issues were mitigated by developing additional algo-
rithms able to estimate signal quality and by removing measurements detected as being of
poor quality. Additionally, only participants who used the app for several months, with an
average use of one year per person, were included. It would be unlikely for an individual to
misuse the instrument for such a long period of time. Regarding the questionnaires, users
might have skipped the questionnaire or not provided verifiable information. Similarly, the
questionnaire used is not a standard questionnaire for exercise or to assess other stressors
due to the real-life trade-offs present when collecting data for several years daily. The
questionnaire had to be simplified to ensure high compliance over time. In the future, it
might be beneficial to integrate other objective methods to report stressors. Finally, our
analysis is biased towards health-conscious individuals that intentionally downloaded a
resting heart rate and HRV tracking app marketed to recreational and professional athletes,
and therefore, our findings apply mostly to this group.

5. Conclusions

In this work, we have shown how a camera-based, smartphone app could be used to
collect longitudinal data in free-living in a large sample of individuals. Using a simple, one
minute measurement upon waking, we could confirm the results of previously published
studies as well as provide additional insights on the relationship between resting heart rate,
HRV, population-level characteristics, and acute stressors. There are important implications
to these findings. HRV is currently used in sports settings as well as for health and
fitness tracking in the general population. However, targeting improvements in HRV as
intervention goals might not be realistic, given the strong heritability coupled with age and
low explained variance associated with lifestyle factors such as physical activity levels. On
the other hand, HRV is able to capture day-to-day stressors within individuals with high
sensitivity and might therefore be better suited for such day-to-day stress assessment and
management. HRV might be used to infer changes in, e.g., training, while resting heart
rate might be better suited for observing changes in larger stressors, such as sickness. We
conclude that resting heart rate and HRV can effectively be used to quantify individual
stress responses across a large range of individual characteristics and stressors. Individual
awareness of stress responses might facilitate training guidance, behavioral change, and
just-in-time interventions in the future.
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