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diabetes: An analysis based
on the presence of GADA
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Medicine, University of Science and Technology of China, Hefei, China, 2Department of
Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University,
Guangzhou, China
Objective: Type 1 diabetes (T1D) progression is affected by circulating glutamic

acid decarboxylase antibody (GADA) that persist for many years. This study

aimed at investigating whether and how the gut microbiome and its correlated

metabolites change in T1D with the presence of GADA.

Methods: We used a radiobinding assay to measure GADA titers and identify the

49 T1D patients with GADA+ and 52 T1D patients with GADA-. The fresh feces and

serum were analyzed using 16S rRNA gene sequencing and GC/MS. Then gut

microbiome and serummetabolites were compared between theGADA+ patients

and the GADA- patients. The association between gut microbial community and

metabolites was assessed using the Spearman’s rank correlation.

Results: The gut microbiome in diversity, composition, and function differed

between these two groups. The abundance of genus Alistipes, Ruminococcus

significantly increased in patients with GADA+ compared to that observed in

the samples of GADA-. There were 54 significantly altered serum metabolites

associated with tryptophan metabolism, phenylalanine, and tyrosine

biosynthesis in individuals with GADA+ compared with those of GADA-For

the serum metabolites, compared with those of GADA-, there were 54

significantly different metabolites with tryptophan metabolism, phenylalanine,

and tyrosine and tryptophan biosynthesis decreased in individuals with GADA+.

The abundance of Alistipes was positively correlated with altered metabolites

involved in tryptophan metabolism.
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Conclusion: We demonstrate that T1D patients with GADA+ are characterised

by aberrant profiles of gut microbiota and serum metabolites. The abundance

of Alistipes disturbances may participate in the development of T1D patients

with GADA by modulating the host’s tryptophan metabolism. These findings

extend our insights into the association between the gut microbiota and

tryptophan metabolism and GADA and might be targeted for preventing the

development of T1D.
KEYWORDS

T1D (type 1 diabetes) , GADA, gut microbiome, serum metabol i tes ,
tryptophan metabolism
Introduction

Type 1 diabetes mellitus (T1D) is an autoimmune disease

characterized by pancreatic b-cells being destroyed (1).

Autoimmunity is heterogeneous in the pathogenesis of T1D,

and the presence of autoantibodies is considered a potential

feature for classification (2, 3). Among the autoantibodies,

glutamic acid decarboxylase antibody (GADA) is known for

its early appearance, highest positivity rate, and most extended

duration, and is often used in b-cell function prediction (4).

During the follow-up of several longitudinal cohorts of T1D

patients, GADA titers are shown to be associated with various

persistent autoimmunity activity levels and disease development

(5, 6). Patients who are GADA positive are more likely to have

multiple autoimmune diseases, such as Hashimoto’s thyroiditis

and gastritis (7, 8). However, the underlying biological

mechanisms of T1D patients with different GADA phenotypes

is not completely understood.

There has been an interest that the gut microbiota is an

important environmental factor contributing to patients with

autoimmune diseases, including rheumatoid arthritis (RA) and

T1D (9, 10). Previous studies have shown that alpha-diversity

decreased, accompanied by spikes in inflammation-favoring

organisms and subsequent E. coli depletion prior to

seroconversion was observed in patients with type 1 diabetes

during disease progression (11, 12). Besides, the human gut

microbiome composition and metabolic pathways may influence

host metabolism and inflammation (13, 14). Given that the gut

microbes have implications for host metabolic pathways, beta

diversity plasma concentrations of indoxyl sulphate and L-

citrulline differed in T1D without and with stratification by

albuminuria (15).. The changes of these gut microbiota and the

disturbance of serum metabolism provide a new understanding

of the pathogenesis of T1D. Accumulating evidence indicates gut

microbiota composition and function change might be involved

in the progression from b-cell autoimmunity to clinical disease

emerge after the appearance of autoantibodies (16, 17).
02
However, the variation in how microbiota and serum

metabolites may link to the metabolism of T1D with different

immunotypes (without/with GADA) has not been investigated.

Here, we aimed to examine the gut microbiome composition

and serum metabolites in individuals in different GADA

subgroups. Furthermore, we looked into the interaction

between GADA-associated microbiota and metabolism, and

also their potential effect on the pathogenesis of T1D.
Materials and methods

Study population and clinical measures

All participants were recruited from the Third Affiliated

Hospital of Sun Yat-sen University (Guangzhou, Guangdong,

China). All patients with T1D were participants of the T1D

China Registry Study (ChiCTR2000034642) (18). Inclusion

criteria were patients who were diagnosed with T1D according

to the previous report (18) and aged were >18 years (19).

Exclusion criteria were: (1) use of antibiotics in the three

months before study enrollment; (2) significant acute or other

chronic illnesses including diseases of the digestive tract, severe

psychiatric diseases; (3) abdominal surgery history; (4) dietary

supplements including prebiotic, probiotic, or fiber-rich

supplements within four weeks before the sample collection;

and (5) dietary practices that are known to affect the gut

microbiota, such as a weight-loss diet or a diet that is entirely

composed of vegetables. Healthy controls were age- and sex-

matched volunteers recruited from public advertisements.

GADA were detected from fasting serum with radio binding

assay in duplicate following the standards of the Islet

Autoantibody Standardization Program. The GADA positivity

cutoff value was set at 0.05, which means that a test value over

0.05 was considered positive (20). We collected all participants’

information from the questionnaires and clinical examination,

including but not limited to demographic and clinically
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relevant data. All diabetic patients were given structuralized

diabetes education and were required to follow a diabetes diet. A

food frequency questionnaire was collected to determine the

dietary intake history. The study protocol conformed to the 1975

Declaration of Helsinki ethical guidelines, and all participating

universities acquired Institutional Review Board approval, and

the study received signed informed consent.
DNA preparation and sequencing

Fresh feces and plasma samples were collected from

participants in our hospital. The sample tubes were frozen and

stored at −80°C immediately until further analysis. The

microbial DNA was extracted from approximately 220 mg of

feces using the QIAamp DNA Stool Mini Kit (Qiagen, Germany)

following the manufacturer’s instructions. PCR using primers,

515F (5’-GTGCCAGCMGCCGCGGTAA-3’) and 806R (5’-

GGACTACHVGGGTWTCTAAT-3’) were used to amplify the

regions V4 of bacterial 16S rRNA gene. The PCR reactions were

50 ml reaction in triplicate. The PCR products were purified

using Agencourt AMPure XP beads and eluted in an elution

buffer. Purified amplicons were quantified using the Agilent

Technologies 2100 bioanalyser and paired end sequenced (2 ×

250) following the standard pipelines on an Illumina MiSeq

platform (BGI, Shenzhen, China).
16s rRNA gene sequencing and
bioinformatics analysis

Raw fastq files procession and analysis were conducted using

the Quantitative Insights Into Microbial Ecology (QIIME2)

platform (21). At each location with more than three

consecutive bases, the 250 bp readings were clipped, resulting in

an average quality score of 20. The Fast Length Adjustment of

Short Reads (FLASH, v1.2.11) program was used to add paired-

end reads to tags (22). Using UPARSE (v7.0.1090) with a cutoff

value of 97%, the tags were grouped into OTUs, and chimera

sequences were validated with UCHIME (v4.2.40) and excluded

from further analysis. The remaining high-quality sequences were

categorized into operational amplicon sequence variants (ASVs)

at 100% similarity by DADA2 algorithm (23). The a-diversity was
calculated at the gene abundance, including community richness

indexes (Ace and Chao1) and community diversity indexes

(Shannon and Simpson). The Bray-Curtis distance method was

used to estimate b-diversity, which was reported using the

principal coordinate analysis (PCoA); the difference between

groups was examined using the permutational multivariate

analysis of variance (PERMANOVA). On the normalized taxon

composition, Linear discriminant analysis effect size (LEfSe)

analysis was performed on a web server (http://huttenhower.

sph.harvard.edu/galaxy) using linear discriminant analysis
Frontiers in Endocrinology 03
(LDA) score (24). KEGG functional predictions were generated

using the PICRUSt algorithm (25).
Serum metabolome analysis

The serum metabolite extracts were analyzed on LC-MS/MS

technology. High-resolution mass spectrometer Q Exactive

(Thermo Fisher Scientific, USA) collected positive and

negative ions data. The raw LC-MS data were handled with

The Compound Discoverer 3.1 (Thermo Fisher Scientific, USA)

software, and multidimensional statistical analysis was

performed PCA and OPLS-DA analyses. The variable

importance projection (VIP) value, the fold change, and the

Student’s test were used to screen for differential metabolites.

The Enrichment analysis of the KEGG metabolic pathway based

on the significantly altered metabolites was performed with

MetaboAnalyst 5.0 (26). The three databases were searched to

identify further and validate the differential metabolites,

including Human Metabolome Database (HMDB), Kyoto

Encyclopedia of Genes and Genomes (KEGG), and mzCloud.
Statistical analysis

c2 test for categorical variables, or a one-way analysis of

variance (ANOVA) for continuous variables, were performed in

comparisons among groups. And unpaired Student’s t-test was

adopted in multiple comparisons. The Kruskal–Wallis test was

performed in comparisons between groups for non-normally

distributed variables. Data are presented as the mean ± SEM.

The differential abundance of metabolites and genera was tested

by Kruskal–Wallis test The network plot of metabolites and

microbes was based on M2IA (27). The correlation between the

metabolites and microbiota was estimated using Spearman’s

rank correlation was performed in R version 4.0.2. P-value <

0.05 were considered statistically significant.
Results

Clinical characteristics in participants

We collected the serum samples from Chinese participants,

including 101 T1D patients and 38 healthy controls. The clinical

characteristics of the T1D patients are summarized in Table 1,

and the detailed information including GADA titers among the

three groups is shown in Supplementary Table S1. There were no

significant differences in age and body mass index (BMI)

between patients with GADA+ (age 27.10 ± 11.34 years; BMI,

20.44 ± 2.65 kg/m2), and patients with GADA- (age 26.62 ±

12.05 years; BMI, 20.35 ± 2.57 kg/m2). Moreover, there were no

group differences in serum levels (mmol/L) of TC, TG, LDL-C,
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HDL-C, and glycemic control. However, patients with GADA+

had lower concentrations of fasting C-peptide than those in the

patients with GADA- group (0.026 ± 0.29 vs 0.048 ± 0.06, pmol/

L; p < 0.002).
The gut microbiome community profiling
in T1D patients

We assessed the a-diversity and the b-diversity to investigate
whether the gut microbial dysbiosis differed between HCs and

T1D patients with GADA- or GADA+ in diversity and structure.

HCs showed the highest level of microbial community diversity

in contrast to the T1D patients, which was reflected in the Chao1

index (Figure 1A). However, the Shannon and Simpson indexes

result did not reach the statistically significant threshold

(Figure 1B, Figure S1). The Fisher indexes suggested that the

gut microbiome community richness and species number

differed between the GADA-, GADA+, and HCs groups

(Figure S1). Next, we performed b-diversity based on the

Bray-Curtis dissimilarity to explore the microbial composition

among three groups (Figure 1D). No statistically significant

differences were observed in the b-diversity of the gut

microbiota among the GADA-, GADA+, and HCs groups.

We calculated all taxonomic abundance to analyze the

abundance of similarity in bacterial taxonomy among the

three groups. Actinobacteriota, Bacteroidetes, Desulfobacterota,

Firmicutes, and Proteobacteria constituted most of the

individuals’ gut microbiota at the phylum level (Table S2). As
Frontiers in Endocrinology 04
shown in Figure 1C, the top 10 abundant gut microbiota at the

family level, which are different panels among the three groups.

Twelve genera(Erysipelotrichaceae_UCG_003, Coprococcus,

Anaerostipes, Streptococcus Ruminococcus_torques, Blautia,

Oscillibacter, Sutterella, Intestinibacter, Ruminococcus_gnavus,

Veillonella, and Dorea) were enriched in T1D patients

compared with HC individuals, of which the majority

perta ined to the Ruminococcus , and three genera

(Oscillospiraceae, Colidextribacter, and Butyricicoccus) were

depleted in individuals with type 1 diabetes. The relative

abundance of Alistipes, Ruminococcus was significantly

enriched in the GADA+ group compared with the GADA- (p

< 0.05), but the relative abundance of these genera did not differ

between GADA- and HC individuals (Figure S2). These findings

revealed gut microbial diversity and structure differences among

T1D patients and HCs.
Functional characterization of the gut
microbiome in T1D patients with GADA

Among the individuals with type 1 diabetes, we performed

LEfSe analysis to determine different microbial compositions at

all taxonomic levels between the two groups. In patients with

GADA+, there were 22 bacterial taxonomic clades (20 increased

and 2 decreased) detected by LDA score showing statistically

significant differences, compared with those in GADA- patients

(Figure 2A, Table S3). Compared with patients with GADA-,

patients with GADA+ showed higher abundances of
TABLE 1 Characteristics of the participants.

T1D HCs (n=38) P-value

GADA- (n=52) GADA+ (n=49)

Sex (Women, %) (29,55.77%) (30,61.22%) (24,63.16%) 0.578

Age, years 26.62 (12.05) 27.10 (11.34) 27.03 (11.30) 0.835

Diabetes Duration, years 10.21 (6.10) 11.42 (5.82) ─ 0.237

BMI,kg/m2 20.35 (2.57) 20.44 (2.65) 21.58 (23.48) 0.852

HbA1c (%) 7.70 (2.04) 7.56 (1.48) 5.24 (0.31) 0.676

TC (mmol/L) 4.63 (0.86) 4.80 (0.82) 4.66 (0.80) 0.294

TG (mmol/L) 0.76 (0.33) 0.75 (0.32) 0.96 (0.50) 0.786

LDL-C (mmol/L) 2.69 (0.80) 2.85 (0.66) 2.78 (0.70) 0.183

HDL-C (mmol/L) 1.50 (0.25) 1.57 (0.32) 1.29 (0.24) 0.227

Fasting C-peptide (pmol/L) 0.048 (0.06) 0.026 (0.29) ─ 0.002

Insulin regimen ─ 1.000

MDI 25 (48.1) 23 (46.9) ─

CSII 26 (50.0) 25 (51.0) ─

BD 1 (1.92) 1 (2.04) ─

Insulin dosage (u/kg) 0.75 (0.27) 0.73 (0.19) 0.665
front
Data are presented as mean (SD) or n (%).MDI: basal bolus, long-acting plus rapid insulin with meals; CSII: continuous subcutaneous insulin infusion; BD: twice-daily insulin (breakfast and
evening meal). P-values were compared by the two groups (GADA-; GADA+). HCs, Healthy Controls; BMI, body mass index; TC, total cholesterol; TG, triglyceride; LDL-C, low-density
lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; T test/ANOVA notes needed.
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Ruminococcus, Alistipes, Dialister, Coprobacter, Eubacterium,

Victivallis, Enterococcus, Oxalobacter, Intestinimonas, and

Mo g i b a c t e r i um a n d l o w e r a b u n d a n c e s o f t h e

Clostridium_XVIII at the genus level (Figure 2A, Table S3).

The abundant bacteria at the family level in GADA+ patients

included Rikenellaceae, a family of Bacteroidetes; and

Ruminococcaceae, Eubacteriaceae, and Enterococcaceae,

belonging to Firmicutes (Figure 2B). We used the SparCC

algorithm to explore the relationships between dominating

microbiota at the ecological dimension. In an altered genus-

genus co-occurrence network, Bacteroides , Blautia ,

Phascolarctobacterium, Ruminococcus, and Lachnoclostridium

exhibited positive interactions in T1D patients (Figure 2C). In

the T1D patients with GADA+, we observed that Alispties were

key genera that play essential roles in the composition and

function of the intestinal micro-environment.

We conducted the KEGG pathway analysis using the

PICRUSt2 algorithm to explore the link between the

dominating microbiota and the functional profile of a

microbial community. Compared with patients with GADA-,

the abundance of pathways linked with cell growth and death,

transcription, and nucleotide metabolism were significantly

increased in patients with GADA+ (Figure 2D, Table S4).

Further analysis found that the microbial gene function related
Frontiers in Endocrinology 05
to bile acid biosynthesis, and phenylalanine metabolism was

decreased in patients with GADA+ (Figure S3, Table S4).
OPLS−DA and metabolites identification
in serum from T1D patients

We used LC-MS to compare the metabolic signatures of

patients with GADA+ or GADA- to investigate how the gut

microbiota modulates host metabolic pathways. The metabolites

profile indicating global changes to serum metabolite

composition in patients with GADA+ were significantly

different from patients with GADA- (Figures 3A, B). The

relative concentration of 54 significantly different serum

metabolites (Fold change > 1.2, Fold change < 0.83, and p <

0.05) were identified by using the three databases (Table S5). 7

up-regulated and 47 down-regulated metabolites differed

significantly in concentration between patients with GADA+

and GADA-.

Three metabolites related to tryptophan metabolism,

including 3-hydroxyanthranilic acid, L-phenylalanine, and L-

kynurenine, were lower in patients with GADA+ than those with

GADA-. The KEGG pathway analysis showed that the altered

serum metabolites were linked with tryptophan metabolism,
A B

DC

FIGURE 1

Results of diversity and structure profile. (A, B) Box plot of differences in a-diversity of the gut microbiota of Chao1 (A) and Shannon index
(B) respectively, the difference of Chao1 index (ANOVA, p-value: 0.0148, F-value: 4.349), the difference of Shannon index (ANOVA, p-value:
0.439, F-value: 0.827) among the three study groups. (C) The stacked bar plots at the family level. (D) PCoA plot of b-diversity of the Bray–
Curtis index shows microbial communities’ distance. (Permutational multivariate analysis of variance (PERMANOVA), F= 1.3449, R-squared=
0.019364; p< 0.128]. G0, GADA-; G1, GADA+.
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phenylalanine, tyrosine and tryptophan biosynthesis and

phenylalanine metabolism (Figure 3C). Most of the

metabolites involved in tryptophan metabolism also be

involved in phenylalanine, tyrosine, and tryptophan

biosynthesis. For example, L-phenylalanine is a key node

between the two metabolic pathways, broadly associated with

tryptophan metabolism. Notably, we noticed a reduction of two

metabolites involved in the pathway the reduced levels of

tryptophan metabolism, namely L-phenylalanine and 5-

hydroxyindoleacetate, in the T1D patients with GADA+.

(Figure S4).
Co-occurrence network analysis of
altered gut microbiota and
serum metabolites

We constructed a co-occurrence network to explore

potential associations between altered gut microbiota and

serum metabolites. We found that Alistipes, Ruminococcus,

Butyricimonas formed strong co-occurring relationships with

steroids and steroids derivatives (3a,7a-dihydroxycholanoic acid,

3b-hydroxy-5-cholenoic acid), fatty acyls (3-(acetylsulfanyl)-2-

(sulfanylmethyl) propanoic acid), and sulfamic acid derivatives
Frontiers in Endocrinology 06
(cyclamic acid) (Figure 4A). Additionally, we used the top

changed metabolites for spearman correlation analysis with

genus abundance. As shown in Figure 4B, the change in

Ruminococcus was positively associated with the change in

pipecolic acid (r=0.34, p<0.001), whereas the change in

Alistipes was negatively associated with the changes in 5-

hydroxyindoleacetate (r=-0.35, p<0.001), which was involved

in tryptophan metabolism (Figure 4B, Table S4).
Discussion

In the present study, we included 49 T1D patients with

GADA+ and 52 T1D patients with GADA-. We examined gut

microbiome composition and serum metabolites to explore the

potential association of microbiota and metabolite in T1D

patient with different GADA levels. Among individuals with

type 1 diabetes, we found that the gut microbiome and serum

metabolites profile of GADA+ is distinct from GADA-. The

abundance of Alistipes was negatively associated with serum

metabolites involved in tryptophan metabolism. Integrated

analysis of the microbiome-metabolome shows the correlation

between microbiome and metabolites in T1D patients, driving or

perpetuating the progression.
A B

DC

FIGURE 2

Results of gut microbial characteristics and correlations. (A) Histogram of LDA value distribution, list ranked by LDA score. (B)The cladogram
shows different taxonomic levels between GADA+ or GADA- group. (C) Correlation among the differentially abundant microbiota in T1D
patients. Nodes with correlations between circles represent positive (represented by red lines) and negative correlation (represented by blue
lines). (Circle with red part: G1; circle with green part). (D) Wilcoxon test of pathway differences between GADA+ and GADA-groups. The
histogram shows the relative abundance for pathway in each group. The middle panel is a histogram of the log2 value of the mean relative
abundance ratio in the two groups of the same pathway. The P and FDR values obtained by the Wilcoxon test are shown on the right panel.
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Small studies in humans have found the c-peptide levels

drop after a diagnosis of (T1D), indicating that b cell function is

deteriorating (28). In our study, focusing on the b cell function

of T1D patients with different levels of GADA, we found that

GADA+ patients have lower C-peptide concentrations than

GADA- patients.

The gut microbiota may increase gut permeability and

regulate metabolism through disturbing immune system to

impact the pathogenesis of T1D (3, 29). Previous studies have

reported that T1D patients had significant disturbances in

Bacteroidetes/Firmicutes, Lactobacillus, Blautia, and Prevotella,

relative to healthy controls (17, 30–32). We found that 22

bacterial taxonomic clades (20 increased and 2 decreased) of

gut bacteria differed significantly between individuals with type 1

diabetes stratified by levels of GADA. We found that the lower

abundance of Clostridium_XVIII in GADA+ patients.

Clostridium represent intestinal commensal bacteria, ferment a

variety of benefit metabolites, especially butyrate, possess anti-

inflammation effects, and maintain the intestinal immune

system (33).

Differences in the first appearing autoantibody related to the

average longitudinal abundance of Ruminococcus may be

characterized by distinct microbial configurations (16).

Moreover, GADA explains variation in the gut microbiota and

strongly correlates with microbiota composition and structure

(31). Our study found that patients with GADA+ showed a
Frontiers in Endocrinology 07
significant increase in the abundance of Alistipes, Ruminococcus.

Inflammation correlated with an increased abundance of

Alistipes and Ruminococcus (34). These interconnections might

play vital roles in shaping the gut microbiome in T1D patients

with GADA+. The studies of genus Alistipes that have provided

conflicting findings have been protective effects for liver fibrosis,

and cardiovascular disease via product short fatty acids (SCFA),

whereas as potential drivers of intestinal barrier dysfunction and

inflammation affect inflammatory bowel disease (IBD) (35).

Some genus abundance and gene function changes may differ

from previous studies because the microbiome is influenced by

various factors, such as ethnicity, age, geography, and cultural

differences. Together, these results suggest gut microbial

dysbiosis may affect the host immune progression in T1D

patients with GADA+.

We found that GADA+ patients were characterized by

disturbances of gut microbiota and serum metabolites. Among

the 54 differentially expressed serum metabolites, the reduced

levels of 3-hydroxyanthranilic acid, L-phenylalanine, and L-

kynurenine belong to tryptophan-related metabolites in T1D

patients with GADA+. Tryptophan metabolism has become a

vital part of cellular and organismal communication strategies,

regulating immunity and intestinal homeostasis (36). It was

reported that autoimmune diseases including IBD, Crohn’s

disease (CD), and T1D were associated with a lower ratio of

tryptophan metabolites (37–39).
A B

C

FIGURE 3

Profiles of serum metabolites. (A, B) The OPLS−DA score plots of serum samples from T1D patients in (A) negative ion mode and (B) positive ion
mode. (C) KEGG pathway enrichment analysis of significantly altered metabolites. The size and color of each circle were obtained by pathway
impact value and p-value, respectively.
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An aberrant gut microbiota in individuals with GADA may

contribute to lower tryptophan-related metabolites, which

promotes progression of the disease. The tryptophan

metabolites binding to the aryl hydrocarbon receptor (AHR),

which promotes IL-22 secretion, improves the intestinal

epithelial barrier, stimulates gastrointestinal motility, has anti-

inflammatory properties, and may modulate gut microbial

composition (40–42). Indole-3-acetic-acid, as a bacterial

tryptophan metabolite, regulates intestinal immune function in

combination with activation of AHR. In our study we found

Alistipes and Clostridium XlVa was positively correlated with 5-

hydroxyindoleacetate and Indole-3-acetic-acid (r=0.19, p=0.06).

It is possible that this depletion of tryptophan metabolism in

T1D patients with GADA+ by a T1D-associated dysbiosis

microbiota (40). These findings suggest the possible
Frontiers in Endocrinology 08
association between gut microbial dysbiosis and tryptophan

metabolism, which may provide another dimension to

understanding the immune progression of T1D.

This study has some limitations. First, our study design was a

cross-sectional analysis; we can only identify associations. It

would also be interesting to systematically study the progression

of disease dynamics in T1D patients by longitudinal multi-

omics. In addition, we used 16S rDNA amplicon sequencing; a

deep shotgun sequencing can give more insights into the

function and specific species of gut microbiomes than 16S

rDNA amplicon sequencing. We cannot conclusively

determine whether the gut microbiome and metabolites

dysbiosis is the etiology in T1D, which fecal transplantation

experiments should further confirm. We expect future model

experiments and longitudinal cohort studies of an altered gut
A

B

FIGURE 4

Associations between serum metabolites and altered gut microbiota. (A) Network of the Spearman’s rank correlation coefficient between
metabolites class and gut microbes. (red circles: metabolites; blue ovals: microbes; red lines: positive correlation; green lines: negative
correlation). (B) Heatmap of correlation between altered metabolites and gut bacteria at the genus level. The colors in the heatmap represent
the positive (represented by pink) or negative correlation (represented by blue). The Benjamini-Hochberg false discovery rate was used to
correct p values for multiple testing. *p<0.05, **p<0.01, ***p<0.001.
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microbiome and tryptophan metabolites in T1D to move

towards mechanistic studies.

In conclusion, we provided the gut microbiome and serum

metabolites profiles in T1D patients without and with GADA. In

light of our results, we used multi-omics data and characterized

the network of interactions between the microbes and serum

metabolites that may play a critical role in the development of

T1D. We found that gut microbiome disturbances may

modulate the host’s tryptophan metabolism in T1D patients

with GADA. We expect our exploratory study to spark

longitudinal cohorts to confirm and expand intervention in

human T1D heterogeneity.
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