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Abstract

Reward-modulated spike timing dependent plasticity (STDP) combines unsupervised STDP with a reinforcement signal that
modulates synaptic changes. It was proposed as a learning rule capable of solving the distal reward problem in
reinforcement learning. Nonetheless, performance and limitations of this learning mechanism have yet to be tested for its
ability to solve biological problems. In our work, rewarded STDP was implemented to model foraging behavior in a
simulated environment. Over the course of training the network of spiking neurons developed the capability of producing
highly successful decision-making. The network performance remained stable even after significant perturbations of
synaptic structure. Rewarded STDP alone was insufficient to learn effective decision making due to the difficulty maintaining
homeostatic equilibrium of synaptic weights and the development of local performance maxima. Our study predicts that
successful learning requires stabilizing mechanisms that allow neurons to balance their input and output synapses as well as
synaptic noise.
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Introduction

The purpose of building neural networks can be seen from two

different perspectives. From an experimentalist’s point of view they

can be used to help find, validate, or falsify mechanistic theories

about the brain through comparison with experimental data.

From an engineering perspective they are powerful algorithms to

solve computational problems. These perspectives are comple-

mentary. Specifically, biological neural networks (e.g. human and

animal brains) can solve complex problems; therefore, a properly

designed and valid biological model must also be able to solve

complex problems. Currently, however, validation through

problem solving is rare. Typically brain models are only validated

by comparison with experimental data. One of the reasons is

because there is no guarantee that even a model consistent with

experiments is developed sufficiently for problem solving. In our

work however we have chosen to concentrate on problem solving

as a validation tool for showing the capabilities and drawbacks of

rewarded spike timing dependent plasticity (STDP) in biologically

inspired spiking neural networks.

Reward-modulated STDP was proposed as a learning rule

capable of solving the distal reward problem in reinforcement

learning [1,2,3,4].The distal reward problem [5] arises because the

mechanisms of reinforcement learning must be dependent on both

the network activity and a reward signal. In any biological

organism, the reward is often not received until several seconds

after the activity that resulted in the correct response. When

reward signal arrives, the relevant activity has long since subsided

and the relevant neurons and connections may well have been

involved in other activities during this period. This leads to the

question of how the problem of correct linking synaptic activity

and the behavioral reward is solved in the animal or human brain.

Rewarded spike time dependent plasticity is proposed as a solution

to this problem. It has been hypothesized that spike time

dependent traces are created and in some way stored at a synaptic

terminal whenever the pre and post synaptic neuron both

experience firing events [6,7]. When these traces are later

reinforced by a reward signal (often believed to be dopamine

[8,9,10]), they create long-term changes in synaptic strength.

These earlier theoretical studies have recently been supported by

data from insects [11].

Different classes of learning rules have been developed to

address the distal reward problem [12]. Earlier studies, however,

are mainly focused on conceptual proof that rewarded STDP has

the potential of solving the problem of linking synaptic traces and

reward signal. These often use problems requiring only one or two

learned outputs. Minimal effort has been deployed to show

whether rewarded STDP alone can be sufficient to solve a

biologically relevant problem requiring accurate decision making

in an uncertain environment or what additional constraints are

necessary to make this mechanism operational.

In this new study, we use a multi-layer network of realistic

spiking neurons representing a basic biological circuit to solve a

complex and biologically relevant problem. Specifically we

constructed a decision making network of excitatory and

inhibitory neurons, modeled as a virtual entity foraging in a

simulated environment. The network uses rewarded STDP to

learn the foraging task. Then we examined the limitations of its
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ability to learn a correct decision-making under a variety of

network designs and environmental conditions.

Results

Network performance in the random virtual environment
The model included three layers of spiking neurons (Fig. 1A)

connected with chemical synapses (see Fig. 1C for example of

inhibitory response); the middle layer included populations of

excitatory and inhibitory neurons to provide feedforward inhibi-

tion to the neurons of the output layer (Fig. 1B). The input to the

system was presented as a 767 ‘‘visual field’’ represented by the

input layer; ‘‘food’’ particles corresponded to depolarizing current

that was applied to the corresponding neuron in the 767 input

layer. Direction of movement was controlled by 363 output array.

At the onset of the simulation all synaptic weights to the output

layer were of uniform strength. In this condition, output layer

spikes only occurred due to random variation in the output of

individual synaptic events from the middle layer to the output

layer. As a result the virtual entity using default settings initially

moved primarily along a straight paths with occasional random

turns (Fig. 2A).

On occasion an output spike was generated which resulted in

movement which lead to successful ‘‘food acquisition’’. When this

event occurred, the network was rewarded and the recently active

synapses associated with this response were strengthened. This

increased probability of correct (toward food) movement in

successive iterations. Over the course of the simulation the virtual

entity learned not only to respond to input signaling the position of

adjacent ‘‘food’’ but to more distant ‘‘food’’ as well. In general,

once trained, the virtual entity was attracted toward higher

concentrations of ‘‘food’’ with a bias toward ‘‘food’’ that is closer

(Fig. 2C).

To quantify performance of the model we used an exponential

moving average that continually approaches the rate of ‘‘food’’

acquisition. It is defined by the equation

Xn~X(n�1)(1�A)zAS

where X(n) is the performance score at the time of the current

move, X(n21) is the performance score at the time of the previous

move, S = 1 if ‘‘food’’ was obtained at this move and S = 0

otherwise, A is an arbitrary positive constant, A,,1. The value

used in these simulations was A = 0.00001. Qualitatively this

Figure 1. Model properties. (A) Steady-state response pattern of an isolated spiking neuron for three different levels of the resting potential: black
– sn~0:06, green –sn~0:09, blue – sn~0:17. (B) Network organization. Arrowed lines indicate outgoing connections of a sample of cells in each
layer with excitatory cells shown in blue, inhibitory cells shown in red and output cells shown in green. (C) Sample IPSP in the postsynaptic neuron
(bottom trace) triggered by a spike in presynaptic inhibitory neurons (top trace).
doi:10.1371/journal.pone.0090821.g001
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expression gives a value that is continuously approaching the

current rate of ‘‘food’’ acquisition per move.

It is helpful to compare this performance to other possible

strategies for solving the given foraging problem. Four strategies

were used to make this comparison (Fig. 2C; see methods); none of

these strategies involved learning, the system’s behavior was

preprogrammed according to a particular strategy. Strategy 1 was

a blind strategy, moving in straight lines with occasional random

turns. Strategy 2 always collected adjacent ‘‘food’’ if available

otherwise it moved according to strategy 1. Strategy 3 moved

towards the closest ‘‘food’’ within three grid squares. Strategy 4

was a strong strategy that searched through all possible sets of

moves within its visual field. It then choose the first move of the set

of moves which collect the most ‘‘food’’ with a bias toward

obtaining ‘‘food’’ sooner. Performance of the virtual entity varied

because of inherent noise in the model and the environment it

forages in (4 different trials are shown in color in Fig 2C). Usually

virtual entities using default model settings reached similar levels of

performance, slightly below strategy 3 (see red, green and black

lines in Fig 2c). However they occasionally became trapped in

local maxima resulting in lower performance (blue line).

Importantly, the networks performance after training does not

depend on the specific implementation of the virtual environment

used in training phase. The network trained in one environment,

still demonstrated high level of performance for any random

distribution of the food particles with similar statistical properties.

Changing properties of the food distribution, however, led to the

overall change in performance (see below).

To evaluate synaptic changes induced by learning, we analyzed

the dynamics of synaptic weights. Fig. 3 A–C shows the evolution

of the outgoing synaptic weights of three middle layer cells that

were located in the upper/left direction from the center of the

layer (Fig 3D). These cells represented successive cells in the top/

left area of the ‘‘visual field’’ and sent connections to each cell in

Figure 2. The change in rate of ‘‘food’’ acquisition as a result of learning. (A, B) Trajectory of the movement in the virtual environment. (A)
Before training. (B) After training (one million iterations). Light green dots represent ‘‘food’’ location. Red dots are locations without food. Dark green
line traces the entire movement. (C) Performance for 6 independent trials (different colors) over 4 million iterations. One of the trials (blue line) failed
to achieve normal rates of performance. Horizontal lines represent constant performance of other strategies in solving the same problem. 1 - blind
strategy; 2 – collecting adjacent food; 3 - moving towards the closest ‘‘food’’ within three grid squares; 4 - searching through all possible sets of
moves within the visual field.
doi:10.1371/journal.pone.0090821.g002
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the output layer. The synapse from the upper/left cell that was

closest to the center of the middle layer (cell (3,3)) to the top left

output cell (red trace) increased in strength as responses

connecting activation of this middle layer cell, which represented

the adjacent area in the upper/left direction, and movement in the

upper/left direction were the most likely to be rewarded (Fig 3C).

(Note, that this weight saturated at ,5 and was truncated in the

Fig. 3C to allow sufficient resolution of other traces). Over time,

however, synapses to output cells which moved the virtual entity

up and left (orange and purple traces) were also strengthened as

responding to activation of these mid layer cells by moving in these

directions was more likely to move the virtual entity toward ‘‘food’’

than away from it. These lower strength connections allowed the

network to integrate information from many input cells. The

network behavior and direction of movement selected depended

upon the input from multiple cells. The network was observed to

respond to higher concentrations of food rather than responding

reliably to food in individual locations. The synaptic strength of

outgoing synapses of other middle layer cells located further from

the center (cells (1,1) and (2,2)) stabilized at less extreme values as

there was a weaker correlation between a given response and a

reward. This gave them weaker influence over the direction of the

movement. Finally, synapses connecting middle layer cells in the

top/left area of the visual field to the bottom/right output cells

(e.g., yellow trace) decreased their strength, as they were least likely

to trigger movement to the right direction.

Effect of model changes on the network performance
To evaluate the role of different mechanisms in the overall

learning performance, we systematically turned them off one by

one (Fig. 4). In each experiment one major feature of the model

was removed and its performance over time was plotted. Baseline

model performance was represented by green trace. In the first

experiment (Fig. 4, blue line) the punishment mechanism was

turned off, the punishment mechanism applied the inverse and

reduced value of the currently active STDP traces (see Methods,

eq (3)). The network still received reward when ‘‘food’’ was

obtained but no change occurred when ‘‘food’’ is not obtained.

Learning rate is reduced slightly but no other changes were

observed. The second experiment (Fig. 4, magenta) explored a

network that did not make use of output balancing. Output

balancing reduced the rate at which outputs were strengthened by

reward when the neuron had a large sum of output strengths (see

Methods, eq (4)) so the rate at which outputs were strengthened

was no longer dependent on the total output strength of the

presynaptic cell. This resulted in low and unstable performance,

though the performance was still better than random motion

(Strategy 1 from fig 2C). In the third experiment (Fig. 4, orange),

variability in synaptic release was eliminated. Under this condition

the depolarization applied to the cell was always directly

proportional to the strength of the synapse. This resulted in no

activity in the output cells and consequently no learning. The

virtual entity moved in a straight line with a very low probability

Figure 3. Synaptic weights dynamics during learning. (A, B, C) These plots show the strength of synaptic outputs of three different cells over
the course of the experiment. Values shown are relative to the mean weight of out put synapses of the cell. Each graph shows the synapses from one
middle layer cell to each of the 9 output cells. The synapses are color-coded based on which output cell they connect to. Synaptic values are
truncated within the range [20.6, +1]. (D) Schematic location of the 3 cells shown in panels A–C (left) and color-coding of output cells (right).
doi:10.1371/journal.pone.0090821.g003
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(p = 0.02) to turn in a random direction. These random turns were

explicitly implemented to the model and present in all conditions

(see Methods). The output cells did not fire because the amount of

inhibition and excitation to a given output cell were equal in

magnitude. Finally, in the fourth experiment (not shown), input

balancing was removed such than the total incoming synaptic

strength to a cell was allowed to change when STDP traces were

rewarded. Without this homeostatic mechanism, the sum of the

input strengths to the output cells either fell very low or became

very high. Indeed, when positive STDP events were rewarded the

temporal correlation between pre and postsynaptic activity

became stronger. This increased the likelihood of further

potentiating events. This led to runaway synaptic dynamics and

the network quickly became unstable and the virtual entity moved

in random or repetitive circles until the network far exceeded

physiological range of synaptic changes.

We also tested a canonical simplified version of STDP alone and

found that it was not sufficient to perform the successful learning of

the presented task. Without balancing of the input synaptic

connections (eq (6)), some synaptic weights continued to grow

leading to unstable dynamics; with explicit limits implied to the

maximal weight we still observed run away synaptic dynamics

leading to bimodal distribution of synaptic weights and very low

model performance (similar to the orange trace in figure 4).

We found that synaptic noise was critical to achieve high model

performance. Figures 5A,B show data corresponding to a series of

simulations where the level of random variability in synaptic

release (R from equation 8 in the methods section) was varied

between 02 and 64. The final performance was maximized with

noise levels between 08 and 16 but dropped off at higher or lower

levels of noise (Fig. 5A), however it remained relatively high even

for high levels of noise. Furthermore, we found some trade off

between final performance and learning speed related to the level

of noise (Fig. 5B). Higher noise levels continued to improve

learning speed even though they resulted in the lower final

performance.

Figures 5 C,D contain data corresponding to a series of

simulations where the STDP strength (Srp0 from equation 4 in the

methods section) was varied across a wide range, altering the rate

at which synapses could change. Numbers shown are relative to a

default of 1. From figure 5C it can be seen that final performance

is maximized with lower STDP coefficient strengths. This is

expected because it allows the network to more finely tune

synaptic strengths. We also see that at higher levels of synaptic

noise, the network became greatly more tolerant of higher rates of

STDP coefficients. Figure 5D, however, shows a trade off between

final performance and learning speed as the rate of STDP

changed. Higher STDP coefficients led to faster learning but at

very high values the final performance was affected.

Effect of environmental changes on the network
performance

Next we studied change in the model performance following

changes in the ‘‘food’’ environment. Since the model learned the

statistical properties of the food distribution and not a specific

pattern of the food particles, changing the random environment to

another one characterized by similar statistics of food distribution

did not affect performance of the trained model (not shown).

Therefore, we explored the effect of changing the random

environment to a different one that was biased toward a particular

pattern of food particles. In the first experiment virtual entity was

initially trained on a normal, random distribution (Fig 6A) and the

environment was then changed to a vertically biased distribution

(Fig 6B) at the midpoint of the experiment (at time 2,000,000,

Fig 6C). At this time learning was turned off. The vertically biased

environment was created by biasing food placement in favor of

placing ‘‘food’’ directly above or below existing food. This tended

to arrange ‘‘food’’ into vertical columns.

The network training in the normal environment allowed it to

be very successful in the new environment (Fig 6C). It was even

more successful in the vertically biased environment than it was in

its normal environment as this arrangement of the ‘‘food’’ was

more likely to have clusters of connected food. When learning was

Figure 4. Performance after elimination of different model features over 8 million movement itterations. Each line corresponds to
performance after removing one feature. Green is default. Blue corresponds to the network when punishment was turned off. Magenta shows a
network with no output balancing. Orange represents a network with no variability in synaptic release.
doi:10.1371/journal.pone.0090821.g004
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turned back (at time 3,000,000), the simulation performance was

rapidly reduced. When food was arranged vertically food was

more likely to be located in the upward or downward direction

from any position where the entity acquired food. Connections

involved in acquiring ‘‘food’’ above or below the entities current

location were more likely to receive reward than those that

indicated any other direction. The result of this was a sharp

decrease in synaptic strength of the synapses involved in

movement toward food in other directions (compare magenta

traces in Fig. 7 C and D). Counter intuitively we observe the

connections involved in obtaining food in the vertical directions

decrease as well, even though they remained augmented enough

to promote ‘‘correct’’ movements (compare orange traces in Fig. 7

A and B). Since multiple food particles were likely to be found

above or below current location, connections promoting moving

Up or Down (such as orange trace in Fig. 7B and similar

connections from middle layer cells (4,2) and (4,1)) together

triggered fast spiking response of the output cell responsible for

Up/Down directions and were constantly rewarded. However,

any other connection that was (by chance) strong enough to

mediate output cell firing (such as red trace in Fig. 7B) was also

rewarded even though it did not control direction of movement

(because ‘‘red’’ cell firing was delayed compare with ‘‘orange’’

output cell firing). In result these connections remained high and

the output weight balancing (see Methods) prevented Up/Down

connections from further increase.

This could be seen as similar to repetitive motions observed in

motor stereotypies. Although the model could continue to obtain

‘‘food’’ when the ‘‘food’’ was directly above or below it, it was

much less capable of dealing with other situations when there was

no ‘‘food’’ adjacent to it in these directions.

In the second experiment (Fig 6D) the network was initially

trained in the vertically biased environment. It reached lower

maximum performance than the networks trained in a random

environment achieved under either environmental condition.

When the environment was changed to the random distribution

and learning was frozen (at time 2,000,000), performance was

further reduced. Here again we saw that when a small number of

responses regularly resulted in the majority of the rewards

received, performance was negatively affected. Turning training

Figure 5. Effect of noise and STDP strength on learning performance. STDP strength is scale in equation 1 from the methods section. (A)
Plot of mean final performance with variable levels of variability in synaptic release. Twenty-five simulations were run under each noise condition and
final performance was recorded after 4 million moves. Red dashed lines shows the limits of standard error. (B) Plot of mean performance over time
with variable levels of variability in synaptic release represented by different lines. Twenty-five simulations were run under each noise condition over
8 million moves. Noise level: 2% orange, 4% gold, 8% dark green, 12% blue, 16% red, 32% magenta, 64% brown. (C) Plot of mean final performance
with variable STDP coefficient strength. Twenty-five simulations were run under each STDP coefficient condition and final performance was recorded
after 8 million moves. Two sets were run with different noise levels: 16% release noise is shown in blue and 8% is shown in green. Red lines show
standard error. (D) Plot of mean performance over time for different STDP strength. Twenty-five simulations were run for each STDP strength over 8
million moves (4 million shown). Release noise is set to 16%. STDP strength: orange-0.25; gold-0.5; dark green-1; light blue-1.5; dark blue-2; purple-4;
magenta-8; red-16.
doi:10.1371/journal.pone.0090821.g005
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back again (at time 3,000,000) led to improvement in perfor-

mance. Randomly a few implementations of the network that had

initially learned under the vertical condition did exceptionally well

when the food placement was returned to random (Fig. 6D). A few

of these networks showed slightly higher performance than any

network that has been observed which learned under the standard

random food placement condition (Fig. 6C).

Outgoing synaptic strengths were plotted during the transition

from random to vertically biased food placement for two middle

layer cells, one indicating adjacent food above the entity (Fig. 7B),

and another indicating food to the left of the entity (Fig. 7D).

While the strongest connection of both cells decreased rapidly after

the change in environment the strong connection of the north-

indicating cell retained considerably more strength.

Effect of the random synaptic strength perturbations on
network performance

In the standard starting condition of the network, all excitatory

synaptic weights from the middle layer to the output layer had the

same value. To test effect of the variability in initial weight

distribution, these weights were initially randomly varied to

observe the effect on performance. This randomization was

performed by multiplying each excitatory weight by a random

number selected from a flat distribution centered on one (e.g. for

20% variation each synaptic weight was multiplied by a number

from 0.8 to 1.2). This represented a change in the initial synaptic

strength as opposed to the variability of synaptic release (Fig. 5)

that occurs each time the presynaptic cell fires. Due to the input

side balancing mechanisms described previously (see also Meth-

ods), the sum total of synaptic inputs to any one cell, and hence to

the layer as a whole, was unchanged by this randomization. The

average performance in shown as a green line in figure 8A. Each

point represents the average of 8 simulations with different initial

set of synaptic weights; thin red lines indicate standard error. The

maximum performance attained under conditions of high initial

randomization was highly variable. The performance was always

higher than random motion (strategy 1) and was often similar to

the best performance of a network which only responds to ‘‘food’’

in adjacent squares (strategy 2). A sizable minority of simulations,

even among those groups with high initial variability, still attained

normal performance levels.

In another set of experiments the weights were once again

initiated with the same level of variability. In addition, every one

million iterations the weights were partially randomized again

using the same approach as for initial weights (multiplied by a new

number drawn from the same distribution). The results are

represented as the blue line on fig. 8A. Surprisingly for moderate

levels of variability the repeated random perturbations of synaptic

strength rescued many of the simulations from low performing

states. It can be reasonably assumed that the added noise helped

the network escape from local performance maxima. At the very

high levels of variation, however, no benefit of random noise could

be seen.

When the same method of randomizing synaptic weights was

applied to the trained network that had already achieved high

Figure 6. Effect of changing the environment. (A) Normal ‘‘food’’ distribution. (B) A vertically biased ‘‘food’’ distribution. (C) Performance over
time of the network starting in a normal environment then being switched to a vertically biased environment at 2,000,000 iterations. Learning was
turned off and all synaptic weights were held constant until 3,000,000 epochs when learning was turned on again. (D) Performance over time of the
network starting in a vertically biased environment then being switched to a normal environment at 2,000,000 epochs. Learning was turned off and
all synaptic weights were held constant until 3,000,000 epochs when learning was turned on again.
doi:10.1371/journal.pone.0090821.g006
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performance levels, there was no observable lasting effect on

performance (Fig. 8B). The level of variation used in these

experiments was 50%. In many cases such networks experienced a

decrement in performance while learning was frozen but took very

little time to return to normal once learning mechanisms were

restored. In a few rare cases, performance actually improved

slightly during the non-learning phase that followed perturbations

of synaptic strength. Any improvements vanished once learning

was restored. This indicates that the stable solution arrived at

through the default set of mechanisms is not optimal even after

variability in synaptic release is accounted for. This solution,

however, could resist even strong synaptic weight perturbations.

Finally, in an attempt to train the network to avoid ‘‘food’’ the

reward and punishment conditions were reversed (Fig. 8C). The

network was rewarded every move in which it did not obtain

‘‘food’’ and punished when it did. Due to the much larger number

of empty spaces and the fact that empty spaces are not removed

when moved to, this represented a much easier problem. The

model was successful in avoiding ‘‘food’’ but did not explore the

entire space. It is still worth noting that no other changes were

necessary for the network to perform well under these new

conditions.

Discussion

In this study we implemented rewarded STDP to a biologically

inspired spiking network model representing a basic neuronal

circuit with feed forward excitatory and inhibitory projections. We

then asked whether such network is capable of solving a task of

learning to map correctly and optimally a multidimensional input

space (represented by the patterns of activity of the input neurons)

to the multidimensional output space (represented by the output

neurons). The learning task was formalized in the context of the

basic foraging behavior in a simulated environment of randomly

distributed ‘‘food’’ particles. We showed that rewarded STDP

model was sufficient to learn the foraging task only when

additional rules controlling balance of synaptic weights were

implemented. The canonical simplified version of STDP alone was

not sufficient to perform the successful learning of the task

presented in this study. Without careful maintenance of synaptic

homeostasis, learning mechanisms used in the model cause

imbalance in the level of activity in the network and in the

relative effectiveness of different components in the network. This

was overcome by introducing two basic homeostatic mechanisms.

One rebalances the weights of synaptic inputs to a cell whenever a

Figure 7. Effect of changing environment on synaptic strength. (A) Synaptic strengths of the outputs of a middle layer cell to all output cells
during learning under normal conditions. This cell indicates food immediately above of the entity. (B) Synaptic strengths of the same cell after
environment was later changed to a vertical arrangement. (C and D) Same as A and B but for a cell indicating food immediately to the left. (E) Shows
the location of cells in the middle layer and the color representation of outputs by destination cell.
doi:10.1371/journal.pone.0090821.g007
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Figure 8. Effect of synaptic noise. (A) Mean final performance of 8 runs with different levels of random perturbation of excitatory synaptic
weights from middle layer to output layer. The simulations represented in green applied the perturbation only at the start. Those represented by blue
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synaptic input is strengthened or weakened to maintain the same

total of weights. The other modulates total synaptic input to a cell

in the network based on its long-term activity. Furthermore, the

rate of synaptic facilitation was inversely proportional to the total

synaptic output of a cell – output balancing. Together these

mechanisms provided stable activity levels, which allowed for

rewarded STDP based learning to occur. We further found that

synaptic noise and random perturbations of synaptic connectivity

during training phase both required to achieve maximal network

performance after training.

Neural networks have been theorized to solve biological

problems since Alan Turing’s B-machines in the 1940s [13].

Usually, a goal of training in such a network is to solve various

types of classification problem [14] for a more detailed overview).

Advances in understanding of how biological networks operate led

to further developments of these types of models and vastly

improved capabilities [15,16]. However, despite mimicking

neuronal networks in many respects, many existing models of

decision making use an artificial form of back propagation to

enable supervised learning [17]. Biological networks are unlikely to

be capable of using this powerful technique, as it requires a form of

omniscience of the activity of the entire network that would be

very difficult for real cells to gain access to. Instead, different forms

of Hebbian plasticity [18,19] are found in neuronal systems

whereby fast, large amplitude [Ca2+] increases induce potentia-

tion, but slower and low amplitude Ca2+ raises induce depression

[20,21,22,23,24,25,26]. Furthermore, artificial network’s neurons

are not constrained to all or nothing output of a biological spiking

neuron and communication between cells is not limited to synaptic

interactions [27,28]. Finally, artificial networks can avoid the distal

reward problem because input and reward can be artificially

correlated in time.

In attempts to use biologically realistic models validated by

problem solving, different classes of Hebbian type learning

mechanisms were implemented to the networks of neurons in

order to solve a complex pattern matching tasks [3,15,29,30,31].

However, number of simplifications that were employed in both

the model design and the task itself prevent these models from

being able to address the question of applicability rewarded STDP

concept to biological problem solving. Other models applied

complex cells and reward modulated plasticity to approach targets,

but used plasticity based only on presynaptic firing rate rather than

STDP [32]. In one study of decision making based on the

reinforcement mechanisms both reward and punishment were

required for successful learning [33].

In this study we built a network of simplified spiking neurons

capable of learning to solve a foraging problem using rewarded

STDP as a primary learning mechanism. Accomplishing this goal

requires overcoming a number of issues not present in earlier

models with similar goals [34]. We avoid sharing information

between neurons except through synaptic communication and a

global reward signal from the network. The foraging problem used

in this model provided a more naturalistic setting for learning

using a simple neural network. While advantages and limitations

of the rewarded STDP as a model of reinforced learning have

been demonstrated in previous studies, the main objective of the

present work was to create a minimal network model of spiking

neurons capable of the stable and scalable learning of the

properties of the virtual environment and, after training, mapping

the input patterns representing snapshots of this environment to

the optimal response patterns. The basic neuronal circuits

implemented in our model are found in different brain areas,

however we did not attempt to model precisely a specific brain

structure. Indeed STDP based plasticity and learning occur in

different structures (e.g., hippocampus, neocortex) of very different

species (including vertebrates and insects [11]). Therefore, we

looked to explore general principles required to accomplish a

stable (in respect of synaptic changes) learning of a relatively

complex task by biologically inspired neuronal network.

It has been demonstrated previously that rewarded STDP is

capable of providing reinforcement learning [1,35]. What is

particularly distinct in our study, however, is the complexity of the

input/output mapping. A great deal of complexity emerges when

diversity is added in the number of possible inputs and outputs. As

the number of input/output possibilities increases new features are

required to allow responses to compete against one another. This

requires the network to be able to achieve and maintain a broad

distribution of synaptic connections and to avoid runaway synaptic

dynamics, a common effect of STDP alone [36,37,38,39]. Other

studies have used feed forward networks to illicit arbitrarily

selected spike trains or population responses but still without

needing to produce a wide range of responses depending upon

input [2,3]. While we cannot make a claim (without explicit

testing) that none of the previously published models would have

been able to perform this task, it seems unlikely as the mechanisms

that were first implemented in this study, especially output

balancing, were found to be essential for solving this complex

task. Indeed, a common scenario that was extensively explored in

the literature with biologically inspired networks [29,30,31,40] was

that the decision making model requires only one or two outputs

and as such synaptic weights that had moved to artificially set

maximum or minimum values would represent an acceptable

solution to the problem. Among other added difficulties, the

solution to our task required that connections the network obtains

have stable intermediate values.

Rewarded STDP is homeostatically unbalanced. Several

mechanisms suggested to prevent the runaway synaptic dynamics

are based on adjustment of STDP learning rules per se. These

include weight-dependence, so that weaker synapses potentiate

more while stronger synapses express less potentiation, and in the

limit even depress [36,41,42], and/or precise balancing of STDP

rules for potentiation and depression [36,43,44,45,46,47,48,49]. It

was shown rigorously that STDP can lead to stabilization of the

mean firing rate of the postsynaptic neuron if the integral of the

learning window is negative [48]. However, experimental evidence

shows a great variety of the duration and magnitude of STDP

windows for potentiation and depression [50,51,52,53,54].

We found that when the synaptic scaling mechanisms described

in the previous studies [55,56,57] were applied, the network could

maintain the balance of synaptic weights and learn to produce

better results than random chance and without explicit alterna-

tions of the STDP rules. These mechanisms included synaptic

input balancing (eq (6)) and slow homeostatic scaling (eq (5)) (Fig. 4,

magenta trace). However more advanced scaling mechanisms

were required to achieve much higher levels of performance (Fig 4,

green/blue traces). Primarily it was necessary to maintain output

applied perturbations at regular intervals. The thin red lines represent the limits of standard error. (B) 50% random variations applied to synaptic
weights of the trained network. Learning was turned off and synapses were held at a fixed strength from 4,000,000 to 6,000,000 iterations. (C)
Performance when reward and punishment conditions are reversed in an attempt to train avoidance behavior. Performance in ‘‘food’’ acquisition falls
well below random (indicating successful learning) but the model failed to explicitly avoid all food.
doi:10.1371/journal.pone.0090821.g008
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balancing (eq (4)) which reduced the rate at which synaptic outputs

were strengthened by reward when the neuron had a large sum of

all output weights. If the last mechanism was not implemented,

performance greatly suffered. Importantly, our proposed synaptic

rules of input and output balancing are biologically realistic and

represent good targets for experimental searches of learning

mechanisms.

Many of the mechanisms proposed in our study have clear

analogs to biological mechanisms seen in experiments. Rewarded

STDP operates similarly to the way dopamine is proposed to affect

learning circuits [8,10,58,59,60]. Balancing of the strengths of a

number of inputs to a single neuron in order to maintain a more

constant level of input has been observed in experiments [55,56].

Indeed, rises of intracellular [Ca2+] are not restricted to the

activated synapses but take place also at synapses, which were not

active during the plasticity induction, e.g. due to bursts of

backpropagating action potentials [61,62]. This [Ca2+] increase

can lead to plasticity at non-active synapses – heterosynaptic

plasticity, often also referred to as non-associative plasticity

[63,64,65,66,67]. Recent study suggested that heterosynaptic

plasticity may restrict run-away synaptic dynamics mediated by

STDP alone [68]. Furthermore, homeostatic scaling of intrinsic

and synaptic properties responsible for adjustment of the firing

thresholds in response to cell activity has been well documented in

neurons [57].

In our model as in behaving animals reward causes increased

probability of repetition of behaviors preceding the reward [69].

This is even true in situations where a single behavior that reward

too often can be repeated pathologically. In the model this

occurred when the environment was changed to feature primarily

vertically arranged food squares. The ‘‘over learning’’ of a small

set of responses is also observed in animals when the reward

system malfunctions such as motor stereotypies after repeated

amphetamine application [70,71].

We found that even when activity levels are stable the network

can still encounter serious performance issues when certain

neurons develop many strong outputs. This can result in a small

number of neurons controlling activity in a large portion of the

output layer. Some outputs of these neurons are beneficial and so

all of the activity of these neurons are rewarded at above chance

rates. Reducing the rate of gain in synaptic strength resulting from

rewarded STDP events prevents this by allowing under repre-

sented neurons to more easily compete for representation in the

next layer. Competition between multiple outputs of the same

neuron, as incorporated into this model, makes intuitive sense but

has not been a subject of any great deal of study. Our study

predicts that such competition is important in preventing a small

number of neurons from dominating the networks activity and

suggests that future experiments look for evidence of such

mechanisms. There are also other ways to implement such

competition, e.g., through lateral inhibition between output

neurons [71] found in many biological systems.

Synaptic noise was implemented as variability in the magnitude

of each individual synaptic event and was necessary for breaking

out of local maxima of synaptic strength and therefore, to allow

further increase of performance. This was in agreement with

previous results supporting the general idea about importance of

synaptic variability and noise [72,73,74]. We found some trade off

between final performance and learning speed related to the level

of noise. Surprisingly, higher noise levels continued to improve

learning speed even though they resulted in the lower final

performance. In addition repeated partial randomizing (random

perturbations) of synaptic weights during training rescued many of

the simulations from low performing states.

We found that the key themes that unite the mechanisms

necessary for the network to be capable of addressing the tasks

presented in this study are synaptic homeostasis and noise. It is

crucially important to prevent both over representation and under

representation of connections for the network to develop balanced

synaptic weights. Without such mechanisms some connections in

the network will be reinforced to the point that other inputs cannot

meaningfully affect the network’s behavior. Synaptic homeostasis

including output balancing proposed in this study can accomplish

these goals without precise tuning of synaptic rules or balancing

the potentiation and depression windows of STDP.

Conclusion

In this study we evaluated the performance of a rewarded

STDP model implemented in a biologically inspired spiking

network model representing a basic neuronal circuit. Our study

predicted that a balancing of both incoming and outgoing synaptic

connections was required to achieve high levels of learning

performance. Furthermore, it was observed that performance

would not improve without the presence of noise within the system

and that the level of noise as represented by variability in synaptic

release had a great impact on final performance. In exploring the

ways in which variability in synaptic release and learning rate can

affect the chances of the model to learn effectively and final

performance, our study has observed trade-offs between different

mechanisms involved in learning and may guide future experi-

mental studies of decision making phenomena.

Methods

Learning model
In this study, rewarded STDP was implemented as part of a

spiking network model of excitatory cells and inhibitory interneu-

rons. The network was used to model basic foraging behavior in a

simulated organism (referred as ‘‘virtual entity’’ below). The

foraging behavior took place in a virtual environment of randomly

distributed ‘‘food’’ particles. The environment consists of a grid of

locations. Each location either has or does not have food. ‘‘Food’’

was distributed randomly on the 50650 environment grid. The

virtual entity sees a 7 by 7 grid of squares the – ‘‘visual field’’ -

centered on its current location. It can move to any adjacent

square including diagonally for a total of 8 directions. Time is

divided up into epochs of 600 time steps, roughly equivalent to

300 ms. At the start of each epoch the virtual entity receives input

corresponding to the locations of nearby food. Each cell of the

input layer maps to a grid square within 3 squares of the virtual

entities location. Thus 48 of the 49 cells receive input from a

unique position relative to the virtual entity. During the middle of

the epoch the virtual entity makes one move based on the activity

of the output layer. The remainder of the epoch acts as a ‘‘cooling

off period’’ to allow neurons to return to the resting state. If the

virtual entity moves to a grid square with ‘‘food’’ the ‘‘food’’ is

moved from that square to a randomly selected new square.

The network was composed of 156 map based neurons [75,76]

in 4 groups arranged into 3 feed forward layers to mimic a basic

biological circuit: a 7 by 7 input layer (I), two 7 by 7 middle

(hidden) layers, one excitatory (H) and one inhibitory (HI), and a 3

by 3 output layer (O) (Fig 1B). This structure provides a basic

feedforward inhibitory circuit [77] found in many biological

structures, e.g, thalamocortical [78], hippocampal [79], olfactory

[80,81]and others [82].

Input cells are stimulated by current injection sufficient to

trigger a spike if there is ‘‘food’’ on the grid location the cell is
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mapped to. Each cell of the input layer (Ii, where i is cell index)

outputs to one cell in the excitatory middle layer by a synapse with

strength W1ij from Ii to Hj and one cell in the inhibitory middle

layer by a synapse with strength W2ij from Ii to HIj. This is one to

one map, so W1ij.0, W2ij.0 only if i = j and W1ij = W2ij = 0

otherwise.

Time is divided into epochs of 600 time steps and is represented

byTe. Each epoch is of sufficient duration for the network to

receive inputs, produce outputs, and return to a resting state. Input

cells receive excitation on the first time step of each epoch. Output

is chosen and the virtual entity is moved at the end of the epoch.

Each cell in the excitatory middle layers (cell Hi) or inhibitory

middle layer (cell HIi) connects to every cell in the output layer (Oj)

with synaptic strength Wij or WIij, respectably. Initially all these

connections have uniform connection strengths (Wij = Const,

WIij = Const and independent on i or j). Thus, all responses in

the output layer are due to random variability in the activity of

middle layer output synapses. This variability is inherent to all

synaptic interactions between neurons caused by release noise of

synapses. It is implemented as variability in the magnitude of each

individual synaptic event.

The activity of the output layer of the network controls the

direction of virtual entity’s movement. Each of the output layer

cells is mapped to a direction. The output layer cell (Oj) that spikes

the greatest number of times during the first half of an epoch

defines the direction of movement on that epoch. If there is a tie

the cell that spikes first determines direction. If no cells in the

output layer fire the virtual entity continues in the direction it

traveled during the previous epoch. There is 2% chance on every

move that the virtual entity will ignore any output and instead

move in a direction 45 degrees off of its direction on the last move.

This random variability prevents infinite loops of virtual entity’s

motion during the learning process.

Plasticity in our model is based on a rewarded STDP paradigm

[1,2,3,4] implemented between layers H and O. A spike in a post-

synaptic cell (Oj of the output layer) that directly follows a spike in a

pre-synaptic cell (Hi of the hidden layer) creates a ‘‘pre before post’’

event. Additional post-synaptic spikes do not create additional pre

before post STDP events. Likewise a spike in a pre-synaptic cell that

directly follows a spike in a post-synaptic cell creates a ‘‘post before

pre’’ event. Additional pre-synaptic spikes do not create additional

post before pre STDP events.

The value of an STDP event, represented by vE, is calculated

using the following equation [41,83]:

vE~Skep

p~
� tr�tp

����
Tc

ð1Þ

Here k is equal to 20.025 in the case of a post before pre event and

0.025 in the case of a pre before post event. The variable S is the

strength of the connection. tr and tp are the times at which the pre

and post synaptic spiking events occurred respectively. Tc is the

time constant and is equal to 10 ms.

The STDP events are not immediately applied to the respective

synapse Wij between neurons Hi and Oj. Instead they are stored as

traces for later use. Each trace remains stored for 5 epochs after its

creation and then is erased. If cases where the network sizes are

larger than those described here the traces may be stored for a

longer period. While still stored a STDP trace will have an effect

whenever there is a rewarding or punishing event. If the network is

rewarded or punished the change in synaptic strength of the

synapse Wij is described as:

DWij~
vESrp

x

x~1z
tre�tt

Te
ð2Þ

Here vE is defined by equation(1). Srp is the scale of reward when

the network is rewarded and the scale of punishment when the

network is punished; tre is the time the reward or punishment

occurred and tt is the time the event trace was created; Te is the

duration of an epoch.

The network is rewarded when the virtual entity moves to a

‘‘food’’ location. It is punished when it moves to a location without

food.

The scale of reward is increased in inverse proportion to the

sum of the cells outgoing synaptic strengths from hidden layer H to

the output layer O:

Srp(reward)~
Wi0

Wi

�Srp0 ð3Þ

Here Srp0 is constant value that corresponds to STDP strength and

Wi~
P

j

Wij is a total synaptic strength of all connections from

specific cell Hi to all cells Oj of the output layer. Wio is a constant

that is set to the value of Wi at the at the beginning of the

simulation. For the scale of punishment, Srp(punishment)~{0:3Srp0.

It remains constant and is not affected by the sum of the strength

of the cells synaptic outputs. The effect of these rules is that the

cells with lower total output strength increase their output strength

more easily. We have found that creating competition between a

cell’s synaptic outputs by having the increased strength of one

synapse affect the rate of strength increase of other synapses

reduced the chance that a single cell middle layer cell would be

capable of regularly causing action potentials in multiple output

cells simultaneously. When a single middle layer cell caused

multiple output layer spikes the spikes indicating the direction the

entity did not move would be rewarded along with the one which

indicated the direction the entity did move. This creates strong,

stable, maladaptive connections.

To ensure that all the output neurons maintained a relatively

constant long term firing rate, the model incorporated homeostatic

synaptic scaling [76]. The total synaptic input Wj~
P

i

Wij to a

given output cell Oj is set to be equal at each time step to the target

synaptic input Wj = Wj0 - a slow variable that varies over many

epochs and depends on the activity of that cell Oj and activity of its

pre-synaptic cells. If a cell Oj repeatedly receives input but does not

fire in response, the Wj0 is increased. If the cell responds with

multiple spikes the Wj0 is gradually reduced.

Wj1~Wj0(1�DtarzDtar
Rt

Rc
),Dtar~0:001

Rc1~Rc0(1�Df )z(Df Fe),Df~0:01

ð4Þ
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Here Rt is the target rate of firing for the neuron in spikes per

epoch and Rc is the estimate of the cells current firing rate. Feis the

number of times the cell has fired this epoch. This update takes

place every epoch (600 time steps).

To ensure that total synaptic input Wj remains unaffected by

plasticity events of individual connections at individual time steps

and equal to Wj0, we implemented scaling process that occurs after

each STDP event. When any excitatory connection increases in

strength, all the other excitatory connections incoming to that cell

decrease in strength by a ‘‘scale factor’’ Sf to keep Wj = Wj0

Wij(nz1)~WijnSf ð5Þ

Where Sf ~
Wj0P
i

Wijn
, Wijn are synaptic weights right after STDP

event but before scaling and Wij(n+1) are synaptic weights after

scaling; Wj0 is from equation 3.

The model does not include mechanisms for inhibitory

plasticity. All inhibitory connections WIij incoming to cell Oj from

all cells HIi of the inhibitory layer have uniform strength. The sum

of their inhibitory strength is held equal to the sum of the strength

of all excitatory connections coming into the same cell. In other

words at the each time step we scale WIij so

WIj~
X

i

WIij~{Wj ð6Þ

A ‘‘hunger mechanism’’ is included that activates after an

extended period of not receiving food. When activated it causes

the virtual entity to ignore input layer activity and move in the last

direction moved (98% probability) or change to a random new

direction (2% probability). The behavior continues until it moves

on to a food space. It is used to prevent the virtual entity from

moving in infinite loops during the learning process.

Map based neuronal models
To allow for efficient network simulations, we used a reduced

model of a spiking neuron described by difference equations (map)

[75,84,85]. The model is described by the following equations:

Vnz1~fa(Vn,Inzbn), Inz1~In{m(Vnz1)zmszmsn, where Vn

is the membrane voltage, In is a slow dynamical variable

describing the effects of slow conductances, and n is a discrete

time step (,0.5 msec). Slow temporal evolution of In was achieved

by using small values of the parametermvv1. Input variables bn

and sn were used to incorporate external current Iext
n (e.g.,

synaptic input):bn~beIext
n , sn~seIext

n . The nonlinearity fa(V ,I)

was designed in the form of a piece-wise continuous function:

fa(Vn,In)~

a(1{Vn){1zIn, Vnƒ0

azIn, 0vVnvazInandVn{1ƒ0

{1, azInƒVnorVn{1w0

8><
>: ð7Þ

To convert the dimensionless ‘‘membrane potential’’ V to the

physiological membrane potential Vph, the following equation was

applied: Vph~50V{15[mV] [76].

This model, despite its intrinsic low dimensionality, produces a

rich repertoire of dynamics and is able to mimic the dynamics of

Hodgkin-Huxley type neurons both at the single cell level and in

the context of network dynamics [75,85]. A fast spiking neuron

model (Fig. 1) was implemented to simulate the neurons in the

network.

To model synaptic interconnections, we used conventional first

order kinetic models of synaptic conductances rewritten in the

form of difference equations:

g
syn
(nz1)~cgsyn

n z
(1zXR)gsyn, spikepre,

0, otherwise,

�

and the synaptic current computed as:

Isyn
n ~� gsyn

n (Vpost
n �Vrp) ð8Þ

Here gsyn is the strength of synaptic coupling, and indices pre and

post stand for the presynaptic and postsynaptic variables, respec-

tively. The first condition, ‘‘spikepre’’, is satisfied when presynaptic

spikes are generated. Parameter c controls the relaxation rate of

synaptic conductance after a presynaptic spike is received

(0#c,1). The parameter R is the coefficient of variability in

synaptic release. The standard value of R is 0.16. X is a randomly

generated number between -1 and 1. Parameter Vrp defines the

reversal potential and, therefore, the type of synapse: excitatory or

inhibitory. A single IPSP produced in a postsynaptic excitatory cell

by a spike in a presynaptic interneuron is shown in Fig. 1C. The

term (1zXR) introduces a variability in synaptic release such that

the effect of any synaptic interaction has an amplitude that is

pulled from a flat distribution ranging from 1zR to 1{R times

the average value of the synapse.

Reference strategies
In order to compare the performance of the network 4

automated methods of movement were designed. These strategies

did not rely on the output of any network but used simple

heuristics based on the location of food within the entities visual

range (a 7 by 7 area centered on the entity).

Strategy 1 does not base the movement of the entity on the

location of food. It initially selects a random direction to move.

Each new epoch there is a 2% chance that the direction will

change by 45 degrees (left or right chosen randomly). Otherwise it

moves in the direction it moved on the previous epoch. In the

standard 10% randomly distributed food environment it has an

average success rate of 8.7% at obtaining food a given move.

Strategy 2 functions as strategy 1 with the exception that when

food is in at least one square that is adjacent to the entity the next

move will be to a square that contains food. This strategy has an

average success rate of 32.3% under standard conditions.

Strategy 3 behaves as Strategy 1 only when no food is present

within the visual field. When food is within the visual field the

chosen move will be in the direction of one of the closest food.

Which food is moved toward is chosen randomly if several food

elements are at the same distance. Under standard conditions this

strategy has an average success rate of 53.1%.

Strategy 4 is the most successful strategy. When no food is

present in the visual field it behaves like Strategy 1. When food was

present the strategy would search through all possible sets of 5

moves within the visual field. It then choses the set of moves that

would result in the most food being obtained and makes the first

move from that set. If multiple sets of moves obtain the same

number of food the set which obtains food sooner is preferred. If

multiple sets have the same sequence of food being obtained one of

those sets is chosen randomly. Under standard conditions this

strategy has an average success rate of 56.0%
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