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Abstract 

Inter-individual variability in symptoms and the dynamic nature of brain pathophysiology present significant chal-
lenges in constructing a robust diagnostic model for migraine. In this study, we aimed to integrate different types 
of magnetic resonance imaging (MRI), providing structural and functional information, and develop a robust machine 
learning model that classifies migraine patients from healthy controls by testing multiple combinations of hyper-
parameters to ensure stability across different migraine phases and longitudinally repeated data. Specifically, we 
constructed a diagnostic model to classify patients with episodic migraine from healthy controls, and validated its 
performance across ictal and interictal phases, as well as in a longitudinal setting. We obtained T1-weighted and rest-
ing-state functional MRI data from 50 patients with episodic migraine and 50 age- and sex-matched healthy controls, 
with follow-up data collected after one year. Morphological features, including cortical thickness, curvature, and sul-
cal depth, and functional connectivity features, such as low-dimensional representation of functional connectivity 
(gradient), degree centrality, and betweenness centrality, were utilized. We employed a regularization-based feature 
selection method combined with a random forest classifier to construct a diagnostic model. By testing the models 
with varying feature combinations, penalty terms, and spatial granularities within a strict cross-validation frame-
work, we found that the combination of curvature, sulcal depth, cortical thickness, and functional gradient achieved 
a robust classification performance. The model performance was assessed using the test dataset and achieved 87% 
accuracy and 0.94 area under the curve (AUC) at distinguishing migraine patients from healthy controls, with 85%, 
0.97 and 84%, 0.93 during the interictal and ictal/peri-ictal phases, respectively. When validated using follow-up data, 
which was not included during model training, the model achieved 91%, 94%, 89% accuracies and 0.96, 0.94, 0.98 
AUC for the total, interictal, and ictal/peri-ictal phases, respectively, confirming its robustness. Feature importance 
and clinical association analyses exhibited that the somatomotor, limbic, and default mode regions could be reliable 
markers of migraine. Our findings, which demonstrate a robust diagnostic performance using multimodal MRI fea-
tures and a machine-learning framework, may offer a valuable approach for clinical diagnosis across diverse cohorts 
and help alleviate the decision-making burden for clinicians.
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Introduction
Migraine is a neurological disease with a significant 
global impact, affecting approximately 15% of the world’s 
population. In patients with migraine, symptoms such 
as nausea, vomiting, and hypersensitivity to light and 
sound commonly accompany headaches during the ictal 
phase [1]. Patients with migraine commonly experience 
interictal symptoms suggestive of altered sensory and 
autonomic processing, including increased sensitivity 
to light, sound, smell, thermal stimuli, and motion, and 
delayed gastric emptying [2–8]. Currently, the diagnosis 
of migraine relies solely on clinical symptoms. Although 
the International Classification of Headache Disorders 
(ICHD) provides a standardized framework for classify-
ing migraine among primary headache disorders, it does 
not offer a pathophysiology-based diagnostic approach 
[9]. Given the intra- and inter-individual variability and 
complexity of clinical manifestations, the diagnosis of 
migraine could be challenging for physicians without 
specialized expertise in headache medicine, thus under-
scoring the need for accessible biomarkers [10]. Although 
blood biomarkers such as calcitonin gene-related pep-
tide (CGRP) have been investigated for the diagnosis 
of migraine [11, 12], they have not been widely imple-
mented in clinical practice owing to limitations in feasi-
bility and reliability [10, 13–15].

Neuroimaging studies have highlighted the potential 
role of imaging markers in the diagnosis of migraine. 
Structural and functional magnetic resonance imag-
ing (MRI) studies have revealed topological alterations 
in the migraine brain [16–18]. Structural MRI studies 
have further identified cortical thinning in the temporal 
and occipital areas, as well as volume reductions in the 
hypothalamus [19–21]. Although these changes showed 
high accuracy in distinguishing chronic migraine from 
episodic migraine and healthy controls in one study 
[22], they have not been widely replicated or validated 
in classifying episodic migraine from healthy controls. 
Functional MRI studies have further demonstrated sig-
nificant alterations in the functional connectivity of the 
visual, limbic, and default mode systems, particularly 
in those involving the insula, thalamus, and brainstem 
[23–26]. A recent study on migraine classification using 
multimodal imaging achieved 89% accuracy in distin-
guishing between patients with migraine and healthy 
controls [27]. However, recent large-scale studies have 
raised questions regarding the reliability of these findings 
and whether the proposed models could be generalized 
across various data configurations because most classifi-
cation performances in prior studies were based on opti-
mal settings [28, 29]. Given these findings, it is evident 
that more robust diagnostic models are required before 
neuroimaging can serve an independent role in migraine 

diagnosis. A promising avenue for future research is the 
development of models that integrate multimodal struc-
tural and functional MRI data with the validation of diag-
nostic performance across different migraine phases and 
times.

In this context, the present study aimed to develop a 
robust multimodal diagnostic model for migraine that 
demonstrated reliability and generalizability across dif-
ferent technical settings (multimodal feature combina-
tions, feature selection hyperparameters, and spatial 
granularities). In addition, we validated the stability of 
the model across different migraine phases and longitu-
dinally repeated data.

Methods
Study participants
We recruited 50 patients with episodic migraine and 50 
age- and sex-matched healthy controls from an academic 
headache clinic between August 2017 and July 2018 [30]. 
The inclusion criteria for patients were as follows: 1) age 
18–50 years, 2) not taking preventive medications, and 3) 
premenopausal status in female patients. The exclusion 
criteria were as follows: 1) chronic migraine, medication-
overuse headaches, chronic pain disorders other than 
migraine, and psychiatric disorders such as bipolar affec-
tive disorder or schizophrenia; 2) contraindications for 
3 T MRI, including use of a tissue expander, pacemaker, 
non-detachable metal objects, orthodontic devices, elec-
trical leads, or implants in the body; 3) pregnancy; 4) 
claustrophobia requiring sedation during MR scanning; 
5) inability to report headache or complete the headache 
diary due to cognitive decline; and 6) disagreement with 
the study procedures. Controls were recruited using the 
same inclusion and exclusion criteria after confirming 
that they had no history of memorable headache episodes 
in their lifetime or during the last year and no family his-
tory of migraine. Migraine was diagnosed by a headache 
specialist (MJL) according to the ICHD 3rd version [9]. 
The study was approved by the Samsung Medical Center 
Institutional Review Board, and all participants provided 
written informed consent.

Study scheme
At baseline, the patients completed headache diaries 
and clinical evaluations and underwent structural and 
functional MRIs following the protocol described below. 
Headache status within 2  days of MRI scanning was 
obtained. Patients were considered ictal if they had head-
aches of any intensity on the day of scanning, interictal if 
they were headache-free for 2 days before and after scan-
ning, and peri-ictal if they were headache-free on the day 
of scanning, but developed headaches within two days of 
scanning. The same participants underwent multimodal 
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MRI scanning and clinical evaluation using the same pro-
tocol one year after the baseline scan. This study was reg-
istered at ClinicalTrials.gov (NCT03487978).

MRI acquisition
Participants underwent T1-weighted and resting-state 
functional MRI (rs-fMRI) using a Philips Ingenia 3 T 
scanner. The acquisition parameters for T1-weighted 
imaging were as follows: repetition time (TR) = 9.9 ms; 
echo time (TE) = 4.6 ms; flip angle = 8°; field of view 
(FOV) = 240 mm × 240 mm; the number of slices = 180 
(reconstructed to 360); slice thickness = 1 mm (recon-
structed to 0.5 mm); and in-plane resolution = 1 mm × 1 mm 
(reconstructed to 0.5 mm × 0.5 mm). The rs-fMRI data 
were acquired as follows: TR = 3,000 ms; TE = 30 ms; flip 
angle = 90°; FOV = 220 mm × 220 mm; number of slices = 33; 
slice thickness = 4 mm; in-plane resolution = 3 mm × 3 mm 
(reconstructed to 1.25 mm × 1.25 mm); and number of 
volumes = 200. During the scan, the participants were 
instructed to keep their eyes open and focus on a fixation 
cross to prevent falling asleep.

Data preprocessing
The imaging data were preprocessed using the fusion 
of a neuroimaging preprocessing (FuNP) surface-based 
pipeline incorporating FSL, AFNI, FreeSurfer, ANT, 
and Workbench (https:// github. com/ CAMIN- neuro/ 
FuNP/)  [31–35]. The gradient nonlinearity and B0 dis-
tortions were corrected from the T1-weighted images, 
non-brain tissues were removed, and intensity was nor-
malized. Pial and white surfaces were generated, and the 
two surfaces were averaged to obtain a mid-thickness 
surface [33, 36–38]. For the rs-fMRI data, preprocess-
ing involved the following steps: the first four volumes 
were discarded to allow for magnetic field saturation, 
and slice timing was corrected. Volumes with large head 
motion (i.e., framewise displacement > 0.5 mm) were dis-
carded [39], and motion correction was performed. Skull 
removal and intensity normalization were performed, 
and nuisance variables, including head motion, white 
matter, cerebrospinal fluid signals, cardiac and respira-
tion signals, and large vein-related contributions, were 
removed using the FMRIB’s independent component 
analysis-based X-noiseifier (ICA-FIX) [40]. The rs-fMRI 
data were registered onto preprocessed T1-weighted 
structural data and subsequently to the Montreal Neu-
rological Institute standard space. The band-pass filter 
with a frequency range between 0.009 and 0.08  Hz was 
applied. Finally, the preprocessed volumetric rs-fMRI 
data were mapped to the cortical surface using a corti-
cal ribbon-constrained volume-to-surface mapping algo-
rithm, and spatial smoothing with a full width at half 
maximum of 5 mm was applied.

Multimodal imaging features
We calculated the morphological features from preproc-
essed T1-weighted MRI and the functional features from 
rs-fMRI (Fig. 1).

Morphological features
The morphological features included cortical thickness, 
curvature, and sulcal depth. Cortical thickness assesses 
the thickness of gray matter by measuring the distance 
between the pial and white surfaces. Curvature was 
defined as the degree of folding of the cortical surface, 
while the sulcal depth was the vertical distance between 
the sulci and pial surfaces. Vertex-level data were mapped 
to brain regions defined using the Shaefer atlas with 200, 
300, and 400 parcels [41] to assess the robustness of the 
model across spatial granularities.

Functional features
From the rs-fMRI data, a functional connectivity matrix 
was constructed by calculating the linear correlations of 
the time series between different brain regions defined 
by the Schaefer atlas containing 200, 300, and 400 par-
cels [41]. The correlation coefficients were calculated 
using Fisher’s r-to-z transformations. The nodal degree 
and betweenness centrality were computed after leaving 
the top 10% of the elements per node. Degree centrality 
was defined as the sum of all edge weights connected to 
a given node, while betweenness centrality was defined 
as the number of shortest paths between any two nodes 
running through that node. Additionally, we generated 
a low-dimensional representation of functional connec-
tivity (gradient) by applying a nonlinear dimensionality-
reduction technique (diffusion map embedding) [42, 
43]. The functional gradient represents the hierarchy 
of the brain because it shows an axis that distinguishes 
between the low-level sensory and higher-order default 
mode regions [42]. First, we generated a group-level tem-
plate gradient from the averaged functional connectivity 
matrix and aligned the individual gradients to the tem-
plate gradients using Procrustes rotation [43, 44].

Feature selection
Because the size of each imaging feature was equal 
to the number of brain regions (200, 300, or 400), the 
combination of N  imaging features resulted in N× 
number of brain regions. When constructing machine 
learning models, too many features commonly result 
in overfitting problems. Thus, a feature selection pro-
cess is required to identify a subset of features to build 
a classification model to distinguish patients with 
migraine from healthy controls. We utilized the elastic 
net regularization method, which combines the prop-
erties of the least absolute shrinkage and selection 

https://github.com/CAMIN-neuro/FuNP/
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operator (LASSO) and ridge regression models [45]. It 
adjusts the weights of each feature by penalizing the 
coefficients of the model with the L1 (LASSO) and L2 
(ridge) norms, as follows:

where xi is the feature set of ith subject and yi is the 
dependent variable indicating the disease state. βj denotes 
the regression coefficient of jth feature, � determines the 
overall strength of the regularization, while α determines 
the relative weight of the ridge and LASSO penalties (i.e., 
L1 ratio). We determined the optimal � using greedy 
search algorithms by varying the L1 ratio as {0.5, 0.7, 0.9, 
0.95, 0.99, 1}. A hundred � values were generated at each 
L1 ratio, and the optimal � showing the best performance 
was selected. The feature selection procedure was per-
formed using the baseline data, and the selected features 
were applied to the follow-up data.

β0,β = argmin
β0,β

n

i=1

(yi − β0 − βT
xi)

2
+ �

p

j=1

1− α

2
β2
j + α βj

Diagnostic model
We constructed a multimodal MRI-based diagnostic 
model to distinguish patients with migraine from healthy 
controls using a random forest classifier with selected 

features. Given the constraints of small sample size and 
the high dimensionality of imaging features, the random 
forest classifier, an ensemble-based machine-learning 
approach that aggregates decisions from multiple deci-
sion trees, is an appropriate option as it effectively cap-
tures feature interactions in high-dimensional data [46]. 
It is more suitable than deep learning or boosting meth-
ods, which are prone to overfitting and unstable training 
with limited data. In this study, a hundred trees and the 
maximum depth at which all leaves become pure nodes 
were considered. The model was trained using all the sub-
jects at baseline. We conducted a classification task with 

Fig. 1 The migraine diagnostic model constructed using multimodal MRI features. a Schema of the research pipeline to construct a multimodal 
MRI-based migraine diagnosis model using data at baseline and validating its performance using data at follow-up. b The concepts of the features, 
including curvature, sulcal depth, cortical thickness, functional gradient, degree centrality, and betweenness centrality, are shown. Mean values 
of the features at baseline are shown on brain surfaces
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a five-fold cross-validation. Specifically, 100 participants 
were randomly divided into five subsets of equal size (i.e., 
20 participants per subset), ensuring that the propor-
tions of patients and controls were balanced. Four of the 
five folds were used as training data, while the remaining 
fold served as the test set. We repeated this process 100 
times with different training and test datasets to mitigate 
potential subject selection bias. To assess the stability of 
the trained model across different migraine phases, we 
applied the model constructed using all data to patients 
in the ictal/peri-ictal phase and matched controls, as 
well as patients in the interictal phase and matched con-
trols. In addition, the model built using all participants 
at baseline was applied to the follow-up data. The clas-
sification performance was assessed based on accuracy, 
sensitivity, specificity, F1 score, and area under the curve 
(AUC). The model accuracy was assessed for all designed 
L1 ratios and parcellation scales. We further evaluated 
the classification performance by configuring the features 
in all possible combinations of morphological (i.e., corti-
cal thickness, curvature, and sulcal depth) and functional 
measures (i.e., degree centrality, betweenness centrality, 
and gradient).

Between‑group differences in the features
To evaluate how each feature differed between the 
groups, we quantified the selected probability of the 
feature set that showed the highest average classifica-
tion accuracy across baseline and follow-up, interictal 
and ictal/peri-ictal phases, L1 ratios, and parcellation 
scales. We subsequently compared the features of the 
brain regions selected during the feature selection pro-
cess between patients with migraine and healthy con-
trols using two-sample t-tests. We visualized the selected 
probabilities and t-statistics according to seven intrinsic 
functional networks: visual, somatomotor, dorsal atten-
tion, ventral attention, limbic, frontoparietal, and default 
mode [47]. Additionally, we calculated the Shapley values 
from the random forest classifier across various param-
eter settings to identify the features contributing to the 
classification between patients with migraine and healthy 
controls.

Clinical associations
The clinical applicability of our findings was demon-
strated by examining the relationship between the fea-
tures with the highest classification performance (i.e., 
curvature, sulcal depth, thickness, and gradient) and clin-
ical measures, including headache frequency and disease 
duration. Specifically, we predicted the clinical scores by 
applying a linear regression model to the top 20 features 
that showed high correlations with each clinical score.

Statistical analysis
Data are presented as the mean ± standard deviation 
(SD), unless otherwise specified. All analyses and visuali-
zations were performed using Python v3.10.9. Elastic net 
regularization and random forest classifiers were con-
ducted using scikit-learn v1.3.2, and a two-sample t-test 
was conducted using SciPy v1.10.0.

Results
The characteristics of the patients and controls are 
summarized in Tables  1 and 2. At baseline, we enrolled 
50 patients (age 33.46 ± 9.01  years; 70% female) and 
50 matched healthy controls (age 33.5 ± 8.95  years; 
70% female) to undergo the clinical assessment and 
MRI scanning. After one year, 46 (92.0%) patients (age 
35.63 ± 8.98  years; 72% female) and 43 (86.0%) healthy 
controls (age 35.02 ± 8.76  years; 72% female) completed 
the follow-up MRI scan and clinical evaluation. The 
headache phase was interictal in 16 and 21 patients at 
baseline and at follow-up, respectively, and ictal/peri-
ictal in 34 and 25 patients, respectively.

Classification using unimodal data
Single feature
We evaluated classification performance using unimodal 
features from T1-weighted MRI or rs-fMRI. When a sin-
gle feature was considered, cortical thickness and degree 
centrality were not selected during the feature selection 
process. The curvature showed the highest classifica-
tion performance (accuracy [%] = 78.0 and 94.0 at base-
line and follow-up, respectively). Although the order of 
classification accuracy changed at follow-up for other 
features, the baseline accuracy was modest for the func-
tional gradient (73.4 and 56.8), followed by betweenness 
centrality (72.6 and 54.4) and sulcal depth (68.1 and 75.7; 
Fig. 2a). These results remained consistent when applied 

Table 1 Demographic information of the study participants at 
baseline

Abbreviations: fMRI functional magnetic resonance imaging, BMI Body mass 
index

Patients (N = 50) Controls (N = 50) P‑value

Age (years) 33.5 (9.01) 33.5 (8.95)  > 0.999

Sex (female) 35 (70.0%) 35 (70.0%)  > 0.999

Migraine with aura 9 (18.0%) -

Disease duration 
(years)

12.0 (7.45)

Headache days 
per month

7.4 (5.22) -

Headache frequency 
at the month of fMRI 
acquisition

5.2 (3.55)
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Table 2 Study participants at interictal and ictal/peri-ictal phases

Information Interictal patients Matched controls Ictal/peri‑ictal 
patients

Matched controls

Number Baseline 16 16 34 34

Follow-up 21 21 25 22

Sex (female) Baseline 13 (81.3%) 13 (81.3%) 22 (64.7%) 22 (64.7%)

Follow-up 11 (52.4%) 11 (52.4%) 22 (88.0%) 20 (90.9%)

Age (years) Baseline 31.93 (9.10) 32.37 (8.65) 34.17 (8.88) 34.02 (9.03)

Follow-up 35.52 (9.58) 36.19 (9.56) 35.72 (8.45) 33.9 (7.76)

Fig. 2 Classification performance using single modal features. a We constructed classification models using a single or multiple features 
within unimodal imaging data. The bar plots present the classification accuracy, and the error bars indicate 99% confidence interval across the L1 
ratios and parcellations. b The classification model was evaluated using the interictal and ictal/peri-ictal datasets. Abbreviations: Curv, curvature; Sulc, 
sulcal depth; Thick, cortical thickness; G1, first gradient; BC, betweenness centrality; DC, degree centrality



Page 7 of 13Namgung et al. The Journal of Headache and Pain            (2025) 26:5  

separately to the interictal and ictal/peri-ictal datasets. 
For the interictal patient-control dataset, the classifica-
tion accuracies were 78.2 and 94.7 for curvature, 76.3 and 
53.6 for functional gradient, 75.2 and 55.2 for between-
ness centrality, and 66.2 and 71.7 for sulcal depth at 
baseline and at follow-up, respectively. For the ictal and 
peri-ictal patient-control datasets, we observed 77.9 and 
93.2 for curvature, 72.2 and 59.7 for functional gradient, 
73.9 and 53.8 for betweenness centrality, and 66.9 and 
79.2 for sulcal depth, respectively (Fig. 2b).

Multiple features
As no single feature showed excellent performance, we 
combined the morphological features (i.e., curvature, sul-
cal depth, and cortical thickness) from T1-weighted MRI. 
This yielded performances of 82.6 and 90.0 in the total 
dataset, 81.7 and 94.3 in the interictal patient-control 
dataset, and 81.3 and 90.0 in the ictal/peri-ictal patient-
control dataset, respectively, at baseline and follow-up 
(Fig. 2), outperforming the combined functional features 
(gradient, betweenness centrality, and degree centrality) 
from the rs-fMRI (77.8 and 60.7 in the total dataset, 79.2 
and 62.0 in the interictal dataset, and 76.3 and 59.6 in the 
ictal/peri-ictal dataset; Fig.  2). The accuracy, sensitivity, 
specificity, F1 score, and AUC for all cases are presented 
in Supplementary Tables 1–3.

Classification using multimodal data
We constructed classifiers using all possible combinations 
of multimodal features. The combination of curvature, sul-
cal depth, cortical thickness, functional gradient, between-
ness centrality, and degree centrality showed the highest 
classification performance (accuracy [%] = 90.4 and 86.0 
at baseline and follow-up, respectively; Fig. 3a), which was 
retained in different phases (90.4 and 87.2 in the interictal 
patient-control dataset; and 89.6 and 84.9 in the ictal/peri-
ictal patient-control dataset; Fig. 3b). Although the order 
of classification accuracy changed slightly at follow-up, 
the curvature, sulcal depth, cortical thickness, and func-
tional gradient consistently contributed to distinguishing 
the groups. The performance of all feature combinations is 
presented in Supplementary Table 4.

Between‑group differences using the most differentiable 
feature set
Considering the classification accuracy of the baseline 
and follow-up data, we identified the most robust fea-
ture sets for migraine diagnosis. The feature combination 
of curvature, sulcal depth, cortical thickness, and func-
tional gradient achieved the best accuracy of 86.7% with 
robustness (99% confidence interval: 0.865–0.869; Fig. 4a). 
Confusion matrices and receiver operating characteris-
tic (ROC) curves are shown in Supplementary Fig. 1. We 

subsequently focused on these four features for further 
analysis. The highest selection probability was observed 
for curvature (mean ± standard deviation across L1 ratios 
and parcellations = 5.9 ± 0.98%), followed by functional 
gradient (5.6 ± 0.82%), sulcal depth (4.3 ± 0.67%), and cor-
tical thickness (3.5 ± 0.68%; Fig.  4b). Among the different 
brain networks, dorsal attention, limbic, and frontoparietal 
networks were relatively frequently selected (6.3 ± 0.86, 
6.0 ± 0.66, 6.0 ± 0.80%, respectively), and the somatomo-
tor and visual networks showed moderate selection prob-
ability (4.8 ± 0.63, 4.3 ± 0.47%, respectively). Finally, we 
assessed the differences in features between patients with 
migraine and healthy controls and observed decreased 
statistics in patients with migraine in the somatomotor 
and frontoparietal networks (Fig. 4c). Between-group dif-
ferences for each feature are presented in Supplemen-
tary Fig. 2. When we calculated the Shapley values, both 
structural and functional features indicated that the dorsal 
attention and limbic networks are important for the clas-
sification task (Fig. 4c). These areas are involved in sensory 
integration, attention regulation, and emotional process-
ing, which are often disrupted in patients with migraine. 
When calculating the Shapley value for each feature, we 
found that the curvature of the somatomotor network, the 
sulcal depth of the dorsal attention network, and the func-
tional gradient of the limbic and dorsal attention networks 
were particularly notable (Supplementary Fig. 3).

Clinical applicability
When we associated the features with clinical scores, 
the dorsolateral and medial prefrontal cortices, supe-
rior and inferior temporal lobes, precuneus, and visual 
areas showed significant associations for headache fre-
quency (adjusted  R2 = 0.34 ± 0.10 and p = 0.03 across par-
cellations and L1 ratios) and disease duration (adjusted 
 R2 = 0.41 ± 0.05 and p = 0.01; Fig. 5).

Discussion
The development of reliable and robust diagnostic mod-
els for migraine is essential to overcome the complexi-
ties arising from intra- and inter-individual variability in 
patient pathophysiology. In the present study, we inte-
grated multimodal MRI features to develop a diagnostic 
model using regularization-based feature selection and 
random forest classification techniques. Curvature, sulcal 
depth, cortical thickness, and functional gradient deliv-
ered the best performance and stability across various 
settings, including different time points, migraine phases, 
feature selection parameters, and parcellation scales. 
Notably, patients with migraine exhibit reduced morpho-
logical properties and functional connectivity within the 
somatomotor and frontoparietal regions, and these areas 
showed significant associations with clinical variables.
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Several classification models for migraine have been 
proposed, with accuracy rates ranging from 65 to 85% 
[22, 48–52]. Although several prior studies have vali-
dated model accuracies using external datasets [53], most 
have been conducted using cross-sectional data, while 
the reliability of these models has not been tested in a 
longitudinal setting with the same participants. Further-
more, the robustness and consistency of these models 
across different phases of headache have not been thor-
oughly addressed. A recent study introduced a machine 

learning-based approach to classifying individuals with 
migraine with aura from healthy controls using morpho-
metric measures, employing extremely randomized trees 
for feature selection and linear discriminant analysis for 
classification [54]. The study identified key features such 
as the cortical thickness of the temporal pole, lingual 
gyrus, and pars opercularis, which are related to migraine 
pathophysiology, including sensory hypersensitivity, aura 
phenomena, and visual processing disruptions. Our find-
ings were consistent with this study, but also identified 

Fig. 3 Classification performance using multimodal features. a We constructed classification models using all feature combinations 
from T1-weighted and rs-fMRI. The bar plots present the classification accuracy, and the error bars indicate 99% confidence interval across L1 ratios 
and parcellations. b The classification model was evaluated using the interictal and ictal/peri-ictal datasets. Abbreviations: Curv, curvature; Sulc, 
sulcal depth; Thick, cortical thickness; G1, first gradient; BC, betweenness centrality; DC, degree centrality
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regions associated with pain modulation and sensory-
related cognitive control processing, including the 
somatomotor, dorsolateral prefrontal, and medial pre-
frontal cortices. Compared to this prior work, our study 
offered a more comprehensive representation of migraine 
pathophysiology by integrating morphological and func-
tional MRI features, enabling the identification of addi-
tional key regions for migraine classification. Critically, 
both studies support the notion that migraine is not 
localized to a single brain region but involves widespread 
brain network alterations, and sensory processing areas 
particularly reinforce their role as robust markers for 
migraine diagnosis. However, differences in the primary 
focus—subtype classification versus phase-general classi-
fication—highlight the complementary strengths of each 
approach. Furthermore, our study used more expansive 
and adaptive feature subsets through elastic net regulari-
zation and utilized an ensemble-based classifier, which is 
robust in handling high-dimensional data and capturing 

nonlinear relationships. These distinctions underline the 
broader applicability and robustness of our approach for 
diagnostic modeling in diverse migraine presentations.

Unlike single-modal designs, multimodal neuroimag-
ing offers complementary insights into brain organiza-
tion by capturing diverse data types [55], resulting in 
improved classification performance. In our study, the 
multimodal feature-based diagnostic model achieved 
86.7% classification accuracy and demonstrated robust-
ness across various spatial granularities, feature subsets, 
and migraine phases. Unlike prior studies, we used regu-
larization techniques to avoid overfitting in the classifica-
tion models with large feature sets. The key advantages 
of this approach are that it automatically selects features 
without manual intervention and is computationally effi-
cient due to the low variability in the model parameters, 
contributing to the development of more reliable disease 
diagnosis models.

Fig. 4 Differences in multimodal features between patients with migraine and healthy controls. a The bar plots present the mean classification 
accuracy across baseline and follow-up, interictal and ictal/peri-ictal phases, feature selection parameters, and parcellations. The error bars indicate 
the 99% confidence interval. b The spider plots present the selection probability of brain regions per network for each feature. The bar plot 
represents the mean selection probability across all features. Gray areas in the spider plots and error bars in the bar plot indicate the standard error. 
c Brain surfaces showing the t-statistics of the between-group differences (left). The bar plot indicates the network-level t-statistics, and the error 
bars indicate the standard error. Negative values represent decreases in features in patients with migraine. The classification contributions 
between patients with migraine and healthy controls are assessed using the Shapley values and are visualized using the brain networks (right). 
Abbreviations: Curv, curvature; Sulc, sulcal depth; Thick, cortical thickness; G1, first gradient; BC, betweenness centrality; DC, degree centrality; VN, 
visual network; SMN, somatomotor network; DAN, dorsal attention network; VAN, ventral attention network; LBN, limbic network; FPN, frontoparietal 
network; DMN, default mode network
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In our analysis, both the morphological and functional 
features were identified as key markers for distinguishing 
patients with migraine from healthy controls. Prior stud-
ies have shown that disruptions in cortical morphology, 
such as reduced cortical thickness and altered curvature, 

can affect the brain folding landscape [56], potentially 
triggering a cascade of physiological events that lead to 
migraine symptoms [57]. Our findings of morphologi-
cal alterations in the somatomotor and frontoparietal 
regions may reflect changes in the neuronal distribution 

Fig. 5 Clinical score associations. a The selected probabilities of each feature that showed high correlations with headache frequency across L1 
ratios and parcellations are visualized on brain surfaces (left). The scatter plot shows the correlation between the actual and predicted headache 
frequency (right). The gray area indicates the 95% confidence interval. b Results based on disease duration
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within these areas in patients with migraine. In addi-
tion to morphological features, functional features also 
play a critical role in the characterization of migraine 
[16, 24, 51, 58]. In the present study, we found that the 
functional connectivity gradient can serve as a robust 
marker for migraine diagnosis. The functional gradi-
ent is a reliable feature for assessing the brain hierarchy 
[42], while alterations in the gradient suggest disruptions 
in information processing along the hierarchical struc-
ture. Specifically, we observed decreased gradient values 
in the visual and somatomotor networks and increased 
values in the limbic network, indicating a more segre-
gated network organization in patients with migraine. 
These changes may be associated with visual auras and 
the affective processing of pain, which is consistent with 
previous findings that noted disruptions in the sensory-
limbic system in migraine [26]. When we associated the 
features with clinical scores, default mode and visual net-
works showed significant relationships. The findings are 
aligned with previous studies that reported associations 
between headache duration/frequency and abnormalities 
in volume and functional connectivity in regions, such 
as the anterior cingulate cortex, temporal lobe, frontal 
lobe, and limbic systems [59–62]. These results suggest 
that morphological and functional alterations may reflect 
the burden of recurrent headaches, alterations in sen-
sory integration, and pain modulation in migraine. Taken 
together, these results indicate that the identified multi-
modal markers not only enhance diagnostic accuracy but 
also provide important insights into the topological dis-
ruptions underlying migraine.

Despite these promising results, several limitations of 
this study must be acknowledged. Using TTtestIndPower 
from the Python package, we calculated that a sample 
size of 64 would be required to achieve sufficient power 
(0.8) while maintaining the type I error rate at 0.05. Since 
our dataset included 100 participants (50 patients with 
migraine and 50 healthy controls), the sample may not 
fully represent the population. However, the primary 
aim of our study was not to assess the absolute statisti-
cal significance of between-group differences but rather 
to identify robust feature combinations for classifica-
tion and to observe the brain regions that prominently 
influenced classification. Although we implemented a 
rigorous cross-validation procedure and evaluated clas-
sification performance across a range of hyperparam-
eter settings and parcellation schemes, the relatively 
small sample size remains a limitation in demonstrating 
the model’s generalizability. In future studies, we aim to 
acquire larger and more diverse independent cohorts to 
validate our model. Additionally, incorporating other 
imaging modalities, such as diffusion MRI or positron 

emission tomography, could further enhance the diag-
nostic performance.

In conclusion, our multimodal diagnostic models 
demonstrated a robust and reliable performance in the 
diagnosis of migraine. This study presents a practical 
approach for migraine diagnosis by combining multi-
modal MRI with machine learning. In particular, the 
identification of morphological and functional connec-
tivity features as key diagnostic markers highlights the 
importance of leveraging multimodal MRI to capture the 
complex neural changes associated with migraine. These 
findings could contribute to the development of more 
precise diagnostic tools for migraine. Future research 
could further explore the underlying biology of migraine 
by incorporating microscale genetic or neurotransmitter 
data to provide deeper insights into its pathophysiology 
through multiscale analysis.
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