
© 2010 Barve et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article  
which permits unrestricted noncommercial use, provided the original work is properly cited.

Advances and Applications in Bioinformatics and Chemistry 2010:3 97–110

Advances and Applications in Bioinformatics and Chemistry Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
97

O R I G I N A L  R E S E A R C H

open access to scientific and medical research

Open Access Full Text Article

DOI: 10.2147/AABC.S14368

A kinetic platform for in silico modeling  
of the metabolic dynamics in Escherichia coli

Aditya Barve1 
Anvita Gupta2 
Suresh M Solapure2 
Ansu Kumar1 
Vasanthi Ramachandran2 
Kothandaraman Seshadri2 
Shireen Vali1 
Santanu Datta2

1Cellworks Research India Pvt. Ltd, 
Bangalore, India; 2AstraZeneca, 
Bangalore, India

Correspondence: Suresh M Solapure 
Infection Pharmacology,  
AstraZeneca India Pvt. Ltd,  
Bellary Road, Hebbal,  
Bangalore 560024,  
India 
Email suresh.solapure@astrazeneca.com

Background: A prerequisite for a successful design and discovery of an antibacterial drug is 

the identification of essential targets as well as potent inhibitors that adversely affect the survival 

of bacteria. In order to understand how intracellular perturbations occur due to inhibition of 

essential metabolic pathways, we have built, through the use of ordinary differential equations, 

a mathematical model of 8 major Escherichia coli pathways.

Results: Individual in vitro enzyme kinetic parameters published in the literature were used to 

build the network of pathways in such a way that the flux distribution matched that reported from 

whole cells. Gene regulation at the transcription level as well as feedback regulation of enzyme 

activity was incorporated as reported in the literature. The unknown kinetic parameters were esti-

mated by trial and error through simulations by observing network stability. Metabolites, whose 

biosynthetic pathways were not represented in this platform, were provided at a fixed concentration. 

Unutilized products were maintained at a fixed concentration by removing excess quantities from 

the platform. This approach enabled us to achieve steady state levels of all the metabolites in the 

cell. The output of various simulations correlated well with those previously published.

Conclusion: Such a virtual platform can be exploited for target identification through assessment 

of their vulnerability, desirable mode of target enzyme inhibition, and metabolite profiling to 

ascribe mechanism of action following a specific target inhibition. Vulnerability of targets in 

the biosynthetic pathway of coenzyme A was evaluated using this platform. In addition, we 

also report the utility of this platform in understanding the impact of a physiologically relevant 

carbon source, glucose versus acetate, on metabolite profiles of bacterial pathogens.

Keywords: antibacterial drug, mathematical model, kinetic platform, metabolic dynamics, 

Escherichia coli

Background
One of the main problems faced by the current paradigm of drug discovery in the 

therapeutic area of infection is in identification of a valid drug target, followed by 

an understanding of the concentration dynamics of the metabolites in response to its 

inhibition. A valid target at the genetic level is the one that is essential for the survival 

of the pathogen. At the functional level, the target protein structure and/or its biological 

activity is substantially different from that of the host. However, not all targets with 

these criteria yield inhibitors that kill the pathogen specifically through the mechanism 

intended. This necessitates generating a large number of targets suitable for high 

throughput screening (HTS).1 A recent review of anti-infective HTS by Payne et al 

indicated that the success rate is abysmally low even with a large number of HTS 

campaigns.2 Hence there is an urgent need to strategize and modify guidelines that 

define an ideal anti-infective drug target.
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Many potent inhibitors of essential enzymes have been 

reported to lack antibacterial activity.3 In most cases, efflux 

or lack of permeability across the bacterial cell wall has been 

suspected to be a principal factor responsible for this phenom-

enon. This explanation has remained mainly unsubstantiated 

since it is difficult to determine the exact cause. However a 

quantitative relationship between enzyme inhibition and its 

effect on the growth of the pathogen has been delineated. 

Eisenthal and Cornish-Bowden have postulated two basic 

mechanisms by which the enzyme inhibition leads to the ces-

sation of growth of an organism: “either the flux through an 

essential metabolic pathway can be decreased to a point where 

life is no longer possible or metabolite concentration can be 

increased to toxic levels”.4 Recent evidence also indicates 

that independent of the target inhibited, bacterial cell death 

ultimately occurs through a generalized mechanism involving 

modulation of multiple pathways that leads to generation of 

free radicals.5 Thus there is a need to interconnect inhibition 

of target enzyme in vitro and inside the cell. It is well known 

that inhibition or over expression of an enzyme in a metabolic 

pathway does not guarantee either a change in flux or a con-

comitant increase or decrease in the metabolite concentration. 

The activity of any enzyme inside the cell depends on its own 

substrate concentration and kinetic properties (eg, Km,Vmax) 

as well as those of other enzymes in that particular pathway. 

On the other hand, the degree of enzyme inhibition inside 

the cell is related to the mode of enzyme inhibition (MOI) 

as well as to the enzyme-inhibitor dissociation constant (Ki). 

Therefore, it is essential to consider a network of enzymes or 

pathways around a particular target enzyme so as to predict 

the effect of its inhibition on the overall cell metabolism. 

Since target gene knockouts mimic complete inhibition inside 

the cell, it may not be possible to achieve the same inhibition 

through compound-mediated inhibition. It is thus necessary 

to assess the effect of partial inhibition through regulated 

expression of a target gene.6 Since this involves extensive 

experimentation, a better alternative is to predict cell vul-

nerability in response to a specific target enzyme inhibition 

through in silico simulations. Vulnerability is defined as the 

extent of inhibition of a target required to have a negative 

impact on growth leading to cell death.7

Towards this objective, we have built an in silico dynamic 

network of 8 major pathways in Escherichia coli, including 

glycolysis, pentose phosphate pathway, and tricarboxylic 

acid (TCA) cycle along with glyoxylate shunt, fatty acid 

metabolism, and biosyntheses of branched chain amino acids, 

pantothenic acid, and coenzyme A (CoA) (Figure 1). These 

pathways were chosen based on their connection to central car-

bon metabolism and their potential for possessing drug targets, 

for example, isocitrate lyase or pantothenate kinase, in drug 
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Figure 1 Schematic representation of pathways modeled on this platform. Each pathway is represented by central reactions or metabolites, truncated such for simplistic 
representation.
Pathway abbreviations: PPP, pentose phosphate pathway; Fatty Acid Metabolism, pathway of synthesis and breakdown of fatty acids; Pantothenate and CoA Syn, pathway 
of pantothenate and coenzyme A synthesis; BCAA synthesis, branched chain amino acid synthesis pathway; TCA and Glyx, pathways of tricarboxylic acid cycle and glyoxylate 
shunt; Methyglyoxal, methyglyoxal pathway.
Metabolite abbreviations: D-G6P, D-glucose-6-phosphate; Ru5P, ribulose-5-phosphate; Rib5P, ribose-5-phosphate; Xy5P, xylose-5-phosphate; G3P, glyceraldehyde-3-
phosphate; DHAP, dihydroxyacetone phosphate; PEP, phosphoenolpyruvate; Pyr, pyruvate; A-CoA, acetyl-CoA; OAA, oxaloacetate; Mal, malate; Suc, succinate; Isoc, isocitrate; 
Glyx, glyoxylate; Cit, citrate; Thr, Threonine; IsoL, isoleucine; Leu, leucine; Val, valine; ACP, acyl carrier protein; CoA, coenzyme A; Cys, cysteine; b-Ala, beta-alanine.
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discovery against pathogens like Mycobacterium tuberculosis. 

Published data on enzyme kinetics, pathway flux distribution, 

operon structure, and gene regulation were used to build this 

platform. The pathway dynamics were simulated by inter-

connecting ordinary differential equations describing kinetic 

behavior of each enzyme in the pathway. Such a kinetic model 

is thus a computational and mathematical framework, built by 

using intracellular enzyme as well as metabolite concentration 

and other kinetic parameters. This platform is expected to elicit 

responses to perturbations in a fashion similar to the way the 

natural system in question would. This type of modeling has 

been referred to as an “impossible” problem, primarily because 

of the dearth of parametric data required to give meaning to 

flux equations, and, secondly, the absence of a software that 

can simulate and give stable solutions to systems comprising 

thousands of ordinary differential equations (ODEs). The 

proprietary Cellworks (Cellworks Group, Inc., Saratoga, 

CA, USA) technology, iC-PHYS™, can be used to create and 

simulate such a platform. Cell growth could be simulated by 

providing glucose or acetate as a carbon source (C-source) 

along with essential metabolites (metabolites not synthesized 

on this platform) such as beta-alanine, threonine, and cysteine. 

Altogether, 189 genes and 449 biochemical reactions covering 

434 metabolites were modeled on this platform. The model was 

aligned (see Materials and Methods – Alignment of the plat-

form) with data reported in the literature and “frozen” so that 

the subsequent validation studies did not require any alteration 

in the model parameters or equations. Validation studies were 

carried out using published data for E. coli. Various enzymes 

were evaluated as potential drug targets and those that were 

either vulnerable or relatively immune to inhibition of a spe-

cific type were identified and some experimentally verified. 

Since there is a significant overlap in the metabolic pathways 

among various bacteria, we tested the predictive capability of 

the in silico platform by correlating model predictions with 

experiments carried out on Mycobacterium bovis BCG as a 

surrogate for M. tuberculosis.

Results
Glycolysis, TCA cycle,  
and glyoxylate shunt
From the glycolytic pathway, tpiA (triose phosphate iso-

merase) knockout was used for validation. This  knockout 

showed normal cell growth due to activation of the 

methylglyoxal pathway and the flux distribution (Table 1) 

indicated 18-fold higher flux of dihydroxyacetone phosphate 

(DHAP) to methylglyoxal. This was similar to the 

experimental values reported earlier.8

Table 1 Comparison of predicted flux distribution values for tpiA 
gene knockout (KO) mutant with reported experimental values 
obtained using glucose as sole source of carbon

Reactions Evolved 
(800 generations) 
experimental 
KO/normal (tpiA)

Predictive 
KO/normal 
(tpiA)

Glucose + phosphoenol 
pyruvate (PEP) → glucose- 
6-phosphate (G6P) + 
pyruvate (PYR)

0.825 0.828

G6P ↔ fructose- 
6-phosphate (F6P)

1.05 1.02

Glyceraldehyde-3-phosphate 
(G3P) → PEP

0.503 0.57

PYR → acetyl-CoA 
(AcCoA) + CO2

1.01 1.16

G6P → 6-phospho- 
D-gluconate (6PG)

0.875 0.97

6PG → (D-ribulose 5- 
phosphate) Ru5P + CO2

0.96 0.93

AcCoA + oxaloacetate 
(OAA) → citrate (CIT)

1.89 1.16

Dihydroxyacetone 
phosphate (DHAP) → 
methylglyoxylate (MGLX)

83/UD 17.65

MGLX → PYR 83/UD 17.65

PEP + CO2 → OAA 0.878 0.8

Abbreviation: UD, undetectable levels.

The ability of the platform to predict growth of E. coli 

on acetate as C-source was tested and the resulting flux 

data compared with the reported values.9–11 With equimolar 

quantities of acetate or glucose as sole source of carbon, it 

was found that the rate of biomass generation on acetate was 

2.8-fold lower (Figure 2), comparable to the experimental 

value of 2.18. As a retrospective study, fluxes for various 

reactions in glycolytic pathway and TCA cycle including 

glyoxylate shunt were corroborated with the published data 

after appropriate normalization (Table 2). The predicted 

flux through the pentose phosphate pathway on acetate as 

C-source was higher than reported values. This discrepancy 

could be due to activation of trehalose biosynthesis after the 

osmotic imbalance experienced by E. coli growing on acetate 

as C-source, thereby accounting for the excess flux through 

the pentose phosphate pathway.12–14

The glyoxylate shunt consists of 2 enzymes, isocitrate 

lyase (AceA) and malate synthase (AceB). Strains like E. coli 

MG1665 have two isozymes (AceB and GlcB for malate 

synthase), while E. coli O:157 Sakai strain has only one of 

these. Here, we have considered only one malate synthase 

isozyme, which is AceB. Reported Km values for isocitrate are 
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604 and 12 µM for isocitrate lyase and isocitrate dehydrogenase 

(Icd), respectively. On glucose as C-source, most of the carbon 

flux is reported to go through Icd due to its higher affinity 

for isocitrate and its low intracellular concentration (30 µM). 

When acetate is used as C-source, aceBAK operon is switched 

on which in turn leads to inactivation of Icd by AceK through 

phosphorylation, resulting in an increased flux of isocitrate 

through glyoxylate shunt.11 Therefore, virtual knockouts of 

aceA and aceB were tested on the platform for the effects on 

the flux of isocitrate through the TCA cycle and glyoxylate 

shunt using acetate or glucose as C-source. It was observed 

that the flux from isocitrate to alpha-ketoglutarate was 2-fold 

higher on glucose whereas the flux through glyoxylate shunt 

was 10-fold higher on acetate. The relative flux distribution 

on acetate versus glucose was similar to that reported in 

the literature (Table 3).10 As expected, the rate of biomass 

generation declined when the C-source was changed from 

glucose to acetate for wild type and complete inhibition of 

growth was observed in both the knockouts (Figure 3A, 3B).

Fatty acid biosynthetic pathway
In this pathway, genes fabI, fabD, fabG, fabA, fabZ, and fabB 

are reported to be essential for cell growth.15 The experi-

mental knockout of fabF resulted in insignificant reduction 

Table 2 Comparison of flux distribution values, normalized 
with respect to predicted uptake of acetate (16.9 µmoles/sec), 
obtained using acetate as sole source of carbon

Reactions Experimental 
relative flux (%)

Platform  
relative flux (%)

PEP → G3P 12.25 10.64

G6P → 6PG 2.18 8.64

6PG → Ru5P + CO2
2.18 8.64

AcCoA + OAA → CIT 71.58 72.14

ICT → alpha-keto glutarate 
(2-KG) + CO2

48.81 44.92

Malate (MAL) ↔ OAA 87.15 98.11

PEP + CO2 ↔ OAA 11.95 17.14

MAL → PYR + CO2
4.96 4.05

Isocitrate (ICT) → glyoxylate 
+ succinate (SUC)

22.77 27.22

Glyoxylate + AcCoA → MAL 22.77 27.22

Abbreviation: See Table 1.
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acetate. In the second phase, growth of gene knockout mutant of E. coli was modeled 
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E. coli cell growth was modeled after providing equimolar quantities of glucose or 
acetate as the sole source of carbon. Rate of cell growth was found to be 2.8-fold 
higher on glucose than on acetate.

Table 3 Predicted changes in tricarboxylic acid (TCA) cycle and 
glyoxylate shunt fluxes upon change in sole source of carbon from 
glucose to acetate were compared with the reported values9

TCA and glycoxylate  
shunt

Experimental 
result

Predictive 
result

Reaction Ratio Ratio
AcCoA + OAA → CIT 3.58 1.65

CIT → ICT 3.58 1.81

ICT → 2-KG + CO2
2.58 0.514

2-KG → SUC 3.125 0.606

SUC ↔ fumarate (FUM) 4.416 1.943

FUM ↔ MAL 4.416 1.723

MAL ↔ OAA 5.312 3.22

ICT → glyoxylate + SUC Many folda 10.8

Glyoxylate + AcCoA → MAL Many fold 10.8

Notes: Table shows ratio of the flux on acetate to the flux on glucose. aFluxes were 
not detectable on glucose.
Abbreviation: See Tables 1 and 2.
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in growth rate whereas fabI knockout did not grow at all. 

FabI is responsible for the conversion of trans-2-enoyl-acyl 

carrier protein (ACP) to a 2,3,4-saturated-ACP wherein both 

NADH and NADPH can be the reducing agents for the reac-

tion. A knockout of fabI results in growth inhibition since no 

other enzyme exists to catalyze this particular reaction. The 

fabF gene is involved in the formation of the beta-ketoacyl 

ACP form in the initiation as well as the elongation steps 

in saturated fatty acid biosynthesis. The knockout of fabF 

results in the flux diversion into other reactions carried out by 

FabB. Flux distribution in wild type and fabF knockouts can 

be seen in Tables S4 and S5. This experimental observation 

could be simulated in this model using the respective virtual 

gene knockouts at a constant glucose source concentration of 

670 µM. Knockouts were performed after permitting initial 

growth. The fabI knockout did not show growth whereas fabF 

knockout exhibited normal growth (Figure 4) as expected.

CoA biosynthetic pathway
Steady state levels of the total CoA pool as well as CoA and 

acetyl CoA, using glucose and acetate as the sole C-source 

generated using this platform (Table S2), were in close 

agreement with the experimental values reported in the litera-

ture.16 Multiple scenarios such as effects of overexpression of 

coaA, reduction in levels of CoA, and effect of pantothenate 

analogs on cell growth were simulated in this platform. The 

moderate (2- to 3-fold) increase in CoA levels following 

overexpression of coaA, inhibition of cell growth observed 

only after 95% reduction in CoA levels, and growth inhibi-

tion exerted by N5-pantothenate analogs through depletion 

of normal CoA levels (data not shown) were similar to the 

experimental observations reported in literature.17,18

The vulnerability of three major targets in this pathway, 

CoaA, CoaD, and CoaE, was assessed by predicting the 

minimum level of target enzyme inhibition required for 

the cessation of cell growth. Activity was modulated using 

gene knockdown as well as through various MOI. A gradual 

reduction in CoA levels was observed following stepwise 

knockdown of coaA (Figure 5B). On the other hand, a 

steep decline was observed only after 99% of coaE was 

knocked down (Figure 6B). As a result, growth inhibition 

was observed only after 99% knockdown of coaA or coaD 

(Figures 5A and 6A). A similar growth pattern was observed 

for coaE knockdown (data not shown). A reduction in CoA 

levels following knockdown of CoaD/E activity could, in 

turn, alleviate the feedback inhibition on CoaA activity, 

thereby compensating for the overall flux until 99% activity 

of CoaD/E is affected. In addition, the flux of the CoA path-

way was solely dependent on CoaA levels (data not shown). 

Both these observations indicated that the CoaA-catalyzed 

reaction was the rate-limiting step in this pathway. In spite 

of being described as a rate-limiting enzyme, more than 95% 

reduction in CoaA activity was required for growth inhibi-

tion, as the steady state levels of CoA were in large excess 

(20-fold) of what is critical for cell survival.

Enzyme inhibitors obtained during high throughput 

screening against an enzyme target could be competitive or 
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uncompetitive or noncompetitive with its substrate. After 

predicting the extent of target enzyme inhibition required 

for growth inhibition, various modes of CoaA inhibition 

were simulated with the aim of ranking them in terms of [I]/

Ki required for growth inhibition. The following equations 

were used to model an external inhibitor:

Competitive inhibition where the Km for ATP (adenosine 

tri-phosphate) increases −

Km
ATP

 =  K
ATP

 *(1 + ([CoA]/Ki
CoA

) + ([Acetyl-CoA]/

Ki
ACoA

) + (I/Kie))

Uncompetitive inhibition where the Km for ATP as well 

as the Vmax decrease –

Km
ATP

 =  (K
ATP

 *(1 + ([CoA]/Ki
CoA

) + ([Acetyl-CoA]/ 

Ki
ACoA

) + (I/Kie)))/(1 + I/Kies) and

Vf_app = Vf/(1 + I/Kies)

Since Kie ... Kies in the case of uncompetitive 

inhibitors, I/Kie in the numerator tends to zero. Therefore 

the net effect of I/Kies is a decrease in Km
ATP

 in the pres-

ence of an uncompetitive inhibitor. For pure noncompetitive 

inhibition, the Km for ATP remains the same while the 

Vmax decreases. On the other hand, mixed noncompeti-

tive inhibition entails an increase in the Km for ATP and a 

decrease in the value for Vmax.

The inhibitor was assumed to bind free enzyme wherein 

feedback inhibitors such as CoA or acetyl CoA could 

displace it. Predicted values of flux indicated that a mixed 

or pure noncompetitive inhibitor would require a 20-fold 

lower [I]/Ki ratio than the competitive inhibitor (Fig-

ure 7). This result is in accordance with the  Cheng-Prusoff 

relationship between enzyme IC
50

 and Ki values. Such pre-

dictions could be valuable in optimizing CoaA inhibitors 

to achieve potent antibacterial activity. Growth inhibition 

in the presence of a mixed noncompetitive inhibitor was 

preceded by a steady decline in CoA levels and simultane-

ous accumulation of pantothenate. The time delay observed 

for growth inhibition corresponded to the time required 
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Figure 7 Various modes of inhibition of pantothenate kinase and resultant flux through the pathway. Effect of [I]/Ki ratio on the flux of CoA biosynthetic pathway. Preferred mode 
of inhibition is the one that affects pathway flux at a lesser ratio of [I]/Ki. Predicted [I]/Ki ratio required to reduce the CoA pathway flux below a critical value of ∼0.07 umol/sec 
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for CoA levels to drop below a critical level of 5%. This 

could in turn imply that the cells might require an exposure 

to CoaA inhibitors for more than five generations for an 

effective growth inhibition.

Pantothenate biosynthetic pathway  
and its influence on CoaA activity
Valine and L-aspartate are the precursors for pantothenate 

synthesis in bacteria wherein the gene product of panC 

catalyzes the conversion of beta-alanine to pantothenate. 

The panCD knockout strain of M. bovis BCG was reported 

to grow in vitro with pantothenate supplementation and its 

growth rate was proportional to a pantothenate concentration 

of up to 10 µg/mL or 42 uM.19 Similarly, a virtual phenotype 

for panC knockout mutant could be demonstrated in this 

model wherein both steady state CoA levels and growth 

rate were proportional to a pantothenate concentration of 

up to 1 µM (Figure 8A and B). The lower concentration 

of pantothenate required to sustain normal growth on this 

platform could be due to the fact that 1 µM is simulated 

under intracellular milieu whereas 42 µM is present in the 

experimental growth medium.

Since poor growth of panC knockout under suboptimal 

pantothenate levels (,1 µM) was due to limiting levels of 

CoA, we wanted to test if the cell becomes more vulnerable to 

CoaA inhibition under this condition. As predicted, the extent 

of enzyme inhibition required for growth arrest declined 

from 99% under normal conditions for a wild type strain to 

70% for panC knockout (Figure 8C). It can be postulated 

that due to increased susceptibility to CoaA inhibition, the 

pantothenate auxotroph could be used for screening CoaA 

enzyme inhibitors for their antibacterial activity.

Branched chain amino acid biosynthesis
The acetohydroxyacid synthase (AHAS) class of enzymes 

catalyzes the first reaction in the biosynthetic pathway of 

branched chain amino acids leucine, isoleucine, and valine. 

AHAS I and III isozymes catalyze conversion of 2 pyruvate 

molecules into alpha-acetolactate for valine and leucine 

biosynthesis and 2 alpha-ketobutarate molecules into alpha-

acetohydroxybutyrate for isoleucine biosynthesis. Either 

AHAS I or AHAS III can support growth of E. coli in minimal 

media containing glucose as C-source whereas AHAS I alone 

has been shown to be essential when acetate is used as the sole 

source of carbon.20 On this platform, an auxotrophic pheno-

type was observed for the double knockout of AHAS I and III 

on glucose as well as acetate as C-source, wherein supplemen-

tation of all three amino acids could relieve growth inhibition 

(Figure 9A). Though the levels of isoleucine and valine started 

declining immediately after knockout, leucine was found to 

accumulate for a short period of time (Figure 9B). This was 

due to higher flux of 2-oxoisovalerate to 2-isopropylmalate 

through LeuA at the branchpoint of pathway for valine bio-

synthesis. This was confirmed by simultaneous knockout of 

leuA along with AHAS I and III where leucine accumulation 

was not observed (Figure 9C).

To evaluate the utility of this platform in other bacterial 

species like mycobacteria, the effect of a known AHAS 

inhibitor, flazasulfuron, on intracellular levels of leucine, 
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Figure 8 Growth profile and CoA levels in case of panC knockout (KO) with 
pantothenate supplementation and effect of coaA knockdown under these 
conditions. Effect of pantothenate supplementation (0.5, 1, 2, 4, 8 uM) on growth 
profile of panC knockout mutant of E. coli (A), CoA levels (B), and on growth 
profile of double mutant with panC knockout and coaA knockdown (percentage 
values indicate percentage knockdown.) (C). panC knockout results in pantothenate 
auxotrophy where normal growth was restored at 1 µM pantothenate (A). Steady 
state CoA levels in panC knockout mutant increased in proportion to the amount 
of pantothenate supplied (B). In a wild type strain, growth inhibition was observed 
only after 99% knockdown of coaA whereas in the case of panC knockout grown in 
the presence of 1 uM pantothenate, 70% knockdown of coaA was sufficient to cause 
growth inhibition (C).
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isoleucine, and valine in M. bovis BCG, a surrogate for 

M. tuberculosis, was experimentally validated. Following 

exposure to flazasulfuron, there was a reduction in the levels 

of leucine, isoleucine, and valine compared with untreated 

control (Table 4). This observation thus confirmed and experi-

mentally validated the predictions of the platform.

Discussion
Apart from the basic understanding of how the “tide and ebb” 

of metabolite flow is related to growth and death of bacteria, 

one of the major thrusts for carrying out dynamic modeling 

is to identify vulnerable drug targets. Though genome scale 

metabolic reconstruction has been attempted in silico for 

various organisms and more extensively so for E. coli,21,22 

it is difficult to incorporate enzyme kinetic parameters into 

these networks as many of these values are not known and 

the computational stability of such an operation is yet to be 

evaluated. On the other hand, individual pathways like the 

TCA cycle and the glyoxylate shunt have been simulated 

using in vitro kinetic parameters and used to derive valid cor-

relation between target inhibition and intracellular metabolite 

concentration.23 We have attempted simulating a network of 

eight major pathways including the central carbon metabo-

lism so that the effect of C-source on target vulnerability 

could be assessed.

Vulnerability can vary a lot depending upon the extent of 

cellular damage caused by the inhibition of a particular target. 

For example, only partial inhibition of DNA gyrase activity 

by fluoroquinolones results in cell death through induction of 

reactive oxygen species.5,24 In contrast, even 97% inhibition of 

the essential enzyme encoded by pyrG does not inhibit growth 

in Lactoccus lactis.25 In order to evaluate the vulnerability of a 

target, one would have to gradually reduce the level of target 

gene expression and simultaneously monitor the concomitant 

effect on bacterial growth. The method described here is 

well suited to predict and generate this critical information. 

Enzymes in the CoA biosynthetic pathway were evaluated 

for vulnerability using this platform. Predicted requirement 

of .95% enzyme inhibition sustained over 4 to 5 generations 

may pose a challenge in translating enzyme IC
50

s against 

CoaA, CoaD, and CoaE enzymes into MICs, especially 

against slow-growing bacteria like M. tuberculosis.

As the extent of inhibition depends on the nature of 

inhibition (competitive, uncompetitive, mixed), the current 

technology can also be exploited to choose the most effective 

class of inhibitors and, to a certain extent, reduce the chances 

of failure in translating nanomolar enzyme potencies into 

MICs. It has long been understood that some competitive 

inhibitors fail to inhibit the target enzyme within the cellular 

mileu due to substrate build up – a phenomenon described 

as metabolic resistance.26 The present technology would be 
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Figure 9 Effect of AHAS I, AHAS III knockout (KO) on growth and amino acid 
levels. Growth profile (A) of AHAS III knockout followed by AHAS I and III 
double knockout with and without isoleucine 30 µM, leucine 135 µM, and valine  
200 µM (ILV) supplementation. Auxotrophic growth inhibition observed in the case 
of AHAS I and III double knockout mutant could be reversed in the presence of 
ILV supplementation. Leucine accumulation was observed in the case of AHAS I/III 
double knockout (B) whereas it was absent when leuA was knocked out in addition 
to AHAS I and III (C).

Table 4 Experimental validation of acetolactate synthase – inhibition

Amino acid Relative peak area – fold reduction

Extract  
(untreated)

Extract (flazasulfuron 
treated)

Valine 1 6.2
Isoleucine 1 2.68
Leucine 1 2.62

Notes: Levels of valine, leucine, and isoleucine following HPLC-based analysis of 
extracts of M. bovis BCG exposed to 8 µg/mL flazasulfuron. HPLC conditions: For 
the chromatography a C18 column (LUNA) was used at a flow rate of 1.0 mL/minute 
and the gradient conditions were as follows:10%–53% B in 24 minutes, 53%–100% 
B in 5 minutes, and 100%–10% B in 5 minutes. The amino acids were monitored at 
254 nm. The composition of the 2 buffers was as follows: buffer A – 140 mM sodium 
acetate containing 0.5 ml/L triethylamine, pH adjusted to 6.35 with acetic acid; buffer 
B – 60% acetonitrile.
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able to depict such events, a valuable addition that would 

aid medicinal chemists in designing good inhibitors. In this 

platform, preference for the mixed mode of CoaA inhibition 

to achieve MICs at a lower inhibitor concentration was 

clearly predicted.

The central carbon metabolism and most of the auxiliary 

pathways that feed in and out of the system are generally 

conserved across the bacterial kingdom. However the differ-

ences that arise are in the values of kinetic parameters or in 

the number of orthologs coding for the same enzyme across 

species. Thus to migrate from one organism to another we 

need to do a correction of the kinetic parameters and align 

the system with its specific isoforms. If the major isoform 

is conserved across bacterial species, this E. coli platform 

could even be applied to those as distant as M. tuberculosis. 

Cross-species applicability of this E. coli platform was tested 

by comparing predictions made on pathways like branched 

chain amino acid/pantothenate/CoA biosynthesis with the 

experimental data generated using a mycobacterial species. 

Genes coding for 3 isoforms of AHAS (I, II and III) have been 

reported in E. coli. The ilvB1 gene codes for the major AHAS 

I activity whereas ilvG coding for AHAS II is not expressed in 

E. coli K-12. On the other hand, the M.  tuberculosis genome 

contains 4 genes (ilvB1, B2, G and X) coding for large cata-

lytic subunit of AHAS, whereas only 1 gene (ilvN or ilvH) 

codes for the smaller regulatory subunit of AHAS I. Predicted 

depletion of leucine, isoleucine, and valine following the 

virtual knockout of AHAS I was experimentally proven in M. 

bovis BCG using flazasulfuron, a known inhibitor of AHAS 

enzyme. Similarly, simulations done with the panC knockout 

aligned well with the experimental data reported for M. bovis 

BCG. The results indicated that a hybrid platform could give 

a satisfactory prediction where the major kinetic parameters 

were retained from E. coli and only minor differences in 

isoforms were incorporated from mycobacteria.

Conclusions
A network of 8 major metabolic pathways in E. coli was suc-

cessfully modeled and used for assessing target vulnerability, 

desirable biochemical mode of enzyme inhibition to get 

antibacterial activity, and to predict metabolite profiles upon 

target inhibition as a marker for studying the mode of action. 

Assessment of vulnerability and desirable mode of enzyme 

inhibition was illustrated using CoA biosynthetic pathway 

whereas change in branched chain amino acid levels illustrated 

its application in finding suitable metabolite markers following 

target inhibition. The emphasis behind this approach has been to 

address target “equity” beyond “essentiality”, a parameter long 

considered critical for its inclusion as an optimal candidate for 

designing drugs. The added feature that makes this simulation 

platform unique is its flexibility to incorporate different kinetic 

parameters or metabolite concentrations likely to be present 

either due to presence of alternative isoforms in different 

microorganisms, varied physiological environments, or changes 

in the intracellular milieu following treatment with various 

types of inhibitors. Our current pursuit is to build a kinetic in 

silico platform for M. tuberculosis that will include pathways 

unique to this pathogen especially those involved in cell wall 

biosynthesis. In addition, simulations to identify vulnerable tar-

gets in other druggable pathways in M. tuberculosis including 

energy metabolism, replication, transcription, and transla-

tion will also be run. This will lead to the construction of an 

integrated network of all pathways with the annotated essential 

genes from mycobacteria in this platform. Another advantage 

offered by this hybrid platform is its utilization to predict across 

unrelated bacteria the consequences of inhibition by various 

agents, provided they share and retain closely related target 

enzyme isoforms. In such cases, the simulation can be directly 

extrapolated and this was shown, albeit qualitatively, when the 

predicted modulation of levels of branched chain amino acids 

in flazasulfuron-exposed E. coli could be verified experimen-

tally and their actual levels confirmed in the M. tuberculosis 

surrogate, M. bovis BCG. Studies reported here have also 

demonstrated the feasibility of measuring the vulnerability of 

a few genes in E. coli. A follow-up re-evaluation of the same 

targets in mycobacteria by simulating a stepwise gradient of 

knockdown analysis will be an interesting study to pursue. 

Since mycobacterium switches its carbon utilization from C6 to 

C2 C-source while transiting from extracellular to intracellular 

mode of survival, a major highlight of this model would be its 

capability to simulate this biological plasticity. The creation of 

a kinetic model of the size and complexity described here is 

a new advancement in the field of systems biology. We invite 

questions, which can be verified by experimental observations 

thereby shifting this conceptually “impossible” problem into 

the realm of experimental possibility. In short, this will be a 

visualization tool that will predict target vulnerability and its 

impact on cellular viability, consequent on blockage of impor-

tant pathways either through genetic or chemical means tested 

under varied conditions.

Materials and methods
Model construction
Eight pathways in E. coli including glycolysis, pentose 

phosphate shunt, TCA cycle, fatty-acid metabolism, 

branched-chain amino acid synthesis, and CoA synthesis were 
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modeled on this platform (Figure 1). These pathways were 

integrated with each other and the end products were assimi-

lated into macromolecules such as DNA, RNA, proteins, and 

lipids, as per the known stoichiometry.27 E. coli growth, rep-

resented as a combined mass of macromolecules mentioned 

above, was simulated on glucose (C6) or acetate (C2) as 

C-source under aerobic growth conditions. A typical simula-

tion starts with zero biomass and an increase in the same is 

indicative of cell growth. Gene regulation through various 

metabolites and regulatory proteins as per the C-source was 

included but the mechanism of regulation of over expression 

of regulatory proteins was not considered. The static map 

representation for each pathway and the operon information 

was adopted from the published literature.28 This platform was 

built as a dynamic model with each reaction represented by 

an ordinary differential equation so that it could predict the 

quantitative effects of perturbation in any pathway on all the 

reactions included on this platform. The key aspects of this 

model are qualitatively described in this section, with impor-

tant equations and mechanisms tabulated in Table S3.

Central carbon metabolism was modeled using glycoly-

sis coupled to TCA cycle along with the glyoxylate shunt to 

accommodate acetate as an alternative C-source. Important 

regulatory mechanisms such as regulation of enzyme activity 

of phosphofructokinase (Pf kA, Pf kB) by ATP, regulation of 

isocitrate lyase (aceA) gene expression and enzymatic activity 

by pyruvate, glyoxylate, and succinate were taken into account. 

Pentose phosphate pathway and the Entner–Duodoroff path-

way were modeled for generating pentose sugars as nucleic 

acid precursors and glycolytic intermediates, respectively. 

Metabolites such as ribose 5-phosphate and pyruvate were 

used for the biosynthesis of nucleotides and peptidoglycan/

protein respectively. Fatty acid metabolism was modeled 

to supply C14, C16, and C18 derivatives for the synthesis 

of membrane lipids. Feedback inhibition of acetyl-CoA 

carboxylases (AccABCD) and beta-ketoacyl-ACP synthase 

(FabH) through fatty-acyl-ACPs was built into the regulation 

of fatty acid synthesis.29,30 Synthesis of branched chain amino 

acids (BCAA) such as leucine, isoleucine, and valine was 

regulated by stringent feedback inhibition and using  different 

isoforms.31 Out of 3 isoforms of acetohydroxybutanoate 

 synthase (AHAS I, AHAS II, AHAS III), AHAS II flux 

was not considered as it was reported to be nonfunctional 

in E. coli.32 CoA biosynthesis was linked to BCAA synthesis 

through 2- ketoisovalerate which was used as a precursor of 

pantothenate. Pantothenate was converted to CoA through 

a series of 4 reactions catalyzed by gene products of coaA, 

coaB/C, coaD, and coaE. CoA was utilized as a major cofactor, 

an acyl group donor during protein and fatty acid biosynthesis. 

In addition, feedback regulation of CoaA and CoaD by CoA 

was incorporated. Considering the limits of this platform, 

some of the precursors, which were not synthesized on this 

platform, were supplied externally at the required stoichiom-

etry. Metabolites produced in this model as well those supplied 

externally were incorporated into macromolecules required for 

the cell growth and the excess products were removed to avoid 

their undesirable effects on the modeled enzyme activities.

Model assumptions
Beyer et al in their studies on yeast, reported strong correla-

tion between mRNA and protein levels in modules such as 

“energy”, “metabolism”, hinting at the possibility of strongly 

synchronized regulation of expression within functionally 

homogenous modules.33 Similarly, correlation between overall 

mRNA and protein abundance in E. coli using codon adap-

tation index as a measure of gene expressivity was reported 

earlier.34 Therefore relative enzyme concentrations on this 

platform were normalized using mRNA profiles reported 

under various growth conditions of E. coli. The platform was 

built to model growth of E. coli using glucose or acetate as 

C-source. Nitrogen source, oxygen, and other nutrients such as 

metal ions were externally provided in abundance. In reactions 

where one of the substrates was not produced on the platform, 

for example, b-alanine in the reaction catalyzed by pantoate 

b-alanine ligase, it was provided externally at the concen-

tration reported.35 Generation of ATP using  proton motive 

force was not considered but the generation of ATP through 

reducing equivalents was incorporated. Total concentration 

of ATP, ADP (adenosine diphosphate), and AMP (adenosine 

monophosphate) pool was kept constant by incorporating 

interconversion of these forms through adenylate kinase-

catalyzed reaction. The stoichiometry of ATP produced during 

electron transport through NDH-1, NDH-2, and cytochrome 

‘b
o
’ was incorporated assuming a constant high energetic 

efficiency.36 While interpreting flux distribution under  various 

test conditions, the relative values of flux or metabolite con-

centration were compared with reported values. As data for 

in vitro enzyme assays may not always correlate with in vivo 

conditions, the simulation time had no relation to the actual 

time required for cell growth.

Model alignment and validation
The Cellworks proprietary technology, iC-PHYS™, has the 

ability to solve systems comprising an unlimited number 
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of simultaneous ODEs.37 It has been tested for systems 

of about 4000 ODEs. The integrity of the iC-PHYS™ was 

corroborated by comparing its performance with analytical 

solutions obtained at various time points in a concentration 

decay experiment. Further, comparison was carried out 

between the performance of iC-PHYS™ and Cell Designer 

4.0.138,39 for time-dependent change in the concentration of 

2 species within the MAPK system,40 an oscillatory signaling 

cascade. The correlation observed between iC-PHYS™ and 

Cell Designer 4.0.1 was found to be 0.98.

The iC-PHYS™ engine represents a reaction in a given 

pathway as a kinetic equation capturing the mechanistic 

data of an enzyme. Further inputs are in the form of kinetic 

parameters after which concentration of modeled species and 

other variables are linked through appropriate ODEs. Thus, 

iC-PHYS™ consists of a 3-tier architecture (Figure 10), a 

computational back plane at the foundation level which 

solves these differential equations, and outputs data in the 

form of reports and plots whereas the middle layer com-

prises a static pathway map linked to in vitro enzymatic 

data and in vivo fluxes. With these 2 layers together form-

ing a background platform, the user interface has a viewer 

layer where the growth profiles as a result of simulation 

can be visualized and analyzed. Change of the fluxes, and 

metabolite and enzyme concentration with time can also 

be monitored.

Creation of the platform started with the computational 

representation of a static map of the pathway to be modeled. 

In instances of inconsistent or unknown enzyme kinetic 

parameters, a trial and error method of optimization was 

followed to attain physiological enzyme behavior. The 

kinetic parameters (eg, rate constants [Kf or Kr], Km, Vmax 

[Vf]), concentrations of the substrates and products, reac-

tion equation showing the stoichiometry of substrates and 

products participating in the specific biochemical reaction, 

flux equation or kinetic equation for the individual reaction, 

and compartment (cytosol or membrane or pseudo) where 

the reaction takes place are provided in the supplementary 

PDF document (Model equations and parameters). All the 

448 reactions used in this platform are described in this 

document. After alignment, the kinetics of the reaction were 

frozen and validated against various experimental results 

in literature. All pathway modules were thus aligned for 

physiological effects and then validated against published 

information and/or live experimental data. A thorough 

qualification of standalone models with respect to bio-

logical accuracy ensured physiological behavior when 

Growth profiles

GUI: Graphical user interface

Static pathway map linked to
in vitro enzyme data

and in vivo fluxes

Mathematical Engine 
(Solver and plotter)

E.coli metabolic network
Figure 10 Schematic representation of the iC-PHYS™ engine with a 3-tier 
structure. The mathematical engine, comprising the solver and the plotter, forms 
the foundation of iC-PHYS™. The interconnected E. coli map with relevant kinetic 
parameters and equations forms the secondary layer, while the graphical user 
interface (GUI) forms the uppermost layer. The user manipulates and generates 
data by using the GUI.

assessed as closed systems. Individual pathway modules 

were then integrated wherein kinetic parameters were 

aligned wherever necessary by following the optimization 

method described above. Thus the complete platform was 

aligned with training data sets in the form of experimental 

results reported in the literature so as to ensure reliability 

in predicted values. The rate of glucose utilization and 
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the flux distribution on the platform were aligned to the 

experimentally reported values.34,41 The comparison of 

relative flux distribution in E. coli grown in a continuous 

culture mode with that simulated on the platform is given 

in Table S1.

The enzyme levels on the platform were aligned to the 

microarray profiles generated using E. coli MG1655 grown 

on a glucose-containing minimal medium.42 The microar-

ray data were extracted from the NCBI GEO database and 

normalized against the gene panE that was expressed at 

similar levels on glucose as well as acetate as a C-source. 

This method was adopted to reduce the intensities to a smaller 

magnitude, thereby reducing the ODE solver complexities 

associated with numbers of large magnitude.

Generic simulation procedure
All the simulations in this E. coli platform were done 

using the iC-PHYSTM graphical user interface (GUI). 

The iC-PHYSTM GUI grants the user the option to set the 

maximum biological time of the simulation, specify the 

C-source, and the mode (continuous or batch supply of 

C-source) for a particular experiment. Different virtual 

experiments could be conducted on this platform. For 

example, aceA knockout was tested for its effect on fluxes 

in the TCA cycle and the glyoxylate shunt. The simulation 

was carried out for a total time of 48,000 seconds under 

4 different conditions of 12,000 seconds each. The first 2 

conditions were set up to simulate the growth of wild type 

E. coli using a continuous supply of glucose (670 µM) fol-

lowed by acetate (2010 µM). The next 2 conditions were set 

up to simulate the growth of aceA knockout mutant under 

similar growth conditions to that of wild type. Similarly, 

the effect of a specific percentage knockdown or overex-

pression of a particular enzyme or enzymes on the growth 

of E. coli cell was simulated. For example, coaA, coaD, 

and coaE were knocked down by different percentages to 

assess the vulnerability of cell growth to inhibition of these 

targets. Concentration of a desired metabolite could be 

altered to study the effect of that metabolite on cell growth. 

For example, the auxotrophy phenotype for the AHAS I/III 

knockout was tested by supplementing leucine, isoleucine, 

and valine at fixed concentrations. In such simulations, the 

concentration of a metabolite generated by the platform 

under knockout or knockdown conditions was changed to 

a fixed value in the second stage of supplementation. This 

procedure could also be employed to check the effect of 

variation in enzyme kinetic parameters in the presence of 

external inhibitors. For example, effect of CoaA inhibitors 

with different [I]/Ki ratio and various MOI was simulated 

to examine their effect on cell growth.

Experimental validation  
of predictions made using  
this platform
Intracellular levels of branched chain amino acids were 

estimated after subjecting whole cells of M. bovis BCG to 

a suitable extraction procedure43 followed by detection and 

analysis by HPLC. Flazasulfuron, a reported AHAS inhibitor44 

with an MIC of 2 µg/mL against M. bovis BCG, was tested 

for its effect on intracellular levels of isoleucine, leucine, and 

valine. M. bovis BCG was grown in roller bottles in Middle 

Brook 7H9 (0.05% Tween and ADC) at 37°C until OD
600

 

reached 0.5. The bacterial cells were exposed to the inhibitor 

and re-incubated at 37°C for 4 hours. The treated cultures were 

harvested and washed with phosphate buffered saline. The 

cell pellets were resuspended in chilled 0.6 M perchloric acid, 

vigorously mixed, and left on ice for 30 minutes. These acid 

extracts were neutralized using 0.6 M KOH, recentrifuged, 

and the supernatant vacuum was dried and then reconstituted 

in water for derivatization45 prior to HPLC analysis. These 

extracts were resuspended in derivatization buffer containing 

50 µL of PITC (phenylisothiocyanate), 350 µL ethanol, 50 µL 

triethylamine, and 50 µL water, incubated for 30 minutes at 

25°C, and dried in vacuum again. All samples were resus-

pended in buffer A (140 mM sodium acetate containing 

0.5 mL triethylamine/L, pH adjusted to 6.35 with acetic acid) 

containing 10% acetonitrile prior to injection into HPLC 

column (C18 LUNA). Gradient used was buffer A to B (60% 

acetonitrile): 10% to 53% B in 24 minutes, 53% to 100% B in 

5 minutes,100% to 10% B in 5 minutes, and the finally back 

to 10% B in 5 minutes at a flow rate of 1 mL/min. Derivatized 

amino acids were monitored for absorbance at 254 nm.
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