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1  |   INTRODUCTION

The brain has been considered as an immune-privileged organ 
mainly due to the presence of brain barriers that restrict the re-
location of immune cells and the uncertain existence, or rele-
vance, of a central nervous system (CNS) lymphatic drainage.1,2 
This notion was recently amended because of studies describ-
ing the presence of functional lymphatic vessels in the menin-
ges surrounding the brain and the spinal cord.3,4 Experimental 

evidence has demonstrated that the meningeal lymphatic ves-
sels (MLVs) play a role in the drainage of macromolecules in 
the brain parenchyma3,4, and were proposed as a route of com-
munication between the CNS and the immune system.5

We here examine MLVs as a contributor of fluid drain-
age in the CNS, integrating the interstitial fluid (ISF) and the 
cerebrospinal fluid (CSF) paths. We define this system as a 
CNS-lymphatic unit, discussing the potential association be-
tween flawed MLVs, CSF-ISF drainage, and the generation 
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Summary
The recent definition of a network of lymphatic vessels in the meninges surrounding 
the brain and the spinal cord has advanced our knowledge on the functional anatomy 
of fluid movement within the central nervous system (CNS). Meningeal lymphatic 
vessels along dural sinuses and main nerves contribute to cerebrospinal fluid (CSF) 
drainage, integrating the cerebrovascular and periventricular routes, and forming a 
circuit that we here define as the CNS-lymphatic unit. The latter unit is important for 
parenchymal waste clearance, brain homeostasis, and the regulation of immune or 
inflammatory processes within the brain. Disruption of fluid drain mechanisms may 
promote or sustain CNS disease, conceivably applicable to epilepsy where extracel-
lular accumulation of macromolecules and metabolic by-products occur in the inter-
stitial and perivascular spaces. Herein we address an emerging concept and propose 
a theoretical framework on: (a) how a defect of brain clearance of macromolecules 
could favor neuronal hyperexcitability and seizures, and (b) whether meningeal lym-
phatic vessel dysfunction contributes to the neuroimmune cross-talk in epileptic 
pathophysiology. We propose possible molecular interventions targeting meningeal 
lymphatic dysfunctions, a potential target for immune-mediated epilepsy.
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of a pro-ictogenic brain environment. We examine the partic-
ipation of MLVs in the neuroimmune interaction, in response 
to brain-derived antigens.

1.1  |  Lymphatic vessels: basic functions
New knowledge of MLVs is emerging,3,4,6–8 including the an-
atomic localization and the implication for draining of solutes 
and immune cells. However, the exact functions of MLVs in 
both healthy and pathological conditions remain to be char-
acterized. Due to shared anatomical and functional aspects 
between meningeal and peripheral lymphatic vessels, we here 
refer to the latter to revise the lymphatic system fundamental 
aspects. In the periphery, lymphatic vessels develop in close 
association with veins in the subcutaneous tissues and along-
side arteries in the viscera. Lymphatic capillaries are consti-
tuted of a thin wall of endothelial cells, with smooth muscle 
cells and an adventitia layer present in larger vessels. The ex-
istence of openings in the endothelium and specialized valves 
allows for the collection of interstitial fluid, molecules, and 
proteins that have leaked from adjacent blood vessels due to 
damage or pressure changes, cleaning the tissue from the accu-
mulating by-products.9 Anatomic and functional defects of the 
peripheral lymphatic system result in the disruption of drain-
age and the development of lymphedema (accumulation of 
protein-rich fluid).10,11 Primary lymphedema is caused by con-
genital mutations in the genes involved in lymphatic vessel de-
velopment (eg, Vascular endothelial growth factor receptor 3 
[VEGFR-3]). Secondary lymphedema is a consequence of in-
creased tissue pressure following trauma or tumors compress-
ing the vessels, surgeries (eg, the removal of lymph nodes), 
scar tissue, chronic venous insufficiency, obesity, and infec-
tions (eg, filariasis, first cause of lymphedema in developing 
countries).11 Each of these conditions can result in the over-
load of lymphatic transport capacity due to the obstruction or 
interruption of lymphatic vessels, favoring edema formation.

The lymphatic system is also a key player in immune 
surveillance.12 Lymphatic vessels drain soluble and cell-
associated antigens from the tissues into regional lymph 
nodes, where they are presented to T and B lymphocytes 
via specialized antigen-presenting cells (APCs). The inter-
action between APCs, lymphocytes, and the lymph node 
environment establishes whether naive lymphocytes will 
mount an effector response, become tolerant, or undergo 
apoptosis to avoid autoimmunity. Therefore, lymphatic 
vessels play a central role in immune-cell activation and 
differentiation.13,14

1.2  |  The meningeal lymphatic vessels
In the CNS, the lymphatic vessels are located in the dura 
mater facing the subarachnoid space, lining the dural sinuses 
(the sinuses on the calvarium and the pterygopalatine and 

the middle meningeal arteries on the cranial base; Figure 1), 
or along the cranial nerves (trigeminal, optic, and spinal 
nerves).3,4,15 Experimental evidence suggests that MLVs are 
important for the collection of the interstitial fluid solutes 
from the brain parenchyma, draining into lymph nodes lo-
cated in the neck (deep and superficial cervical lymph nodes, 
dcLNs and scLNs, respectively), and participate to the 
transport of T cells, dendritic cells, and macrophages.3 The 
dcLNs are the primary collectors of the MLVs constituting 
the draining lymph nodes of the CNS3,4, and are indicated as 
the principal lymph nodes involved in the immune response 
to CNS-derived antigens16. MLVs are involved in: (a) CNS 
fluid movement, (b) drainage of solutes from the brain pa-
renchyma, and (c) modulation of the immune response to 
CNS-derived antigens. MLV dysfunction could participate 
in the pathogenesis of neurodegenerative diseases, where 
accumulation of macromolecules in brain parenchyma and 
a neuro- immune cross-talk occur.17,18

2  |  THE CNS-LYMPHATIC UNIT 
AND PARENCHYMAL WASTE 
ACCUMULATION: IMPLICATIONS FOR 
SEIZURES AND EPILEPSY

2.1  |  Blood-brain barrier impairment, 
macromolecule accumulation, and neuronal 
hyperexcitability
The blood-brain barrier (BBB) is a functional-anatomic unit 
and a fundamental segment of the cerebrovascular tree. The 
BBB consists of a multicellular assembly of endothelial cells, 
astrocytes, and pericytes,30 with a main function of separat-
ing the circulating blood solutes and cells from the ISF and 
the brain parenchyma.31

BBB damage and dysfunction play an important role in gen-
erating and sustaining ictal activity.32–34 Neuronal hyperexcit-
ability can be induced following BBB damage through different 
mechanisms, including: (a) rapid disequilibrium in parenchymal 

Key Points

•	 Meningeal lymphatic vessels are functionally con-
nected to CSF-ISF drainage pathways, constitut-
ing the CNS-lymphatic unit

•	 The CNS-lymphatic unit contributes to brain in-
terstitial clearance and impacts the neuroimmune 
interactions

•	 Functional alterations of the CNS-lymphatic unit 
may contribute to the pathogenesis of acquired 
and immune epilepsies
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ionic concentrations (eg, K+), impacting the initiation and prop-
agation of action potentials32; (b) perivascular and parenchymal 
accumulation of serum proteins,35–37 which can promote neuro-
nal damage and hyperexcitability38 (Box 2); (c) the setting up of 
a self-sustaining cycle between seizure activity and BBB permea-
bility, driven by increased interstitial glutamate levels,39 metabolic 
mismatch (hypometabolism, hypoxia), and/or edema, all resulting 
in or perpetrating neuroinflammation.40–42 BBB abnormalities are 
associated with transient vasogenic or cytotoxic edema in cortical 
and subcortical ictal regions.32,43,44 Following BBB damage, in-
terstitial protein accumulation promotes water entry into the brain 

as well as changes in the lipophilicity of the perivascular space.45 
It is therefore plausible to assume that BBB damage occurring 
during seizures will interfere with ISF formation and its move-
ment along the arteriole-capillary routes (Box 1). Disrupted ISF 
circulation during seizures could, in turn, favor the interstitial ac-
cumulation of waste products (eg, hyperphosphorylated tubulin-
associated protein, pTau,46,47), sustaining astrocytes and microglia 
activation, neuroinflammation and ictal activity.48

2.2  |  Macromolecule clearance and the 
meningeal lymphatic vessels (MLVs)
The MLVs contribute to the clearance of solutes from the 
brain parenchyma.4 Clearance of cortically injected ovalbumin 
(45 kDa) was significantly reduced in K14-VEGFR3-Ig mice 
(K14flt4-tg, a model of congenital lymphedema lacking a func-
tional meningeal lymphatic drainage49) as compared to control. 
By measuring the intensity of the fluorescent signal, Aspelund 
et al4 demonstrated that, in physiologic conditions, ovalbumin 
is cleared from the brain and transported to the dcLNs, presum-
ably through the MLVs located at the base of the skull. In the 
absence of a functional MLVs (K14flt4-tg mice) ovalbumin 
accumulates in the brain parenchyma. Similar results were ob-
tained by Louveau et al8 (identifying 5 “hotspots” of lymphatic 
drainage in the meninges), and using mice undergoing surgical 
ligation of the lymphatic vessels afferent to the dcLNs.3,4 These 
data demonstrate that MLVs play an important role in the clear-
ance of interstitial accumulating molecules, strengthening the 
notion of dcLNs as collectors of brain drainage pathways.

Plog et al50 demonstrated that ISF draining along the peri-
vascular space ends in the dcLNs. By impairing the CSF-ISF 
exchange (using pharmacologic, surgical, and physical manip-
ulations24) the authors observed a reduced clearance of tracers 
(including ovalbumin) from the brain and a defect in drainage 
toward the dcLNs. These results suggest that CSF, ISF, and the 
meningeal lymphatic flows are functionally connected and con-
tribute as a whole to interstitial clearance. Building from this 
evidence, here we specify a CNS-lymphatic unit, constituted by 
the structures allowing ISF and CSF movement (ventricles, peri-
vascular space, and basement membrane of capillaries) and the 
MLVs. Impaired clearance of toxic molecules (eg, amyloid beta 
or pTau) is a trait of neurodegenerative diseases contributing 
to neuronal hyperexcitability (Box 2). Therefore, a functional 
modification of the CNS-lymphatic unit could be pathologic.

3  |   ROLE OF MENINGEAL 
LYMPHATIC VESSELS IN CNS 
IMMUNE SURVEILLANCE

3.1  |  T cells in the CNS lymph nodes
The role of adaptive immunity in the pathophysiology of CNS 
diseases is emerging.71–73 Here we address the mechanisms 

F I G U R E   1   Schematic representation of lymphatic flow (light 
blue) located in the meninges, at the calvarium and cranial fossa (dorsal 
and ventral side of the cranium). A, In the calvarium, MLVs are located 
along the dural sinuses and the middle meningeal artery (red), as well as 
along the rostral rhinal vein and the tentorium around the pineal gland. 
B, C In the cranial fossa, MLVs are along the pterygopalatine artery 
(red), the optic and trigeminal nerves, the hypophysis, and the IX-XI 
cranial nerves. MLVs cover the spinal canal, exiting together with the 
cranial nerves toward the lymph nodes (C). FM, foramen magnum; 
MLVs, meningeal lymphatic vessels; MMA, middle meningeal artery; 
PPA, pterygopalatine artery; RRV, rostral rhinal vein; SSS, sinus 
sagittalis superior; ST, sinus transversus; TG, trigeminal nerve



      |  33NOÉ and MARCHI

of adaptive neuroimmunity, focusing on the link between 
MLVs, dcLNs, and T-cell activation. Available studies 
point to a pivotal role of dcLNs in CNS immune surveil-
lance.16,74–76 As previously demonstrated,16,77 the immune 
response to CNS-derived antigens is regional. Antigens 
drained from the CSF or present in the meninges trigger a T-
cell response,77 whereas antigens expressed in the brain pa-
renchyma induce preferably a humoral immune reaction.16 
CSF-ISF clearance (Box 1 and Figure 3) follows distinct 
pathways (ventricles, periventricular organs, subarachnoid 
and parenchyma space, or cortical and subcortical regions) 
determining specific antigen-draining routes toward second-
ary lymphoid organs, perhaps influencing the immune re-
sponse (Figure 4). ISF drains mainly to the dcLNs,4,27 while 
solutes present in the CSF flow into both scLNs and dcLNs, 
as well as to lumbar LNs.19,78–80 In the dcLNs, brain-derived 
antigens elicit a CNS-specific T-helper immune response 
(Section 3.2), whereas immune response triggered in the 
superficial or lumbar lymph nodes has been proposed to be 
skewed toward CD8+ T-cell activation.81

3.2  |  Role of deep cervical lymph nodes in 
brain immune tolerance and response
By injecting immunogenic tumor-derived antigen directly 
into the brain parenchyma, Harling-Berg and colleagues dem-
onstrated that, in the dcLNs, the evoked immune response is 
T-helper type 2 (Th2) and B-cell mediated, resulting in anti-
body production.16 Injuries to the CNS (eg, optic nerve injury) 
promote a similar immune response associated with the up-
regulation increase of regulatory T cells (Treg, a cell subpopu-
lation pivotal in maintaining tolerance to self-antigens and in 
preventing autoimmune disease,82 Figure 4). Dissimilarly, in 
the peripheral lymphatic organs, CNS-derived antigens elicit a 
cytotoxic immune response (CD8+ T-cell mediated), without 
activation of the Treg subpopulation.82,83 The source of the CNS-
derived antigens (parenchymal vs meningeal) may determine 
the lymph nodes to which the antigens drain to, eventually in-
fluencing the immune response. This was proposed as a mecha-
nism to provide brain protection from pathogen infection, at the 
same time preserving neurons from autoimmune attacks.84 Of 

Box 1:  CNS fluids

The cerebrospinal (CSF) and the interstitial fluid (ISF) are the principal fluid components of the CNS. The CSF is an ultrafil-
trate of blood plasma, with a low protein content in the ventricles. At spinal cord level, protein concentration in the CSF is 
higher and includes a component of white blood cells. Its main functions are to protect the brain (buoyancy and shock absorp-
tion), to maintain brain homeostasis, and to accumulate waste products, (eg, brain cell metabolites). The CSF is produced by 
the choroid plexus (up to 80%) filling the lateral, third, and fourth ventricles, while the remaining 20% may derive from the 
ependymal cells lining the ventricles and from the subarachnoid space.19,20 The CSF circulates through the ventricles, the 
cisterns, and fills the subarachnoid space, and may re-enter the cortex via dispersion along large caliber arteries/arterioles.19,21 
A component of the CSF flows along the Virchow-Robin space and in the perivascular space (pia and the glia limitans). The 
CSF is also assumed to enter the periventricular organs directly from the ventricles22 (Figure 2). The CSF has a pulsatile flow 
(along the antero-posterior axis), as systolic and diastolic pressure changes impact CSF flow velocity and direction21. The 
CSF exits the CNS via the arachnoid villi into the sinus sagittalis superior or flows to the nasal lymphatics through the cribri-
form plate and along principal nerve routes (olfactory, optic, and spinal nerves, where MLVs are also located; Figure 3).
The ISF fills the extracellular space within the brain parenchyma (15%-20% of total brain volume).23 The ISF has a unique 
composition of ions, proteins, peptides, and neurotransmitters, essential to maintain the isotonicity of the brain cellular 
microenvironment.20 The ISF derives at the BBB from secretion processes, where water follows ionic transport into the 
brain and across the endothelium (reviewed in Brinker et al19). Starling's forces (oncotic vs hydrostatic pressure) control 
the production of BBB exudate in disease conditions, when serum proteins can access the brain. Movement of ISF in the 
extracellular space may follow diffusion and convection mechanisms. However, the relative contribution of the two re-
mains to be defined.21,22 The interchange and mixing between the CSF and ISF is difficult to estimate, as it may vary de-
pending on brain region (eg, depth of the cortical layers or proximity to ventricles where the CSF can diffuse).
The ISF drains along 3 potential pathways23: (a) the ventricle wall through ependymal cells, (b) the perivascular (and the 
Virchow-Robin) space at the surface of the brain,24 and (c) the blood vessel wall (basement membrane)20,25,26 (Figure 2). 
The first 2 pathways allow for ISF-CSF interchange, whereas the third one assumes a direct flow of ISF to the MLVs.
Clearance of molecules from the CNS was proposed to be compartmentalized: solute drainage from the brain parenchyma 
occurs along the perivascular pathways into the dcLNs,27 whereas CSF from ventricles and subarachnoid spaces drain to 
both scLNs and dcLNs27–29 (Figure 3). Modifications of CSF-ISF drainage due to congenital malformations or as result of 
lymphatic vessel obstruction could generate proinflammatory conditions due to solute and cell accumulation, promoting 
neuroimmune reactions.
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Box 2:  pTau accumulation and neuronal 
hyperexcitability

Deposits of hyperphosphorylated tubulin-associated pro-
tein (pTau) are correlated with neurodegeneration and 
axonal injury in patients with epilepsy and in experimen-
tal models (for a comprehensive review see Ali et al,51 
Saletti et al,52 and Zheng et al53). Accumulation of pTau 
was reported in brain specimens obtained from patients 
with focal cortical dysplasia or acquired epilepsy (eg, 
post-traumatic),47,54–56 as well as in temporal lobe epi-
lepsy patients with no history of TBI.57,58 Results were 
corroborated by using experimental models of epilepsy59 
or of TBI associated with the development of sei-
zures.60,61 pTau has been implicated in the regulation of 
neuronal network synchronization62,63 and in neuroplas-
ticity changes64,65 resulting in hyperexcitability.63 In a 
murine model of Alzheimer disease, the reduction of 
pTau levels corresponded to decreased electroencepha-
lographic seizures.62 From a pharmacologic point of 
view,66,67 the administration of sodium selenate (a potent 
activator of tau phosphatase PP2A) resulted in the de-
crease of pTau and in the reduction of network hyperex-
citability or seizure susceptibility,68 as well as in the 
inhibition of epileptogenesis.69 These results support 
pTau as a common component of neurodegenerative dis-
eases, including acquired epilepsies.70 As accumulation 
of pTau is associated with neuronal network excitability, 
favoring pTau clearance could result in an antiepileptic 
effect.

F I G U R E   3   Schematic representation of solute drainage in 
the CNS. A, Cerebrospinal fluid (CSF) in the subarachnoid space is 
drained through the cribriform plate and collected by the lymphatic 
vessels present in the nasal cavity (afferent of the mandibular 
lymph nodes) or is reabsorbed into sinuses via the arachnoid villi. 
Alternatively, a part of the CSF recirculates from the subarachnoid 
space into the brain parenchyma along the perivascular spaces 
surrounding penetrating arteries (Box 1), and exchange with the 
interstitial fluid in the superficial layers of the neocortex. CSF flowing 
along the spinal canal is drained though the MLVs and allegedly 
transported to the lumbar lymph nodes. B, One main route for ISF and 
solute movement within the brain is along the white matter tracts (eg, 
corpus callosum, anterior commissures, and stria terminalis), and along 
the olfactory and optic nerve projections. Here solutes can be collected 
by the MLVs present in the dura mater running along the intracranial 
surface of the nerves and transported to the deep cervical lymph nodes 
(dcLNs). C, Alternatively, solutes can be transported to the ventricular 
system drained with the CSF. MLVs present in the tentorium and 
around sinus confluence, as well as the one along the rostral rhinal 
vein are putative collectors of the solutes drained through this pathway. 
CSF, cerebrospinal fluid; dcLNs, deep cervical lymph nodes; MLVs, 
meningeal lymphatic vessels; SSS, sinus sagittalis superior; MMA, 
middle meningeal artery

F I G U R E   2   Schematic representation of cerebrospinal fluid 
(CSF) and interstitial fluid (ISF) production and circulation in the 
brain. CSF is mainly produced by the choroid plexus, whereas ISF 
derives from secretion at the level of the blood brain barrier (BBB). 
CSF and ISF interchange and mix at the level of the ventricles, and 
along the perivascular space or the capillary basement membrane. 
Arrows show direction and relative contribution of CSF and ISF to the 
net fluid circulation
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interest, pharmacologic depletion of Treg in the dcLNs resulted 
in neurodegeneration in a model of optic nerve lesion.82

The MLVs are afferent to the dcLNs.4 We speculate that 
functional obstruction of MLVs could result in a detour of 
brain-derived antigens toward alternative secondary lym-
phatic organs (eg, scLNs, lumbar lymph nodes, or spleen), 
circumventing the regulation of the neuroimmune response 
provided by the dcLNs. As a result, the antigens drained 
from the brain could promote a cytotoxic CD8-mediated 
auto immune reaction. Our preliminary data obtained using 
K14flt4-tg mice (lacking MLVs and dcLNs) support this hy-
pothesis showing CD8+ T-cell immune response specifically 
in the cortical areas surrounding the lesion in a model of 
traumatic brain injury (TBI; controlled cortical injury [CCI] 
delivered unilaterally to the somatosensory cortex).

4  |   MENINGEAL LYMPHATIC 
VESSELS AND THE 
DEVELOPMENT OF AUTOIMMUNE 
ENCEPHALITIDES

The International League Against Epilepsy (ILAE) has in-
cluded autoimmunity among the etiologies of epilepsy: “im-
mune epilepsy is the direct result of an immune disorder, in 

which seizures are a core symptom, and the hallmark is the 
presence of autoimmune-mediated brain inflammation”.85 
Autoimmune encephalitides are classified as follows: (a) en-
cephalitides with pathogenic antibodies against cell surface 
proteins (eg, anti-NMDA [N-methyl-d-aspartate] receptor, 
anti-LGI1, anti-VGKC complex); (b) T-cell diseases against 
intracellular antigens (eg, GAD65); and (c) encephalitides 
associated with other autoimmune disorders (eg, lupus cer-
ebritis).86 Seizures and status epilepticus are common symp-
toms in autoimmune encephalitides,87 which can be resistant 
to antiepileptic drugs (AEDs) and respond better to immune 
therapies.88 Autoimmune encephalitides can relapse,86 sug-
gesting the presence of a functional defect in the immune 
surveillance of the CNS.

4.1  |  CNS-lymphatic unit and Rasmussen 
encephalitis pathophysiology: a proposed link
Here we focus on Rasmussen encephalitis (RE), described 
as focal seizures due to chronic localized encephalitis of 
probable viral origin.89 RE is a slow-progressing neurologic 
disorder, characterized by unilateral brain atrophy and the 
presence of active microglia/macrophage nodules.90,91 RE is 
associated with focal aware or focal impaired awareness sei-
zures with motor onset, or with focal to bilateral tonic-clonic 

F I G U R E   4   Cartoon schematizing alternative immune responses toward brain-derived antigens. A, Soluble antigens from the brain 
parenchyma are transported along the interstitial fluid (ISF) route and the MLVs (blue-green) to the dcLNs. Here, depending on the inflammatory 
milieu, they can elicit immune tolerance mechanisms or a noncytotoxic immune reaction (Th2 mediated under Treg regulation), protecting neurons 
and astrocytes from degeneration. B, A functional defect in one or more elements of the CNS lymphatic unit (eg, MLV congenital malformation or 
obstruction secondary to brain trauma) could result in drainage of brain-derived antigens to secondary lymphoid organs other thatn the dcLNs (eg, 
to the spleen via arachnoid villi and the venous system (blue) or to peripheral LNs via the cribriform plate), bypassing the specific neuroimmune 
response elicited in the dcLNs. Cytotoxic CD8+ T cells could be activated against neuronal or astrocytic self-antigens, homing to the brain, where 
kill targeted cells (ie, neurons and/or astrocytes). Ag, antigen; APC, antigen-presenting cell; dcLNs, deep cervical lymph nodes; MLVs, meningeal 
lymphatic vessels; Th0, naive T cell; Th2, type 2 CD4+ T helper; Treg, regulatory T cell
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seizures, and poor response to AEDs.92 Studies performed 
using brain specimens obtained from RE patients have in-
dicated the presence of brain-infiltrating cytotoxic CD8+ T 
cells undergoing clonal local expansion.93–95 The infiltrating 
CD8+ T cells are juxtaposed to neurons and astrocytes, with 
granzyme-B–containing granules polarized toward neuronal 
or astrocytic membranes.

In his original paper,89 Rasmussen proposed a brain viral 
infection as the initiating event eliciting the CD8+ T-cell im-
mune response. This would explain the clonal composition 
of the T-cell receptor repertoire found in the brain of RE pa-
tients94 and the observed hemispheric distribution with cen-
trifugal expansion,96 suggestive of a focal infection. However, 
no sign of viral infection has been found in brain specimens 
obtained from RE patients.96

Here we propose the hypothesis (Figure 4) that the CD8+ 
-mediated immune response observed in RE may be the re-
sult of insufficient lymphatic drainage, either congenital (as 
in primary lymphedema) or consequent to the obstruction of 
the lymphatic flow. Under this condition, the control of the 
neuroimmune response provided by the MLVs-dcLNs may 
fail and brain-derived antigens could reach the peripheral 
lymph nodes, where a cytotoxic CD8+ T-cell mediated re-
sponse occurs. Activated CD8+ T cells could home back to 
the brain and selectively target those cells (ie, neurons or glia) 
expressing the self-antigen. This could result in the specific 
neuronal and astrocytic cell loss observed in RE brains.97,98

A possible objection to our hypothesis is that autoimmune 
responses are usually not focal, whereas RE is. However, 
localized brain infiltration of activated CD8+ T cells may 
be facilitated in areas of BBB dysfunction and ongoing 
neuroinflammation. The latter could be the consequence 
of a cellular imprint of precedent insults and of a regional 
damage following head trauma or hypoxic events.99 Under 
these conditions, proinflammatory cytokines can upregulate 
the expression of adhesion molecules (ICAM-1, VCAM-1, 
and E-selectin) on endothelial cells.100 These factors bind 
to specific ligands expressed by the activated leukocytes al-
lowing the adhesion, rolling, and migration of activated T 
cells across the brain endothelium79. In summary, RE could 
therefore be the result of a double-hit, specifically a, reduced 
CNS-lymphatic unit efficiency (activating autoimmune T 
cells) and a brain insult, inducing regional neuroinflamma-
tion and BBB dysfunction, that promotes focal lymphocyte 
CNS recruitment.

5  |   CNS-LYMPHATIC UNIT 
IMPAIRMENT AND MODULATORY 
APPROACHES

Strategies aimed at regenerating the lymphatic system may 
represent a supporting therapeutic intervention. It is known 

that inflammation can directly promote lymphangiogenesis, 
an extensive and localized growth of lymphatic vessels.101 
Tissue-infiltrating inflammatory cells (eg, CD11b+/Gr-1+ 
macrophages) are capable of forming tube-like structures 
displaying lymphatic markers (ie, Lymphatic vessel endothe-
lial hyaluronic acid receptor [Lyve-1], Prospero homeobox 
protein 1 [Prox1], and podoplanin)102 and producing the vas-
cular endothelial growth factors VEGF-C and VEGF-D, pro-
moting the genesis of new lymphatic vessels via VEGFR-3 
signaling.102 The newly-formed lymphatic vessels contribute 
to restore the fluid drainage and counteract the inflammatory 
processes.102–105 It is therefore possible to exploit lymphang-
iogenic mechanisms to restore a compromised lymphatic 
system. For instance, the lymphangiogenesis-inducing fac-
tor VEGF-C can be administered locally to recover lym-
phatic drainage. The administration of the soluble form of 
the human recombinant (hr)VEGF-C106 or its localized viral 
vectors-mediated over-expression107,108 resulted in growth of 
functional and mature lymphatic vessels in animal models of 
peripheral lymphedema. Similarly, intracerebroventricular 
injections of adenoviral VEGF-C vector induced the growth 
of lymphatic capillaries in the meningeal compartment.109 
However, the functionality of these newly generated MLVs 
is uncertain, and further studies are required to decipher the 
ability of the new lymphatic vessels to clear parenchymal sol-
utes and to control neuroimmunity.

6  |   CONCLUDING REMARKS

Experimental evidence points to MLVs as a structural compo-
nent of the CNS-lymphatic unit, impacting brain homeostasis, 
solute interstitial clearance, immune surveillance or inflam-
mation. We have reviewed how alterations of the physiologic 
drainage of brain fluids could determine the accumulation 
of macromolecules within the brain parenchyma, resulting 
in the alteration of the extracellular ionic equilibrium, ulti-
mately impacting neuronal excitability. The correct drainage 
of brain-derived antigens could be important for the allosta-
sis of the neuroimmune cross-talk. We updated the hypoth-
esis supporting the involvement of dcLNs in immune CNS 
surveillance and proposed that functional alterations of the 
MLVs (primary afferent vessels of the dcLNs) could result in 
autoimmune reactions. We suggested that a dysfunction of the 
CNS-lymphatic unit could be implicated in the pathophysiol-
ogy of specific forms of epilepsy, as in situations where the 
primary cause is unknown (eg, Rasmussen encephalitis).

Moreover, functional of the CNS-lymphatic unit due to 
congenital defects or as a result of brain trauma, tumors, or 
infections could contribute to acquired or immune epilepsies. 
Addressing the dynamics of the CNS-lymphatic unit in the 
context of ictal activity could be important to disclose new 
therapeutic targets.
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