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Cancer is one of the most dangerous diseases to human health.
The accurate prediction of anticancer peptides (ACPs) would
be valuable for the development and design of novel anticancer
agents. Current deep neural network models have obtained
state-of-the-art prediction accuracy for the ACP classification
task. However, based on existing studies, it remains unclear
which deep learning architecture achieves the best perfor-
mance. Thus, in this study, we first present a systematic explo-
ration of three important deep learning architectures: convolu-
tional, recurrent, and convolutional-recurrent networks for
distinguishing ACPs from non-ACPs. We find that the recur-
rent neural network with bidirectional long short-term
memory cells is superior to other architectures. By utilizing
the proposed model, we implement a sequence-based deep
learning tool (DeepACP) to accurately predict the likelihood
of a peptide exhibiting anticancer activity. The results indicate
that DeepACP outperforms several existing methods and can
be used as an effective tool for the prediction of anticancer pep-
tides. Furthermore, we visualize and understand the deep
learning model. We hope that our strategy can be extended
to identify other types of peptides and may provide more assis-
tance to the development of proteomics and new drugs.

INTRODUCTION
Cancer has become one of the biggest threats to human health and is
the leading cause of death in developed countries and the secondmost
common cause in developing countries.1 18.1 million new cases and
9.6 million cancer deaths were estimated to have occurred in 2018 by
the International Agency for Research on Cancer (IARC).2 Further-
more, the four most commonly diagnosed cancer types were lung,
breast, prostate, and colorectal cancer, while the four leading cancer
types causing mortality were lung, colorectal, stomach, and liver can-
cer. There are many advanced clinical methods for the treatment of
cancer, such as surgery, radiotherapy, chemotherapy, and targeted
therapy. Unfortunately, these traditional methods are not only expen-
sive but also unsafe, with many serious side effects.3–5 Moreover, it is
known that cancer cells may develop resistance to traditional treat-
ment methods and conventional drugs.6 To combat this deadly
disease and prolong the lives of patients, more and more attention
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is being paid to the discovery and design of novel anticancer agents
in recent years.

In the past few decades, peptides have emerged as promising thera-
peutic agents for cancer treatment. Because they are safer, are more
selective, cost less, and are more tolerable than traditional treatment
methods, peptide-based therapeutics are considered to be superior
treatment strategies. Therefore, anticancer peptides (ACPs) have
become potential anticancer agents.7,8 As a subset of antimicrobial
peptides, ACPs have shown the potential to inactivate various cancer
cells without affecting normal cells,9 though the mechanisms by
which they affect cancer cells are not entirely clear. To further under-
stand the anticancer mechanisms of ACPs and develop new anti-
cancer drugs, it is particularly important to rapidly and effectively
identify various ACPs. There have been many experimental methods
for identification and development of novel ACPs, but they are usu-
ally laborious, expensive, time consuming, and hard to achieve in a
high-throughput manner.10–12 Therefore, it is very desirable to
develop computational methods based on machine learning algo-
rithms to identify ACPs.

Over the past few years, more than a dozen computational methods
have been proposed for the identification of ACPs, and more and
more machine learning algorithms are used to build the predictors,
such as support vector machines (SVMs),12–19 random forest
(RF),20,21 the K-nearest neighbor (KNN), and their different ensemble
methods.22–26 Though some of these methods have offered relatively
high accuracies and robustness, it is still a challenge for these conven-
tional machine learning methods to choose the appropriate descrip-
tors that represent the sequences of ACPs. To overcome this
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Figure 1. Deep Learning Workflow in Anticancer Peptide Prediction
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limitation, deep learning algorithms are used to further improve the
prediction accuracy and robustness.27–29 Wu et al.27 proposed a
computational model based on convolutional neural networks
and word2vec to predict therapeutic peptides in a highly efficient
manner. Grisoni et al.28 designed anticancer peptides by training a
recurrent neural network with long short-term memory cells. Yi
et al.29 also proposed a long short-term neural network model to
effectively predict novel anticancer peptides by integrating binary
profile features and a k-mer sparse matrix of the reduced
amino-acid alphabet. In addition to designing ACPs, deep learning
algorithms have shown great potential in the discovery of other
anticancer drugs, such as prediction of drug-target interaction30–32

and drug-induced toxicities.33–35 However, current deep learning-
based algorithms have been limited to a particular architecture, and
it is still not clear which architecture’s performance is best when
detecting ACPs.

In the present study, we evaluate the performance of different deep
learning architectures for ACP prediction to solve the aforemen-
tioned issues with existing methods. Three deep learning architec-
tures—a convolutional neural network (CNN), a recurrent neural
network (RNN) with bidirectional long short-term memory cells
(biLSTMs), and a CNN-RNN—are used to construct the predictors.
Experimental results using the benchmark dataset show that the
RNN architecture affords the best overall prediction performance.
The RNN architecture can predict ACPs with, on average, 79.2%
recall, 89.5% precision (PRE), 83.9% F value, 84.9% accuracy
(ACC), and a Matthew’s correlation coefficient (MCC) of 0.704
when tested on the test set 10 times. When compared with the
CNN architecture, the RNN predicts ACPs with a 4.8%, 1.6%, and
2.2% improvement in PRE, F value, and ACC, respectively, and an
MCC of 0.047. The results indicate that the deep RNN is better suited
to recognizing sequence motifs of varying lengths, such as ACPs, than
traditional feed-forward neural networks. Therefore, we propose
DeepACP, a deep learning method combined with the RNN model
and amino-acid character embedding for improving ACP prediction.
When performed on the independent test dataset, it is found that the
prediction performance of DeepACP is also comparable to those of
popular existing methods. We further visualize the neurons repre-
senting each peptide in the training and test datasets to understand
why the models make their predictions. DeepACP facilitates the un-
derstanding of anticancer mechanisms of ACPs and the development
of novel anti-cancer drugs.

RESULTS
Overall Experimental Procedure of This Work

Because it is still not clear which deep learning architecture gives the
best performance for predicting ACPs, we first used a deep learning
classification tool (autoBioSeqpy) to design and evaluate three
selected state-of-the-art algorithms (RNN, CNN, and their combi-
nation, CNN-RNN) on a benchmark dataset including 250 ACPs
and 250 non-ACPs. To guard against overfitting, we randomly split
the benchmark dataset into three subsets: training, validation, and
test sets. The training set is used for learning the model parameters,
the validation set is used to select the best model, and the test set is
kept aside to estimate the generalization performance36 (Figure 1).
We repeated this procedure 10 times and evaluated the predictive
capability of the trained model using five metrics: recall, PRE,
ACC, F value, and MCC. We also designed a collection of different
architecture variants by varying the number of cells in the RNN as
well as the number of convolution kernels and network layers in
CNNs to select the optimal architecture. We further evaluated the
performance of three deep learning architectures and other existing
algorithms on an independent test dataset. Finally, to make the
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Table 1. Performance Comparison of RNN and CNN-RNN Architectures

with Different Number of Cells

Architecture and
Cell Numbers MCCACC (%) F Value (%) Recall (%) PRE (%)

RNN

32 80.4 78.4 72.0 87.1 0.621

64 84.9 83.9 79.2 89.5 0.704

128 82.3 81.4 77.8 85.7 0.651

256 83.7 83.2 81.2 85.7 0.677

CNN-RNN

32 78.8 78.5 78.2 79.7 0.583

64 81.7 80.9 78.6 84.2 0.640

128 80.5 79.5 77.0 83.0 0.616

256 79.1 78.1 74.8 82.8 0.590

ACC, accuracy; PRE, precision; MCC, Matthew’s correlation coefficient; RNN, recur-
rent neural network; CNN-RNN, convolutional-recurrent neural network.

Table 2. Performance Comparison of CNN and CNN-RNN Architectures

with Different Number of Convolution Kernels

Architecture and
Kernel Numbers MCCACC (%) F Value (%) Recall (%) PRE (%)

CNN

50 82.1 82.0 81.8 82.7 0.645

100 82.5 82.8 84.4 81.6 0.653

150 82.7 82.3 80.4 84.7 0.657

200 81.6 81.5 81.2 82.0 0.634

250 80.4 80.3 80.0 81.0 0.611

CNN-RNN

50 77.9 77.1 75.0 80.6 0.566

100 81.1 80.3 77.8 83.8 0.629

150 81.7 80.9 78.6 84.2 0.640

200 81.3 80.4 76.8 85.4 0.635

250 81.2 81.0 80.8 81.8 0.628

ACC, accuracy; PRE, precision; MCC,Matthew’s correlation coefficient; CNN, convolu-
tional neural network; CNN-RNN, convolutional-recurrent neural network.
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model understandable, we extracted the hidden layer representa-
tions to visualize the ACPs and non-ACPs learned by the RNN
model. All detailed experimental results are shown in the following
sections.

Selecting the Number of Cells in RNNs and CNN-RNNs

The number of hidden cells is one of the most important architecture
variants that requires careful tuning for training a RNN.37 In this sec-
tion, we examined the effect of the number of cells on five metrics by
comparing the values for 32, 64, and 128 cells to those for 256 cells
(Table 1). We observed that, when the number of cells is set to 64,
the RNN architecture achieves the best performance, attaining an
average ACC, F value, recall, PRE, and MCC of 84.9%, 83.9%,
79.2%, 89.5%, and 0.704, respectively. The number of cells has a
similar effect on the CNN-RNN. For the proposed architecture,
when the cell number equals 64, it obtains the best values of all met-
rics. The average ACC, F value, recall, PRE, and MCC are 81.7%,
80.9%, 78.6%, 84.2%, and 0.640, respectively. Therefore, the number
of cells is chosen as 64 for the RNN and for the CNN-RNN in the
following experiments.

Selecting the Number of Convolution Kernels and Network

Layers in CNNs and CNN-RNNs

wIn this section, we studied the effect of the numbers of convolu-
tional kernels and network layers in CNNs and CNN-RNNs. We
first evaluated the performance of two proposed architectures on
the benchmark dataset by gradually varying the number of
convolution kernels from 50 to 100, to 150, 200, and 250. As
we can see from Table 2, when the number of convolutional ker-
nels is specified at 150, both architectures can achieve their best
results. Both deep learning architectures achieve better perfor-
mance as the number of convolution kernels increases (from 50
to 150); afterwards, the performance decreases. Specifically, the
CNN achieves 0.645, 0.653, 0.657, 0.634, and 0.611 for the
864 Molecular Therapy: Nucleic Acids Vol. 22 December 2020
MCC on 50, 100, 150, 200, and 250 kernels, respectively. The
MCCs are 0.566, 0.629, 0.640, 0.635, and 0.628 for the CNN-
RNN on 50, 100, 150, 200, and 250 kernels, respectively. With
the best performing number of kernels, we further explored the
effect of network depth from one to four convolutional and pool-
ing layers on prediction performance. Table 3 shows the values of
ACC, F value, recall, PRE, and MCC by specifying different
numbers of network layers, and it is clear that the CNN and
CNN-RNN architectures with 150 kernels and one layer of depth
provide the best performance.

Performance Comparison of Different Deep Learning

Architectures on the Benchmark Dataset

Based on the aforementioned findings, we evaluated the discrimina-
tive performance of the three deep learning architectures using their
best parameters. All three architectures achieve better than random
performance on ACP classification. In terms of model ACC, the
CNN-RNN demonstrates the worst performance (average ACC =
81.7%) and the CNN follows with an ACC of 82.7%. When consid-
ering average ACC, the RNN outperforms other architectures with
an ACC value of 84.9%. Given the positive cases in which ACPs are
present and the negative cases in which no ACPs are present as
defined in the benchmark dataset, based on predictive scores for
each deep learning architectures, we used area under the curve
(AUC) of receiver operating characteristic (ROC) curves to further
assess the predictive performance, which is a common measurement
independent from the threshold value in each algorithm (Figure 2).
The RNN is the most accurate (mean AUC = 0.920), followed by
the CNN (0.903). The CNN-RNN has the lowest ACC (mean
AUC = 0.871). In addition to ROC, the ACC-loss curves and PRE-
recall (PR) curves for these three architectures are shown in Figures
S1 and S2.



Table 3. Performance Comparison of CNN and CNN-RNN Architectures

with Different Number of Convolutional and Pooling Layers

Architecture and
Layer Numbers MCCACC (%) F Value (%) Recall (%) PRE (%)

CNN

1 82.7 82.3 80.4 84.7 0.657

2 79.6 78.6 76.8 82.3 0.601

3 76.8 76.7 76.6 77.2 0.539

4 69.1 71.9 79.2 66.6 0.396

CNN-RNN

1 81.7 80.9 78.6 84.2 0.640

2 78.3 77.9 76.8 80.5 0.576

3 74.9 74.2 73.0 77.6 0.509

4 72.6 73.9 77.8 72.1 0.468

ACC, accuracy; PRE, precision;MCC,Matthew’s correlation coefficient; CNN, convolu-
tional neural network; CNN-RNN, convolutional-recurrent neural network.
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Performance Comparison with Existing Predictors on the

Independent Test Dataset

To further validate deep learning performance for predicting ACPs,
we conducted experiments on an independent test dataset with 82
ACPs and 82 non-ACPs. In addition to the deep learning algorithms,
four existing methods were selected for comparison with the predic-
tive performances, including AntiCP,13 Hajisharifi et al.’s method,14

iACP,16 and ACPred-FL.12 Significantly, two models of AntiCP
(AntiCP_AAC and AntiCP_DPC) were chosen for comparison in
this work. For a fair comparison, the same training and independent
test datasets were used to train and test all approaches. Table 4 shows
the prediction results of all five methods on the independent test data-
set, and the detailed results of the aforementioned four methods were
directly accessed from the study describing ACPred-FL.12 Among the
deep-learning-based algorithms, the RNN architecture had the best
overall prediction performance and yielded the highest scores of
PRE (86.5%), ACC (82.9%), F value (82.0%), recall (78.0%), and
MCC (0.662). Meanwhile, the CNN-RNN predicted the fewest
numbers of ACPs (59), and the CNN identified the fewest numbers
of non-ACPs (65). Because its performance was the strongest, the
RNN architecture was chosen as the final predictor to further
compare with other computational methods and is named DeepACP
in this study.

It is observed that DeepACP correctly identifies the second largest
numbers of ACPs (64) and non-ACPs (72). The overall prediction
performance of DeepACP is remarkably superior to those of AntiCP,
Hajisharifi et al.’s14 method, and iACP, which provides an improve-
ment of 2.9%–8.7%, 3.6%–10.9%, 3.6%–8.5%, 3.8%–9.3%, and
7.4%–17.1% on PRE, recall, ACC, F value, and MCC, respectively.
As a result of observation, the precise projections of DeepACP are
less than those of ACPred-FL (66 and 79), so the overall prediction
performance of DeepACP is slightly worse than that of ACPred-FL.
Visualizing and Understanding the Deep Learning Model

We examined the internal features learned by the best performing
RNNmodel using the UniformManifold Approximation and Projec-
tion (UMAP)38 (Figure 3). Each point represents a peptide sequence
projected from a 128-dimensional output of the RNN biLSTM layer
into two dimensions. The points of the same peptide classes were
clustered together. For the training dataset, the ACPs (Figure 3,
blue dots) clustered on the right in contrast to non-ACPs (red
dots), which clustered on the left. Similarly, ACPs clustered across
from non-ACPs in the independent test dataset. These results indicate
that the RNN architecture has learned the discriminative feature for
ACP classification.

DISCUSSION
The ultimate goal of this study is to construct a deep neural network
model that predicts whether each peptide is relevant for anticancer
or non-anticancer activity, using only the primary sequence as an
input. To achieve this goal, we first optimized some important param-
eters of different deep learning architectures, including the number of
cells in RNNs andCNN-RNNs, and the number of convolution kernels
and network layers in CNNs and CNN-RNNs. In the latter case, the
experimental results show that, compared to a single convolutional
and pooling architecture, adding multiple convolutional and pooling
layers does not provide improved performance. While the network
layer increased gradually, the MCC of the deep learning architecture
decreased drastically, which indicates that the network depth has a
negative effect on the model performance. We reason that it is possible
that deeper architectures require larger amounts of annotated data and
more information about peptide sequence to be effectively trained.

Subsequently, we used the benchmark dataset to assess the predictive
performance of different deep learning architectures. Except for the
10-time test, we used 5-fold cross-validation on the benchmark data-
set to further evaluate the prediction performance of the three deep
learning architectures. The detailed results are shown in Table S1.
As can be seen from this table, the RNN architecture yields the best
overall prediction performance and achieves the highest average
scores of 83.4% ± 4.7% for recall, 87.1% ± 6.2% for PRE, 84.9% ±

4.2% for F value, 85.2% ± 4.5% for ACC, and 0.708 ± 0.089 for
MCC. This cross-validation result is consistent with that found by us-
ing the 10-time test, which reconfirms that the RNN architecture
trained on the benchmark dataset has the best performance.

When comparing DeepACP with four other state-of-the-art methods,
the overall prediction performance of our method is better than most
existingmethods but slightly lower than that of ACPred-FL. Themost
probable reason for this gap in performance is that the size of the
training dataset is very small; this causes insufficient training of the
deep learning model. In addition, deep learning algorithms are better
at processing long sequences, while the vast majority of ACPs just
contain 5–30 amino acids.39

We also compared DeepACP with another deep learning algorithm,
ACP-DL, by using the two benchmark datasets (ACP740 and
Molecular Therapy: Nucleic Acids Vol. 22 December 2020 865
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Figure 2. Receiver Operating Characteristic (ROC)

Curves for Different Deep Learning Architectures
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ACP240) from Yi et al.’s29 study. The detailed prediction results of
DeepACP are listed in Tables S2 and S3. For the ACP740 dataset,
the overall prediction performance of DeepACP is slightly better
than that of ACP-DL, which predicts ACPs with a 3.7%, 0.4%, and
0.011 improvement in mean recall, ACC, and MCC, respectively.
For the ACP240 dataset, DeepACP achieves a slightly higher average
recall (89.0%) and PRE (80.7%) than ACP-DL (84.6% and 80.3%,
respectively) but a slightly lower average ACC (82.3%) and MCC
(0.648) than ACP-DL (85.4% and 0.714, respectively). This may be
caused by the small size of the ACP240 dataset, which only contains
129 experimentally validated anticancer peptide samples and 111
AMPs without anticancer functions. Overall, the prediction perfor-
mance of DeepACP is comparable to that of ACP-DL but provides
support for why we choose the RNN with biLSTMs to build the clas-
sifier for identification of anticancer peptides.

In this paper, we propose a novel computational approach called
DeepACP to distinguish ACPs from various peptide sequences using
the deep learning technique. Unlike in previous studies, three deep
learning algorithms are first used to build predictors for rapidly and
efficiently identifying ACPs, including the RNN, the CNN, and the
CNN-RNN. Meanwhile, amino-acid character embedding is used to
characterize peptide sequences. After investigating the prediction re-
866 Molecular Therapy: Nucleic Acids Vol. 22 December 2020
sults of different deep learning architectures for
the benchmark dataset by testing 10 times, it
was found that the best model is constructed by
the RNN. When applied to the independent test
dataset, the prediction performance of the RNN
model is comparable to those of other existing
methods, which indicates that deep learning al-
gorithm has great potential in peptide prediction.
We believe that, by adding more ACPs into the
training dataset, the prediction performance of
DeepACP could be further improved. In brief,
we provide a new idea for identification of
ACPs and expect that DeepACP will play an
important role in the functional research of
ACPs and the development of novel anticancer
drugs.

MATERIALS AND METHODS
Datasets

Well-established datasets are fundamental to
building stable and reliable predictors, and
several benchmark datasets have been con-
structed in previous studies.12–14,16 To fairly
compare with several existing computational
methods, the benchmark dataset established by
Wei et al.12 was chosen to construct the training
dataset and the independent test dataset in this study, the size of
which is relatively large and balanced. After data redundancy reduc-
tion by using CD-HIT40 with the threshold of 90%, 332 ACPs and
1,023 non-ACPs were kept in the original dataset. For machine
learning methods, better performance is more readily available on a
balanced training dataset. The training dataset was constructed using
the same numbers of positive and negative samples, which included
250 ACPs and 250 non-ACPs randomly selected from the original da-
taset. For further evaluating the prediction performance of DeepACP
and comparing with other methods, an independent test dataset con-
sisting of 82 ACPs and 82 non-ACPs was generated. Note that the
training and independent test datasets used in this work are the
same as those for ACPred-FL.12

Deep Neural Networks

In recent years, deep learning has had stunning success, surpassing
human-level performance on hard problems such as images, lan-
guage, and speech processing.41 Almost every discipline of science
and engineering has been affected, from medicine42 and biology43

to high-energy physics.44 There are two commonly used families of
architectures for deep learning: CNNs and RNNs. CNNs are among
the most successful deep learning architectures, owing to their
outstanding capacity to analyze spatial information. The powerful



Table 4. Performance Comparisons of Our Proposed DeepACP with the Existing Methods

Model TP TN FN FP MCCACC (%) F Value (%) Recall (%) PRE (%)

AntiCP_AACa 56 71 26 11 77.4 75.2 68.3 83.6 0.558

AntiCP_DPCb 61 69 21 13 79.3 78.2 74.4 82.4 0.588

Hajisharifi et al.14 55 71 27 11 76.8 74.3 67.1 83.3 0.547

iACP 56 66 26 16 74.4 72.7 68.3 77.8 0.491

ACPred-FL 66 79 16 3 88.4 87.4 80.5 95.7 0.778

CNN-RNN 59 67 23 15 76.8 75.6 72.0 79.7 0.539

CNN 64 65 18 17 78.6 78.5 78.0 79.0 0.573

DeepACP (RNN) 64 72 18 10 82.9 82.0 78.0 86.5 0.662

TP, true positive; TN, true negative; FN, false negative; FP, false positive; ACC, accuracy; PRE, precision; MCC, Matthew’s correlation coefficient; CNN-RNN, convolutional-recurrent
neural network.
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property of CNNs is that they can allow computers to process hierar-
chical spatial representations efficiently and holistically without
relying on laborious feature crafting and extraction. Therefore,
CNNs are particularly relevant in fields that produce or interpret im-
ages. For example, medical imaging adopted this trend early and
applied deep CNNs to complex diagnostics spanning dermatology,
radiology, ophthalmology, and pathology.41,42 Currently, CNNs are
increasingly used for biological sequence analysis including genomics
and other high-throughput areas of research.36,43 RNNs are designed
to process sequential inputs such as language, speech, and time-series
data. Since input data are processed sequentially, recurrent computa-
tion is performed on the hidden units where cyclic connection ex-
ists.45 The hidden units of the RNNs can be viewed as memory states
that retain information from the input data previously observed and
are updated at each time step. The key advantage of RNNs over CNNs
is that they are able to find long-range patterns in the data, which are
highly dependent on the ordering of the input data for the prediction
task. Therefore, RNNs are the first choice for researchers in many
areas, including machine translation, text generation, and image
captioning.42
CNNs

A convolutional neural network is a deep learning model with the key
idea of using convolutional layers to extract features from input data.
In a convolutional layer, neurons are able to extract higher level
abstraction features from extracted features of the previous layer.
The convolution operation in CNN was inspired by the visual mech-
anisms of living organisms. More specifically, it could be denoted as

ConvolutionðXÞik = ReLU
�XM�1

m= 0

XN�1

n= 0
wk

mnxi+m;n

�
;

(Equation 1)

where X represents the input matrix, i represents the index of the
output position, and k represents the index of the filter. The formula
Wk = ðwk

mnÞM�N represents the weight matrix of the kth convolution
kernel with size M � N, whereM represents window size and N rep-
resents the number of input channels. ReLU represents a nonlinear
activation function applied to the convolution outputs, which sets
negative values to zeros as

ReLUðxÞ = maxð0; xÞ: (Equation 2)

After the convolution and nonlinearity, CNNs typically use pooling,
which is a dimension reduction to provide translation invariance and
to extract higher level features from a wider range of the input data.
The pooling operation is denoted as

poolingðXÞik = maxðxiM;k; xiM + 1;k;/; xiM +M�1;kÞ (Equation 3)

where X represents the output of the convolution layer, M repre-
sents the pooling window size, i represents the index for output po-
sition, and k represents the index of the filter being pooled. In the
fully connected operation, CNNs integrate high-level features of
pooling outputs and transform the features into a fixed dimension
space. The last operation of CNNs adopts a fully connected node to
obtain a single output using a sigmoid activation function, which is
defined as

SigmoidðxÞ = 1
1+ e�x

: (Equation 4)

RNNs

Designed to handle sequential data, RNNs have become the main
neural model for tasks such as speech recognition and text generation.
Although traditional RNNs have achieved significant results in natu-
ral language understanding, the “vanishing gradients” problem has
made it difficult to train on long sequences. The long short-term
memory (LSTM) network is a special type of RNN that can handle
long-term dependencies by using gating functions. These gates can
control when information is written, read from, and forgotten. Specif-
ically, the classical structure of a LSTM cell is given in the following
equations:46

it = sðWxixt + Whiht�1 + Wcict�1 + biÞ; (Equation 5)
Molecular Therapy: Nucleic Acids Vol. 22 December 2020 867
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Figure 3. UMAP Visualization of the Hidden Layer

Representations in the RNN Model
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f t = s
�
Wxf xt + Whf ht�1 + Wcf ct�1 + bf

�
; (Equation 6)
Ct = f tct�1 + it tanhðWxcxt + Whcht�1 + bcÞ; (Equation 7)

ot = sðWxoxt + Whoht�1 + Wcoct + boÞ; (Equation 8)

and

ht = OttanhðctÞ; (Equation 9)

where s represents the logistic sigmoid function; tanh represents a
hyperbolic tangent function that maps the real numbers to [�1, 1];
and i, f, o, and c represent, respectively, the input gate, forget gate,
output gate, and cell and cell input activation vectors, which are
specified to be the same value as given in the hidden vector h. Wxf

represents the input-forget gate matrix, and Whf represents the hid-
den-forget matrix. In the bidirectional LSTM network, the input
sequence gets fed through two LSTM networks in both the forward
and backward directions, which each produce a matrix of column
vectors representing the LSTM network output. The output of the
biLSTM is then computed by concatenating the output vectors of
the two directions together.
Deep Learning Architectures for ACP Prediction

We trained several deep-neural-network-based models to computa-
tionally predict anticancer activity from peptide sequence. We de-
signed three architectures: namely, CNNs, RNNs with biLSTMs,
and a hybrid neural network combining a CNN and a RNN that
uses peptide primary sequences as input and outputs a probability
score between 0 and 1. More precisely, the input to the models is a
sequence of one-letter-encoded amino acids, where each of the 20
basic amino acids are assigned a number from 1 to 20, and unknown
“X” characters are assigned 0, respectively.47 The output of themodels
consists of one score that maps to the [0, 1] interval; this interval cor-
responds to the probability of the peptide of interest being an ACP
or a non-ACP. Here, we describe the overview of prediction
architectures.
868 Molecular Therapy: Nucleic Acids Vol. 22 December 2020
The RNN comprised three layers: the embed-
ding layer, the biLSTM layer, and the output
layer.48 The embedding layer transformed the
input numbers (0, 1, ., 20) into a 128-dimen-
sional vector representation. The amino-acid
character embedding can best be thought of as
a one-dimensional signal (over sequence posi-
tion) spanning 21 signal channels (20 common
amino acids + X). In this way, each peptide
sequence was represented by a (128, L) two-
dimensional vector, where L is the length of
the peptide. Here, the sequence length was set to 100, where a number
was chosen to fit the longest ACP and non-ACP in the training set. The
biLSTM layer is the basic unit of the RNN architecture, which con-
sisted of forward and backward LSTM network layers, and each layer
consisted of a basic LSTM unit (a memory cell) with a 64-dimensional
hidden state vector with a dropout ratio of 0.2. The forward layer runs
on the input sequences, while the backward layer runs on the reverse of
input sequences. Finally, the outputs from all biLSTMs were then pro-
cessed through a single, fully connected output layer with a sigmoid
activation function. This yielded a single value for each peptide
sequence, which represented a classification score.

The CNN was constructed from one embedding layer, one convolu-
tional layer using the rectified linear unit (ReLU) activation function
and interlaced with an AveragePooling layer.49 The convolutional
layer had 150 one-dimensional filters covering all amino-acid input
channels. The filters of the convolutional layer were 5 positions
wide. After convolution, the ReLU function was used to output the fil-
ter scanning results, which were above the thresholds and learned
during model training. The AveragePooling layer subsampled the
one-dimensional signal by a factor of 2 by averaging the filter scan-
ning results at each position of the sequence. The flattened results
from pooling were passed to a fully connected layer of 650 hidden
ReLUs with 0.5 dropout, which finally connected to a dense layer
with sigmoid activation and 1 output unit.

The third architecture was a hybrid CNN-RNN. Similar to the CNN
architecture mentioned earlier, the convolutional stage performed
one-dimensional convolution operations with 150 filters, together
with a ReLU, to propagate positive outputs and eliminate negative
outputs. Then, an AveragePooling layer was used to reduce dimen-
sions and help extract higher level features by computing the average
in each of the nonoverlapping windows of size 2. In this hybrid
network, the features learned by the convolutional stage were fol-
lowed by an RNN stage (biLSTM layer, 64 neurons) to further learn
the context features from the pooled sequence patterns. The final
layer was a fully connected node with a sigmoid activation function
that predicted the probability of an ACP.
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Model Training and Testing

Of the benchmark dataset, 70% of the data was used for training,
10% was used for validation, and 20% was used for testing. The
training set was reshuffled after each training procedure. All archi-
tectures were trained for 20 epochs with a batch size of 50. Binary
cross-entropy loss between the target and predicted outputs was
minimized using the Adam optimizer during training. For each ar-
chitecture, we repeated the training procedure 10 times, and the
average of their outputs was used as the predicted output. All
the deep learning architectures were trained on Graphics Process-
ing Units (GPUs) that significantly accelerated the training
process.

Predictive Performance Metric Calculation

TPs, FPs, TNs, and FNs annotate true positives, false positives, true
negatives, and false negatives, respectively. Recall (also known as
sensitivity) was calculated as:

Re call =
TP

TP + FN
: (Equation 10)

PRE (also known as positive predictive value) was calculated as:

PRE =
TP

TP + FP
: (Equation 11)

ACC was calculated as:

ACC =
TP +TN

TP + FP +TN + FN
: (Equation 12)

F value was calculated as:

F� value= 2� TP
2TP + FP + FN

: (Equation 13)

MCC was calculated as:

MCC =
ðTP � TNÞ � ðFN � FPÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP + FNÞ � ðTN + FPÞ � ðTP + FPÞ � ðTN + FNÞp :

(Equation 14)

Model Visualization

To generate the model visualization, the biLSTM layer weights were
first extracted from the trained RNN model. Then, the neurons rep-
resenting all peptides were calculated from these weights. The
UMAP39 was applied (n_neighbors: 2, mim_dist: 0.5) to these
neurons through the R uwot package50 to reduce the original
128-dimensional vectors down to 2 dimensions. The plotting was
conducted by using the R ggplot2 package.51

Implementation

We designed, trained, and evaluated the aforementioned deep
learning models using the autoBioSeqpy tool with the Keras backend
(https://keras.io). The autoBioSeqpy is an easy-to-use deep learning
tool for biological sequence classification. The main advantage of
this tool is its capability for easily developing and evaluating various
deep learning models. Only the input datasets should be prepared by
the users, as after that, the model development, training, and evalua-
tion workflows can be run with a simple one-line command. After
training, autoBioSeqpy automatically evaluates the model on the
test set and generates figures to visualize the model’s performance
as an ACC and loss (ACC-loss) curve, ROC curve, and PR curve.
In addition, this tool provides various ready-to-run applications for
users, which makes the design of deep learning architectures easier.
Code for model training and prediction with trained weights along
with links to all data and model templates is available in a public
repository at https://github.com/jingry/autoBioSeqpy/tree/master/
examples/anticancer_peptide_prediction.
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