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Background: Stratification of patients who could benefit from immune checkpoint
inhibitor (ICI) therapy is of much importance. PD-1hiCD8+ T cells represent a newly
identified and effective biomarker for ICI therapy response biomarker in lung cancer.
Accurately quantifying these T cells using commonly available RNA sequencing (RNA-seq)
data may extend their applications to more cancer types.

Method: We built a transcriptome signature of PD-1hiCD8+ T cells from bulk RNA-seq
and single-cell RNA-seq (scRNA-seq) data of tumor-infiltrating immune cells. The
signature was validated by flow cytometry and in independent datasets. The clinical
applications of the signature were explored in non-small-cell lung cancer, melanoma,
gastric cancer, urothelial cancer, and a mouse model of breast cancer samples treated
with ICI, and systematically evaluated across 21 cancer types in The Cancer Genome
Atlas (TCGA). Its associations with other biomarkers were also determined.

Results: Signature scores could be used to identify the PD-1hiCD8+ T subset and were
correlated with the fraction of PD-1hiCD8+ T cells in tumor tissue (Pearson correlation,
R=0.76, p=0.0004). Furthermore, in the scRNA-seq dataset, we confirmed the capability
of PD-1hiCD8+ T cells to secrete CXCL13, as well as their interactions with other immune
cells. In 581 clinical samples and 204 mouse models treated with ICIs, high signature
scores were associated with increased survival, and the signature achieved area under the
receiver operating characteristic curve scores of 0.755 (ranging from 0.61 to 0.91) in
predicting therapy response. In TCGA pan-cancer datasets, our signature scores were
consistently correlated with therapy response (R=0.78, p<0.0001) and partially explained
the diverse response rates among different cancer types. Finally, our signature generally
outperformed other mRNA-based predictors and showed improved predictive
performance when used in combination with tumor mutational burden (TMB).
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The signature score is available in the R package “PD1highCD8Tscore” (https://github.
com/Liulab/PD1highCD8Tscore).

Conclusion: Through estimating the fraction of the PD-1hiCD8+ T cell, our signature
could predict response to ICI therapy across multiple cancers and could serve as a
complementary biomarker to TMB.
Keywords: immune checkpoint inhibitor, cancer, PD-1hiCD8+ T cell, biomarker, CXCL13
INTRODUCTION

Genomic alterations in malignant tumors distinguish them from
normal cells and produce persistent antigenic stimulation,
thereby suppressing T cell functions (1–3). Immune
checkpoint inhibitors (ICIs) successfully reinvigorate T cell
functions and have led to impressive progress in the treatment
of non-small-cell lung cancer (NSCLC), melanoma, and
urothelial cancer, especially in the advanced stages (4–6).
However, only a limited proportion of patients receiving ICI
therapy have superior clinical outcomes across various cancer
types. To solve this problem, several biomarkers have been
identified in recent years, including tumor mutational burden
(TMB), tumor-neoantigen burden, programmed cell death
protein 1 (PD-1) or programmed cell death ligand 1 (PD-L1)
expression level, interferon-gamma (IFNg) signature, and CD8+

T cell infiltration (7–11). Although these factors are related to the
effectiveness of ICIs, their predictive power is not sufficient (9,
12), nor do they fully explain the mechanism of resistance to
ICIs. There is thus an urgent need for new biomarkers that can be
used to identify patients sensitive to ICI therapy

PD-1hiCD8+ T cells represent a distinct population of CD8+ T
cells, which are upregulated in T-cell-exhaustion and cell
proliferation process (13). A recent retrospective analysis used
immunohistochemistry (IHC) assays to estimate the fraction of
PD-1hiCD8+ T cells in the tumor microenvironment (TME) and
demonstrated that this was positively associated with treatment
response and patient survival in cases of NSCLC treated with
PD-1 blockade (13). This finding raised the question of whether
the predictive value of PD-1hiCD8+ T cells could be extrapolated
to other cancer types. Commonly available datasets such as RNA
sequencing (RNA-seq) datasets could help to settle this issue.
Therefore, we built a transcriptional signature for PD-1hiCD8+ T
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cells, validated its ability to quantify such cells in the TME, and
further explored its predictive performance with respect to ICI
therapy outcomes across multiple cancer types.
MATERIALS AND METHODS

Data Collection
We identified ICI-treated patients with available RNA-seq data
from the Gene Expression Omnibus (GEO, https://www.ncbi.
nlm.nih.gov/geo/) and Sequence Read Archive (SRA, https://
www.ncbi.nlm.nih.gov/sra/) databases. Data from The Cancer
Genome Atlas (TCGA, http://cancergenome.nih.gov/;legacy
archive, version 2016_01_28) were downloaded from
FIREBROWSE (http://firebrowse.org/). All the deposited
datasets are summarized in Table 1.

Identification of Differentially
Expressed Genes
The RNA-seq data were aligned to the human genome
(GRCH38/hg38) using the STAR (24) version 2.5.4b 2-pass
mapping strategy. Transcript assembly and gene level
quantification were performed using StringTie version v1.3.4d
(25). DEGs were identified using DESeq2 (30) (version 1.26.0).
Genes were considered to be DEGs based on adjusted p value
(p.adj) < 0.05 and |log2 [fold change (FC)] | >1.

Construction of Gene Signature for
PD-1hiCD8+ T Cells
The workflow followed to build the signature building is
described in Figure 1 (left). First, we combined CD8+-T-cell-
specific genes from Schmiedel et al. (39) with PD-1hiCD8+-T-
cell-specific genes from NSCLC tumor-infiltrating lymphocytes
(TILs) (13). In the latter case, PD-1hiCD8+-T-cell-specific genes
were defined as genes that were significantly upregulated in
PD-1hiCD8+ T cells compared with other CD8+ T cells.
Second, we excluded genes that were highly expressed in solid
tumors using expression data from The Cancer Cell Line
Encyclopedia (CCLE, https://portals.broadinstitute.org/ccle).
Genes were retained if their median expression (log transcripts
per million [TPM]) in cancer cells was below 3.1. Third, to
determine the optimal threshold for filtering low expression
genes in PD-1hiCD8+ T cells, we scanned a range of cutoffs to
select top genes as input for unsupervised hierarchical clustering
(from 20% to 80%, with 20% increments). We found that the top
60% genes were sufficient to distinguish PD-1hiCD8+ T cells from
September 2021 | Volume 11 | Article 695006
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other CD8+ T cells and kept them as the initial gene set. The
signature scores were calculated by singscore (32), where the
background gene set was selected as genes with mean TPM>1 in
TCGA samples (21 cancer types). When calculating the signature
score of the initial gene set in a single-cell RNA-seq(scRNA-seq)
dataset (GSE120575) (21), we found that a cluster of CD8+

T cells resembled PD-1hiCD8+ T cells from NSCLC TILs (13).
Therefore, we kept the cluster marker genes from the initial
signature genes and got a reduced final signature. The
discrimination abilities of the initial and final gene signature
scores were compared using the area under the receiver
operation characteristic curve (AUC). Finally, we supplied an
easy-to-use R package “PD1highCD8Tscore” to calculate our
signature score.
Frontiers in Oncology | www.frontiersin.org 3
Signature Validation
To explore whether the signature genes were specific to PD-
1hiCD8+ T cells, we compared the expression levels of signature
genes between PD-1hiCD8+ T cells and other immune cells in an
external dataset (39) after normalization by 15 house-keeping genes
(RPL38, UBA52, RPL4, RPS29, SLC25A3, CLTC, RPL37, PSMA1,
RPL8, PPP2CA, TXNL1, MMADHC, PSMC1, RPL13A, and
MRFAP1) (40). Two previous studies also sorted and sequenced
PD-1hi/low/negCD8+ T cells among hepatocellular carcinoma (HCC)
and breast cancer TILs with a similar gating and sorting strategy
(14, 15). To estimate whether our signature characterized similar
cell populations in NSCLC, breast cancer, and HCC, we performed
principal component analysis (PCA) and calculated the
correlations between all cells after removing the batch effect using
TABLE 1 | Key resource table.

Resource Source Identifier

Deposited Data
Solid tumor samples CCLE https://portals.broadinstitute.org/
Immune cell from healthy individuals DICE https://dice-database.org/
Pan-cancer tumor samples (21 types) TCGA http://firebrowse.org/
Sorted PD-1hi/low/negCD8+ T cells from NSCLC Thommen et al. (13) SRA: SRP108393
Sorted PD-1hi/low/negCD8+ T cells from HCC, flow cytometry, and RNA-
seq results

Kim et al. (14) GEO: GSE111389

Sorted PD-1hi/low/negCD8+ T cells from breast cancer Guo et al. (15) SRA: SRP189910
Anti-PD-1/anti-PD-1 combined with anti-CTLA4 treated melanoma
(Gide)

Gide et al. (16) ENA: ERP105482

Anti-PD-1 treated melanoma (Riaz) Riaz et al. (17) SRA: SRP094781
Anti-PD-1 treated gastric cancer Kim et al. (18) ENA: ERP107734
Anti-PD-L1 treated urothelial cancer Mariathasan et al. (5) http://research-pub.gene.com/IMvigor210CoreBiologies/
Anti-PD-1/PD-L1 treated NSCLC (Jung) Jung et al. (19) GEO: GSE135222
Anti-PD-1 treated NSCLC (Cho) Cho et al. (20) GEO: GSE126044
ScRNA-seq of immune cells in melanoma TME Sade-Feldman et al. (21) GEO: GSE120575
ScRNA-seq of T cells in NSCLC TME Guo et al. (22) GEO: GSE99254
Anti-PD1/anti-CTLA4 combination therapy treated mouse model of
breast cancer

Hollern et al. (23) GEO: GSE124821

Human genome (GRCH38/hg38) Genome Reference
Consortium

http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/
human

Software and Algorithms
STAR version 2.5.4b Dobin et al. (24) https://github.com/alexdobin/STAR
Stringtie, version v1.3.4d Pertea et al. (25) https://ccb.jhu.edu/software/stringtie/
Metascape Zhou et al. (26) https://metascape.org/
CellPhoneDB Efremova et al. (27) https://github.com/Teichlab/cellphonedb
MSigDB – http://www.gsea-msigdb.org/gsea/msigdb
CIBERSORT Newman et al. (28) https://cibersort.stanford.edu/
quanTIseq Finotello et al. (29) https://github.com/icbi-lab/quanTIseq
R packages/scripts
Codes used for scoring This paper https://github.com/Liulab/PD1highCD8Tscore
DESeq2 (1.26.0) Love et al. (30) https://bioconductor.org/packages/release/bioc/html/DESeq2.

html
limma (3.41.16) Ritchie et al. (31) https://bioconductor.org/packages/release/bioc/html/limma.html
singscore (1.10.0) Foroutan et al. (32) https://www.bioconductor.org/packages/release/bioc/html/

singscore.html
Seurat (3.1.0) Butler et al. (33) https://satijalab.org/seurat/
edgeR (3.27.13) Robinson et al. (34) https://bioconductor.org/packages/release/bioc/html/edgeR.

html
fgsea (1.12.0) Sergushichev (35) http://bioconductor.org/packages/release/bioc/html/fgsea.html
pROC (1.15.3) Robin et al. (36) https://cran.r-project.org/web/packages/pROC/index.html
survival (3.1-12) – https://cran.r-project.org/web/packages/survival/index.html
survminer (0.4.8) – https://cran.r-project.org/web/packages/survminer/index.html
biomaRt (2.42.0) Durinck et al. (37) https://bioconductor.org/packages/release/bioc/html/biomaRt.

html
immunophenoscore Charoentong et al. (38) https://tcia.at/tools/toolsMain
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the “limma” package (31). Scores were calculated and compared in
each bulk RNA-seq dataset. Moreover, we calculated the scores in
17 HCC tumor samples and analyzed the correlation between
scores and the absolute fraction of PD-1hiCD8+ T cells. The
absolute fraction of PD-1hi CD8+ T cells was defined as the
product of the relative fraction of PD-1hi CD8+ T cells in CD8+

T cells and the fraction of CD8+ T cells in tumor samples. The
former fraction was based on the flow cytometry results of Kim
et al. (data were obtained by personal communications). The latter
fraction was estimated by QuanTIseq (29).

We downloaded TPM data and/or count data and cell labels
from two scRNA-seq (21, 22) datasets for immune cells. Cells with
1,000–5,000 detected genes and expressing <5% mitochondrial
genes were retained. Standard procedures for variable gene
selection, dimensionality reduction, and clustering were
performed using Seurat version 3 (33), and the top 3,000 variable
genes were selected. Signature scores were calculated based on
TPM data. The cluster with the highest signature score was labeled
the PD-1hiCD8+ T cell, and other clusters were labeled according to
the original paper. Clustering results were visualized using uniform
manifold approximation and projection. Differential expression
test was performed using the “FindMarkers” function with
Wilcoxon rank-sum test in genes expressed in at least 25% of
cells using the default threshold (|logFC|>0.25). Gene ontology
(GO) enrichment analyses were performed using Metascape (26)
with p<0.01 and enrichment score >1.5. Cell–cell communication
analysis was conducted using CellPhoneDB (27).

Signature Scores in ICI-Treated Patients
and Mouse Models
We scored all ICI-treated samples (5, 16–20) and compared the
differences between responders (durable clinical benefit, DCB)
Frontiers in Oncology | www.frontiersin.org 4
and nonresponders (nondurable benefit, NDB) by Wilcoxon
rank-sum test. DCB was defined as complete response (CR),
partial response (PR), or stable disease (SD) for more than 6
months. NDB was defined as progressive disease (PD) or SD for
less than 6 months. In two studies (17, 18), no detailed
information was available on DCB/NDB; therefore, we
compared the CR/PR group with the PD group as a surrogate.
In a mouse model of ICI-treated breast cancer (23), we used the
“biomaRt” package (37) to convert genes from mouse to human
and compared the scores between ICI-resistant and ICI-sensitive
samples. The predictive value of the signature score in response
for ICI therapy was evaluated by calculating AUC values (36).
Patients with survival data available were divided into high and
low score groups according to the Yuden index. Overall survival
(OS) and progression-free survival (PFS) were estimated by
Kaplan-Meier curves, and the log-rank test was used to
compare Kaplan-Meier survival curves. A multivariable Cox
proportional hazard model was built to correct the effects of
potential confounding factors.

TCGA Data Processing
Reported objective response rates (ORRs) across 21 cancer types
were obtained from Lee and Ruppin (9). We scored 6,764
samples from TCGA in the corresponding cancer types. We
investigated the correlation of the proportion of high signature
score samples in each cancer type with the response rate. DEGs
between the samples with the top 33% and bottom 33% signature
scores were detected by edgeR (34). The definition of DEGs was
the same as that in Section 2.2. Kyoto Encyclopedia of Genes and
Genomes (KEGG) gene sets from the Molecular Signatures
Database (MSigDB, http://www.gsea-msigdb.org/gsea/msigdb)
were scored for DEGs using gene set variation analysis
FIGURE 1 | Flowchart of PD-1hiCD8+ T cells signature building, validation, and clinical implications in immune checkpoint inhibitor therapy.
September 2021 | Volume 11 | Article 695006
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(GSVA), where p<0.05 and |normalized enrichment score
(NES)| >1 were considered to indicate significance.

Other ICI Therapy Biomarkers
We compared our signature with other predictive biomarkers for
ICI. PD-L1 is an IHC biomarker approved by the Food and Drug
Administration (FDA) (41). PD-L1 gene expression was used here
as an IHC surrogate. PD-1 gene expression is also a predictor of
ICI therapy response (7). IFNg was found to be a response
biomarker by Ayers et al. (10). The mean expression of six
genes (IFNG, STAT1, IDO1, CXCL10, CXCL9, and HLA-DRA)
in this pathway was used to estimate their performance (10). The
score for Anti-CTLA4 resistance MAGE genes (CRMA) was
calculated as the average of MAGEA3, MAGEA2, MAGEA2B,
MAGEA12, and MAGEA6 (42). Immunophenoscore (IPS) was
calculated using a script supplied by The Cancer Immunome
Atlas (https://tcia.at/) (38). Tertiary lymphoid structure (TLS)
signature genes were obtained from Cabrita et al. (43). CD8+

T cell proportions were estimated by CIBERSORT (28) (CD8+

T CIBERSROT). TMB was available for two cohorts. For
Figures 6A, B, a logistic regression of TMB and signature score
was used to assess the combined predictive value for ICI. In the
survival analysis of Figures 6C–F, patients were divided into four
groups, TMBhighScorehigh, TMBlowScorehigh, TMBhighScorelow,
and TMBlowScorelow, according to their TMB and signature
score. The cutoff was determined by the best Yuden index.
Similarly, the effect of combination of PDL1 and our score was
also analyzed.

Statistical Analysis
All the software packages and algorithms are summarized in
Table 1. R version 3.5.1 was used for statistical analysis and
visualization. The AUC was used to evaluate the predictive value
of the signature score to ICI therapy. A two-sided Wilcoxon
rank-sum test was used for between-group comparisons, and
p-value<0.05 was regarded as statistically significant.
RESULTS

Building the PD-1hiCD8+-T-Cell-
Derived Signature
The flowchart of the process of building the PD-1hiCD8+-T-cell
signature is depicted in Figure 1 (left). We first combined CD8+-T-
cells-specific genes and DEGs in PD-1hiCD8+ T cells
(Supplementary Figure 1), resulting in 394 genes. To identify
immune-specific genes, the sequencing data of solid cancer from
CCLE were downloaded, and 150 genes highly expressed
(logTPM>3.1) in cancer cells were filtered. We selected the top
60% expressed genes in PD-1hiCD8+ T cells as an initial signature
(152 genes), which were sufficient for clustering PD-1hiCD8+ T cells
apart from PD-1low/negCD8+ T (Supplementary Figures 2, 3A, B).
In a scRNA-seq dataset, we found a cluster of cells with a high
initial signature score that exhibited a similar phenotype to that of
PD-1hiCD8+ T cells (upregulated genes enriched in T cell
exhaustion and cell proliferation/growth) (Supplementary
Figures 4A, B). The common genes between the initial signature
Frontiers in Oncology | www.frontiersin.org 5
and marker genes of this cluster were considered as the final
signature (31 genes, Table S1). The discrimination ability of the
final signature was the same as that of the initial signature (AUC=1)
(Supplementary Figures 3A, B). The signature included seven cell-
cycle-associated genes (BARD1, CENPE, RAD51, SMC2, GINS2,
CLSPN, and CCNF) and seven T-cell-exhaustion-associated
genes (CTLA4, PDCD1, TOX, SIRPG, HAVCR2, TIGIT, and
IGFLR1) (44, 45).

Validation of PD-1hiCD8+-T-Cell-
Derived Signature
The PD-1hiCD8+-T-cell signature was validated in both bulk
RNA-seq and scRNA-seq data (Figure 1, middle). In the bulk
RNA-seq data (13, 39), we found that the signature score could
discriminate PD-1hiCD8+ T cells from other immune cells
collected from healthy individuals (p<0.0001), and the
signature genes were relatively specific (Figures 2A, B). In two
independent studies (14, 15), PD-1hi/low/negCD8+ T cells were
also sorted and sequenced from HCC and breast cancer TILs by
flow cytometry. The PCA and correlation results showed that the
sorted PD-1hiCD8+ T cells had similar transcriptional features
and were tissue-agnostic among lung, liver, and breast tissues
(Supplementary Figures 3C, D). The PD-1hiCD8+ T cells had
the highest signature score compared with other CD8+ T cells
and were accurately identified by our score (AUC=1) (Figure 2C
and Supplementary Figures 3A, B, E). The signature score was
correlated with the fraction of PD-1hiCD8+ T cells in HCC tumor
samples (Pearson correlation, R=0.76, p=0.0004, Figure 2D).
Patients with high fractions of PD-1hiCD8+ T cells had higher
scores than other patients (p=0.0009, Supplementary
Figure 3F). In scRNA-seq data of melanoma TILs (21), the
PD-1hiCD8+ T cells were identified by our score (Figure 2E and
Supplementary Figure 4A), and most of the signature genes had
higher expression values in this subset than other immune cells
in the TME. (Figure 2F). Similar results were found in another
scRNA-seq data of NSCLC TILs (Supplementary Figure 4C)
(22). We identified a high-scoring subcluster of exhausted CD8+

T cells, with highly expressed genes enriched in cell proliferation/
growth (Supplementary Figure 4B). GSVA analyses also
confirmed that the cell cycle pathway was more activated in
PD-1hiCD8+ T cells compared with other exhausted CD8+ T cell
subsets with PD-1 expression (melanoma: NES=2.07,
p.adj=0.0059; NSCLC: NES=1.98, p.adj=0.0130). Increased
glycolysis (melanoma: p<0.0001; NSCLC: p<0.0001) and
secretion of CXCL13 were found in (melanoma: logFC=1.22,
p.adj<0.0001; NSCLC: logFC=0.85, p.adj<0.0001) PD-1hiCD8+ T
cell, consistent with a previous report (Supplementary Figure 5)
(13). The cell–cell interaction analysis using CellPhoneDB found
that PD-1hiCD8+ T cells interacted with B cells (mean= 5.424,
p<0.0001), regulatory T cell (mean= 3.801, p<0.0001), and
cytotoxicity T cells (mean= 3.683, p<0.0001) through the
CXCL13-CXCR5 axis (Figure 2G).

Effectiveness of Signature Score in
Predicting Response to ICI Therapy
To evaluate the effectiveness of our signature score in predicting
response to ICI therapy, we obtained 581 RNA-seq samples from
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FIGURE 2 | Validation of the signature score from bulk and single-cell RNA-seq data. (A) Bulk RNA-seq data of PD-1hiCD8+ T cells and other immune cells from the
database of immune cell expression project were integrated after normalization by house-keeping genes. PD-1hiCD8+ T cells had the highest score than other
immune cells (****: p<0.0001). (B) Signature genes were specific to PD-1hiCD8+ T cells. (C) The signature score can discriminate PD-1hi/low/negCD8+ T cells in
another study (18), where these cells were sorted and sequenced from hepatocellular carcinoma (HCC). (D) The proportion of PD-1hiCD8+ T cells in HCC tumor
samples was correlated with the signature score (Pearson correlation, R=0.76, p=0.0004). (E) In single-cell RNA-seq of melanoma tumor infiltrating immune cells,
PD-1hiCD8+ T cells had the highest score (****: p<0.0001), and the signature genes were highly expressed in this cluster (F). (G) The ligand–receptor interactions
between PD1hiCD8+T cells and other immune cells. PD1hiCD8+T cells secreted CXCL13 chemokine and interacted with the chemokine receptor CXCR5 expressing
on B cells, cytotoxicity lymphocytes, memory T cells, and regulatory T cells. G1, B cells; G2, plasma cells; G3, monocytes/macrophages; G4, dendritic cells; G5,
lymphocytes; G6, exhausted CD8+ T cells; G7, regulatory T cells; G8, cytotoxicity lymphocytes; G9, exhausted/heat-shock CD8+ T cells; G10, memory T cells; G11,
exhausted/cell cycle (CD4+ T cell).
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eight cohorts (six studies) across four cancer types, NSCLC,
melanoma, gastric cancer, and urothelial cancer (Figure 1, right).
These studies are summarized in Supplementary Table 2.
Interestingly, the signature scores were significantly higher in
responders than in nonresponders, except in one cohort where
the difference was nearly significant (p=0.096) (Figures 3A–H).
In another 204 ICI-treated breast cancer mouse models, the
sensitive groups had higher scores than resistant groups at all the
4 timepoints of sample collection (pretreatment, p<0.0001;3 days
after ICI p=0.0002;7 days after ICI p=0.0001; end of study
p<0.0001; Supplementary Figure 6). Next, we calculated
AUCs to evaluate the predictive value of PD-1hiCD8+ T cells
for ICI therapy response. The median AUC across the eight
cohorts was 0.755 (range: 0.61 to 0.91) (Figure 3I). In two studies
Frontiers in Oncology | www.frontiersin.org 7
involving both pretreatment and on-treatment datasets, the
AUCs in the on-treatment groups were higher than those in
the pretreatment group from the same study. Moreover, the
signature score (continuous variable, Table S3) was positively
associated with OS and PFS. We divided each cohort into high-
and low-score groups and found that high-score patients had
better survival with respect to either OS or PFS (Figure 4).
Furthermore, to explore whether the signature score was an
independent prognostic factor, we built a multivariable Cox
proportional hazard model including age, sex, and treatment
regimens if available. A high PD-1hiCD8+ T cell score was found
to be independently associated with a 76–94% reduction in the
risk of disease progression and a 28–92% reduction in the risk for
all mortality (Table 2). Similarly, the hazard ratios (HRs) in the
A B D

E F

G

I

H

C

FIGURE 3 | The signature scores were associated with response rates across different cancer types. (A–H) In all datasets, the response group samples had significant
(Wilcoxon rank-sum test) higher signature scores than nonresponse group samples (marginally significant in the Riaz pretreatment dataset; C). (I) Receiver operating
characteristic curve analysis for response prediction in all datasets.
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FIGURE 4 | Signature score and patients survival outcomes. Patients treated with immune checkpoint inhibitors were divided into high and low signature score
groups. Kaplan–Meier curves showed that high score group patients had better survival outcomes: (A) In the pretreatment Gide dataset, p=0.013 (log-rank test) in
overall survival, (B) p=0.0002 in progression-free survival. (C) In the on-treatment Gide dataset, p=0.017 for overall survival, (D) p=0.0034 in progression-free
survival. (E) In the Mariathasan dataset, p=0.0087 for overall survival. (F) In the Jung dataset, p=0.0055 for progression-free survival.
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on-treatment cohort (OS, HR=0.08, p=0.034; PFS, HR=0.06,
p=0.003) were smaller than those in the pretreatment group
(OS, HR=0.29, p=0.002; PFS, HR=0.29, p<0.001). Taken
together, these results showed that our signature score could
predict ICI therapy response and survival outcomes.

Predictive Value of the Signature Score in
Pan-Cancer Analysis
We calculated the signature scores of 6,764 samples across 21
cancer types from TCGA and collected ORR data for anti-PD-1/
PD-L1 therapy from Lee and Ruppin (9). The distribution of
signature scores was higher in immune-hot tumors, including
colon adenocarcinoma with microsatellite instability phenotype
(COAD_MSI), lung squamous cell carcinoma (LUSC), lung
adenocarcinoma (LUAD), head and neck squamous cell
carcinoma, skin cutaneous melanoma (SKCM), and bladder
urothelial carcinoma (BLCA) which were more sensitive to ICI
therapy (Figure 5) (46, 47). In prostate adenocarcinoma, ovarian
serous cystadenocarcinoma (OV) and glioblastoma multiforme
tumors, which are known to be immune-cold tumors, the
signature scores were lower (46, 47). Moreover, in the
Mariathasan dataset, the immune-inflamed phenotype had
higher scores than the immune-desert and immune-excluded
phenotypes (Supplementary Figure 7A). Generally, the breast
cancer samples showed low immune infiltration but had scores at
the median level. This phenomenon could be attributed to the
heterogeneity of tumor subtypes; triple-negative breast cancer
had higher scores than other subtypes (p<0.0001,
Supplementary Figure 7B). The fraction of high-score (80th-
percentile) samples was correlated with ORR (Pearson
correlation, R=0.78, p<0.0001). To explore the differences
between high-score (top 33%) and low-score (bottom 33%)
samples, DEGs were identified and their KEGG pathway
enrichment was analyzed (Supplementary Figure 8). T cell
receptor signaling pathway, cytokine–cytokine receptor
interaction, and chemokine signaling pathway were activated
in samples with high signature score across most cancer types
(85%, [17/20], 100% [20/20], and 85%[17/20], respectively). The
cell adhesion molecule (CAM) pathway, an important mediator
of immune cell migration (48), was also upregulated in high-
score samples (85%[17/20]). These results demonstrated that
cancers with high signature scores had increased cell cross-talk
and immune cell infiltration, reflecting an immune-hot
phenotype. We also found that glycolysis and fatty acid
metabolism were upregulated only in some ICI-therapy-
sensitive cancer types. The interaction of PD-1 with the PD-L1
axis can upregulate aerobic glycolysis and induce fatty acid
oxidation in T cells, leading to immunosuppression (49).
Consequently, these cancer types were sensitive to anti-PD-1/
PD-L1 therapy.

Comparison With Other ICI Biomarkers
We compared the predictive performance of our signature score
with those of other widely used transcriptome biomarkers,
including IFN-g, PD-L1, PD-1, CRMA, TLS, IPS, and CD8+ T
CIBERSORT. Our score was positively associated with all of
Frontiers in Oncology | www.frontiersin.org 9
TABLE 2 | Multivariable Cox proportional model of signature score and other
clinical factors.

Gide et al. pretreatment HR 2.50%CI 97.50%CI P

Progression-free survival (n = 73)

Score (n, %)
Low (32, 43.8%) Ref
High (41, 56.5%) 0.29 0.15 0.56 <0.001

Age (mean ± sd: 61.6 ± 13.8) 0.99 0.97 1.02 0.559
Gender (n, %)
Female (26, 35.6%) Ref
Male (47, 64.4) 1.44 0.74 2.8 0.286

Regimen (n, %)
Monotherapy (41, 56.2%) Ref
Combined-therapy (32, 44.8) 0.43 0.22 0.85 0.015

Gide et al. on-treatment Progression-free survival (n=18)
Score (n, %)
Low (32, 43.8%)
High (41, 56.5%) 0.06 0.01 0.38 0.003

Age (mean ± sd: 60.3 ± 15.1) 0.97 0.92 1.02 0.295
Gender (n, %)
Female (5, 27.8%) Ref
Male (13, 71.2%) 0.14 0.02 0.87 0.035

Regimen (n, %)
Monotherapy (9, 50.0%) Ref
Combined-therapy (9, 50.0%) 1.38 0.37 5.17 0.63

Gide et al. pretreatment Overall survival (n=73)
Score (n, %)
Low (32, 43.8%)
High (41, 56.5%) 0.29 0.13 0.64 0.002

Age (mean ± sd: 61.6 ± 13.8) 1.00 0.97 1.03 0.938
Gender(n, %)
Female (26, 35.6%) Ref
Male (47, 64.4) 1.60 0.67 3.83 0.294

Regimen(n, %)
Monotherapy (41, 56.2%) Ref
Combined-therapy (32, 44.8) 0.25 0.09 0.7 0.008

Gide et al. on-treatment Overall survival (n=18)
Score(n, %)
Low (32, 43.8%) Ref
High (41, 56.5%) 0.08 0.01 0.83 0.034

Age (mean ± sd: 60.3 ± 15.1) 1.00 0.97 1.03 0.938
Gender(n, %)
Female (5, 27.8%) Ref
Male (13, 71.2%) 1.60 0.67 3.83 0.294

Regimen(n, %)
Monotherapy (9, 50.0%) Ref
Combined-therapy (9, 50.0%) 0.25 0.09 0.70 0.008

Mariathasan et al. Overall survival (n=348)
Score (n, %)
Low (192, 55.2%) Ref
High (156, 44.8%) 0.72 0.56 0.94 0.016

Gender (n, %)
Female (76, 21.8%) Ref
Male (272, 78.2%) 0.81 0.60 1.10 0.183

Baseline ECOG (mean ± sd: 0.67 ± 0.57) 1.96 1.53 2.51 0
Smoking History (n, %)
Current (35, 10.1%) Ref
Never (116, 33.3%) 1.18 0.75 1.87 0.472
Previous (197, 56.1%) 1.13 0.73 1.75 0.589

Received Platinum (n, %)
No (76, 21.8%) Ref
Yes (272, 78.2%) 1.80 1.26 2.58 0.001

Jung et al. Progression-free survival (n=27)
Score (n, %)

(Continued)
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these markers except CRMA (Supplementary Figure 9A). The
net reclassification index showed that our score could better
classify responders to ICI therapy except in two Riaz cohorts
(Supplementary Figure 9B). A possible explanation was that in
the Riaz cohorts, some of the patients had received ipilimumab
therapy before PD-1 treatment, which may have influenced their
immune status. The AUCs of the signature score, IFN-g, and PD-
L1 were higher than those of the other biomarkers
(Supplementary Figure 9C). PD-L1 mRNA expression was
correlated with our score (Supplementary Figures 9A, 10A–H).
In many cases (n=452), PD-L1 and our score stratified patients
consistently (Supplementary Table 4). In the Mariathasan cohort,
where there were 75 discordant samples between PD-L1 and our
signature score, the combination of PD-L1 and our score resulted
in slightly improved predictive value (AUC from 0.61 to 0.63). It
is noteworthy that the OS rate was significantly higher for PD-
L1highScorehigh samples than for other samples (log-
rank, p=0.0025) (Supplementary Figures 10I–K). TMB has
Frontiers in Oncology | www.frontiersin.org 10
been reported as a genomic predictor of ICI therapy response
in multiple cancer types (9). In two cohorts where TMB data
were available, we found no significant association between TMB
and our score (Supplementary Figure 9A). The combination
of our signature and TMB was of higher predictive value than
either our signature or TMB alone (Figures 6A, B). Next, we
divided the patients into four groups by our signature score and
TMB. The 1-year OS rates were 70.0% (95% CI: 59.0-83.0%)
for the TMBhighScorehigh group, 39.7% (95% CI: 29.0–54.3%)
for the TMBhighScorelow group, 42.4% (95% CI: 31.8–56.7%) for
the TMBlowScorehigh group, and 30.1% (95% CI: 21.7–41.7%)
for the TMBlowScorelow group (Mariathasan cohort, Figure 6C).
The 1-year PFS rates were 60% (95% CI: 29–100%) for the
TMBhighScorehigh group and 50.0% (95% CI: 18.8–100%) for the
TMBlowScorehigh, in the other two groups; all patients progressed
in less than 1 year (Jung cohort, Figure 6D). Patients in the
TMBhighScorehigh group showed better survival outcomes
compared with other groups (log-rank p<0.001 for OS, p=0.045
for PFS, Figures 6E, F). In the Mariathasan cohort, patients in
the TMBhighScorehigh group showed increased OS compared
with patients in the TMBhighScorelow group (log-rank p=0.008;
HR=0.51, 95%CI: 0.30-0.84, p=0.008), suggesting that the
signature score could act as a complementary biomarker to TMB.
DISCUSSION

The introduction of ICI therapy represents a milestone in cancer
therapy. However, the low response rates to this type of therapy
TABLE 2 | Continued

Gide et al. pretreatment HR 2.50%CI 97.50%CI P

Progression-free survival (n = 73)

Low (18, 66.7%)
High (9, 33.3%) 0.23 0.08 0.71 0.011

Age (mean ± sd: 62.1 ± 9.0) 0.80 0.18 3.52 0.765
Gender (n, %)
Female (5, 18.5%) Ref
Male (22, 81.5%) 0.94 0.31 2.87 0.92
A B

FIGURE 5 | Evaluation of the correlates of immune-check point inhibitors to signature scores across cancer types. (A) Distribution of the signature scores across 21
cancer types in The Cancer Genome Atlas (TCGA) dataset. The red dot within each cancer type denoted the median score; the orange line represented the 80th
percentile score across all samples. (B) The proportion of high signature score (>80th percentile) samples was correlated with the reported objective response rates in a
published paper (Pearson correlation, R=0.78, p<0.0001). ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC,
cervical squamous cell carcinoma and endocervical adenocarcinoma; COAD, colon adenocarcinoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme;
HNSC, head and neck squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung
squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PRAD, prostate adenocarcinoma; SARC,
sarcoma; SKCM, skin cutaneous melanoma; UCEC, uterine corpus endometrial carcinoma; UVM, uveal melanoma.
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will increase the economic burden on cancer patients. Treatment
with anti-PD-1 agents requires about $6,000 per infusion, which
is a much higher cost than transcriptome tests. Therefore,
developing biomarkers for predicting ICI therapy response is
an urgent and cost-effective field. In this study, we built a
transcriptional signature of PD-1hiCD8+ T cells. The signature
score could discriminate this population from other immune
cells in both bulk and single-cell-level datasets across different
cancer types. Based on flow cytometry and RNA-seq results from
an independent study, we validated the ability of our signature to
quantify the fraction of PD-1hiCD8+ T cells in tumor samples.
Furthermore, we found that in NSCLC, melanoma, gastric
cancer, urothelial cancer, and a mouse model of breast cancer,
samples with high signature scores showed more benefit from
ICI therapy. The predictive value of the signature score was
better than those of other transcriptional markers. Combination
of the signature score with TMB would improve its predictive
Frontiers in Oncology | www.frontiersin.org 11
value. In 21 TCGA cancer types, the signature score was
correlated with ICI therapy response, revealing the intrinsic
connection of the immunological activity of the TME
described by the signature of each cancer tissue. Our study also
offers an easy-to-use R package to evaluate PD-1hiCD8+ T cell
infiltration in more tumor samples.

Many studies have revealed that CD8+ TILs are heterogenous,
and that different types of CD8+ TILs showed different response
to ICIs (1, 21, 44). Our results also demonstrated the limited
predictive value of CD8+ TILs. Persistent antigen exposure from
tumor cells or antigen-presenting cells can cause CD8+ T cell
exhaustion, inducing sustained expression of PD-1 in CD8+ TILs
(1). Even within this dysfunctional compartment, CD8+ T cells
have distinct roles in tumor immunity. Thommen et al. found
that in NSCLC, the presence of PD-1hiCD8+ T cells strongly
predicted response to ICI therapy and was correlated with
increased OS (13). In these cells, immune-checkpoint genes
A

B D
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F

C

FIGURE 6 | The signature score could improve the predictive and prognostic value of tumor mutational burden (TMB). The area under the receiver operating
characteristic curve (AUC) of the combination of the signature score and TMB was higher than TMB and the signature score (A: Mariathasan dataset; B: Jung
dataset); Significant differences exist between the four groups (TMBhighScorehigh, TMBlowScorehigh, TMBhighScorelow, and TMBlowScorelow) in either overall survivals
(C: Mariathasan dataset, p=0.0002) or progression-free survivals (D: Jung dataset, p=0.024) than other groups. TMBhighScorehigh group patients had better overall
survival (E: Mariathasan dataset, p<0.0001) and progression-free survival (F: Jung dataset, p=0.045) than other three groups.
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(PD-1, CTLA4, TIGIT, HAVCR2/TIM-3, and TNFRSF9) (8)
and transcription factor TOX, a central regulator of distinct
exhausted T cell transformation (45), were highly expressed. PD-
1hiCD8+ T cells were distinct from other PD-1 positive CD8+ T
cells, as the cell cycle and glycolysis process were upregulated in
these cells. This phenotype was similar to that of the PD-1+TIM-
3+ TRM cell identified by Clarke et al. (50), which was shown to be
a favorable ICI therapy marker in NSCLC (50). Although it was
not clear to what extent PD-1hiCD8+ T cells overlapped with PD-
1+TIM-3+ TRM cells, the predictive values of PD-1hiCD8+ T cells
were confirmed across 5 cancer types in nearly 600 clinical
samples and 204 mouse models. Generally, we found that PD-
1hiCD8+ T cell scores of on-treatment samples were better than
those of pretreatment samples because of the better reflection of
immune status after therapy (51). Two studies have reported that
the relative fraction of PD-1hiCD8+ T cells in CD8+ cells, rather
than the absolute fraction in total tumor tissue as estimated by
our signature score, was negatively associated with ICI therapy
outcomes (21, 52). In predicting ICI therapy response, the
relative fraction of PD-1hiCD8+ T cells might be largely
influenced by the complex functions of other intratumor CD8+

T cells with negative or low PD-1 expression (21, 53).
Our results indicated that the PD-1hiCD8+ T cell score was

associated with the immune phenotype. Immune-hot tumors
(COAD_MSI, SKCM, BLCA, LUSC, and LUAD) had higher
signature scores and were sensitive to ICI therapy. Our score was
predictive of the ORR to anti-PD-1/PD-L1 therapy across 21
cancer types in 6,764 TCGA samples (Pearson correlation,
R=0.78, p<0.0001). In support of these results, we found that
important pathways in antitumor activity were consistently
upregulated in high-score samples, including cytokine–
cytokine receptor interaction, chemokine signaling pathway,
and T cell receptor signaling pathway (54). The CAM pathway
was also activated in the high-score group, which was correlated
with T cell infiltration in tumors (48). Moreover, in the
Mariathasan dataset, immune-inflamed tumors had higher
signature scores than immune-excluded or immune-desert
samples. However, not all scores for these tumors were
correlated with their phenotype. This discordance could be
related to the spatial location of PD-1hiCD8+ T cells and the
impact of other immune cells, whereas our study mainly focused
on the transcriptional features of PD-1hiCD8+ T cells.
Heterogeneity of tumor subtypes could also weaken the
associations between our score and immune phenotypes. For
example, breast cancer is generally considered as low immune-
reactive cancer, but triple-negative breast cancer has been
reported to be a high-immune-infiltration subtype (55). Our
results consistently showed that this subtype had higher scores
than other subtypes. Similarly, the COAD_MSI subtype was of
immune-hot phenotype, unlike other COAD subtypes (56). On
the other hand, glycolysis and fatty acid metabolism were only
upregulated in some of the ICI-sensitive cancer samples with
high scores. In PD-1 signaling, tumor cells can block antitumor
immunity through this two metabolic pathways (49). These
results partially explain why these cancer types are sensitive to
anti-PD-1/PD-L1 therapy. Recent findings showed that targeting
these metabolic interventions in combination with ICI could
Frontiers in Oncology | www.frontiersin.org 12
offer opportunities to improve therapy response; several clinical
trials of such treatment are ongoing (57).

The main function of PD-1hiCD8+ T cells is the secretion of
CXCL13. In a previous study, CXCL13 was found to be mainly
expressed by CD4+ follicular helper T cells, recruiting B cells and
inducing TLS formation in the nonlymphoid tissue (58). In
scRNA-seq data, as well as identifying a cluster of CD4+ T cells
with high CXCL13 expression, we confirmed the secretion of
CXCL13 from PD-1hiCD8+ T cells and their interaction with B
cells and regulatory T cells through the CXCL13-CXCR5 axis.
These results indicated that PD-1hiCD8+ T cells might recruit and
organize immune cells through secretion of CXCL13, modulating
the TME to an immune-hot phenotype. The positive association
between the TLS score and the PD-1hiCD8+ T cell score also
supports this. The importance of CXCL13 in ICI therapy has been
confirmed in vivo. Anti-PD-1 therapy failed in a CXCL13-null
mouse model of BLCA, whereas the wild-type model showed a
good response (59), and the treatment with a combination of
CXCL13 and anti-PD-1 successfully retarded tumor growth in
another mouse model of OV (60). Although the differences in
CXCL13 secretion between CD4+ T cells and PD-1hiCD8+ T cells
remain elusive, these results indicate that CXCL13 is a potential
therapeutic target that could be targeted in combination with
ICI therapy.

Increasing evidence shows that response to ICI therapy is
influenced by both immune cells and tumor-associated factors.
PD-L1 positivity of tumor cells has been shown to be a good
indicator of response to ICI therapy. In recent years, it has been
recognized that high PD-L1 expression in dendritic cells, regulatory
T cells, and macrophages can attenuate T cell activation and
promote T cell exhaustion (61). The expression of PD-1 or PD-L1
in theTME is important for ICI therapy. Inour study, patients in the
PD-L1highScorehigh group benefited more from ICI therapy than
other patients (Supplementary Figure 10K). TMB-high tumors
had high levels of neoantigens, which make them more
immunogenic and trigger a TIL response (11, 12). TMB has been
approved by the FDAas a genomic biomarker in some cancer types
(41, 62).However, TMBhas some limitations as a biomarker, and it
has been suggested that a combination of TMB with other
predictors may show superior performance (12). Whereas TMB is
reflective of tumor properties, our signature score for the PD-
1hiCD8+ T cell characterizes the tumor environment. In our
analysis, TMB and the signature score both showed a good
predictive value for ICI but were independent of each other.
Therefore, it was intuitive to explore their potential combined
effects. When samples were divided into four subtypes based on
TMB and the signature score, the patients in the TMBhighScorehigh

group not only were highly immunogenic (characterized by a high
TMB)but also showedan immunehotphenotype (characterizedby
ahighsignature score).Thesepatientswouldbeexpected tobemore
sensitive to ICI therapy, and indeed they exhibited the best clinical
outcomes in two independent datasets. These results warrant
further confirmation and extension.

One of the potential limitations of our study was that our
analysis was an integrated, retrospective study. Second, although
the multivariable Cox proportional hazard model showed that
the PD-1hiCD8+ T cell score was an independent prognostic
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indicator, some clinical prognostic factors, including the number
of metastatic sites, first-line therapy information, and details of
ICI therapy regimens, were not available. In the Riaz cohort, the
difference between responders and nonresponders was not as
obvious as those in other cohorts. Some patients receiving
ipilimumab therapy before PD-1 treatment might be an
additional confounder that would weaken the statistical power
of our analysis (63, 64). Third, our study did not explore the
mechanisms underlying the different effects of the PD-1hiCD8+ T
cell score in different cohorts or the variation in cutoff values for
high-score samples in different cohorts. One possible mechanism
may involve the complicated PD-L1 status in tumor cells or
immune cells, like dendritic cells and macrophages. However, the
gene expression of PD-L1 is a mixture of those cell types in RNA-
seq; other methods including cytometry by time of flight and
codetection by indexing may help explore this in the future.
CONCLUSIONS

In summary,webuilt a 31-gene signature to represent the fractionof
PD-1hiCD8+ T cells from bulk RNA-seq data and demonstrated
promising potential of the PD-1hiCD8+ T cell as a pan-cancer
biomarker inpatients receiving ICI therapy.The combinationof the
signature scorewithTMBcould further increase its predictivevalue.
The secretion of CXCL13 is a potential mechanism of how PD-
1hiCD8+ T cells modulate the TME and why high-scoring patients
tend to have favorable outcomes of ICI therapy.
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