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A B S T R A C T   

Sensory attributes are essential factors in determining the quality of wines. However, it can be challenging for 
consumers, even experts, to differentiate and quantify wines’ sensory attributes for quality control. Soft sensors 
based on rapid chemical analysis offer a potential solution to overcome this challenge. However, the current 
limitation in developing soft sensors for wines is the need for a significant number of input parameters, at least 
12, necessitating costly and time-consuming analyses. While such a comprehensive approach provides high 
accuracy in sensory quality mapping, the expensive and time-consuming studies required do not lend themselves 
to the industry’s routine quality control activities. In this work, Box plots, Tucker-1 plots, and Principal 
Component Analysis (PCA) score plots were used to deal with output data (sensory attributes) to improve the 
model quality. More importantly, this work has identified that the number of analyses required to fully quantify 
by regression models and qualify by classification models can be significantly reduced. Based on regression 
models, only four key chemical parameters (total flavanols, total tannins, A520nm

HCl , and pH) were required to 
accurately predict 35 sensory attributes of a wine with R2 values above 0.6 simultaneously. In addition, for 
classification models to accurately predict 35 sensory attributes of a wine at once with prediction accuracy above 
70%, only four key chemical parameters (A280nm

HCl , A520nm
HCl , chemical age and pH) were required. These models 

with reduced chemical parameters complement each other in sensory quality mapping and provide acceptable 
accuracy. The application of the soft sensor based on these reduced sets of key chemical parameters translated to 
a potential reduction in analytical cost and labour cost of 56% for the regression model and 83% for the clas
sification model, respectively, making these models suitable for routine quality control use.   

1. Introduction 

Wine is a complex product that is influenced by factors such as grape 
variety, fermentation conditions, and “terroir” (Rochfort et al., 2010). 
Wine quality is critical to determining its commercial value, and it is 
evaluated through sensory analysis (Charters and Pettigrew, 2006; 
Fanzone et al., 2012). While defining wine quality is subjective, there is 
some agreement on certain aspects, such as transparent clarity, balanced 
aromas, and no aggressive tastes. Wine quality components include 
colour, flavour, mouthfeel, and aromas, with high-quality wines, 
providing consumers with pleasure and enjoyment (Cáceres-Mella et al., 
2018; Sáenz-Navajas et al., 2011). For example, some high-quality wines 
have a high colour intensity, a low hue value, high scores for freshness, 
dried fruits and spicy aromas, pleasant aromas, moderate astringency, 

balanced taste, and medium body (Kallithraka et al., 2015). 
Wine aromas are divided into primary, secondary, and tertiary 

aromas. Primary aromas derive from grapes, secondary aromas are 
produced during fermentation, and tertiary aromas are developed by 
storage (Perestrelo et al., 2020; Pons et al., 2017). The five primary basic 
tastes sensed by taste buds in the mouth are sweetness, sourness, 
bitterness, saltiness, and umami (Winstel et al., 2022). Sweetness caused 
by sugar concentrations can make wine taste “thick” or “flabby”, while 
acidity provides wines with refreshing and crispness. However, exces
sive acidity suppresses the perception of sweetness and can result in a 
highly astringent wine that is considered “harsh”, “unripe” or “green” 
(McRae and Kennedy, 2011). Wine mouthfeel is caused by oral-tactile 
stimulations, and it is recognised as important as wine appearance, 
aroma, and taste, although the mechanism is not yet clear (Laguna et al., 
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2017). Oral-tactile sensations are caused primarily by changes in the 
salivary film and include sensations such as astringency, body, and 
hotness (Laguna et al., 2017; Sáenz-Navajas et al., 2017). Wine experts 
use the concept of aging potential to assess a wine’s ability to retain 
quality and typicality (Le Menn et al., 2021; Waterhouse and Miao, 
2021). Wines with high ageing potential and quality are typically stored 
in oak barrels or matured in the bottle to improve quality by increasing 
wine complexity through the aging process. 

Perceiving wine quality indicators necessitates diverse sensory per
ceptions, including visual, olfactory, taste, and tactile phenomena, 
which pose challenges to judges (Parr et al., 2020). Relying on experts to 
evaluate sensory attributes is also considerably expensive. Furthermore, 
novice consumers cannot accurately identify complex sensory attributes 
in wines (Barton et al., 2020). Therefore, the development of soft sensors 
based on chemical analysis has emerged as a potential solution to 
overcome these challenges, allowing for rapid and accurate analysis of 
wine’s sensory attributes for quality control. 

Soft sensors work by effectively combining easy-to-collect input data 
with a machine learning algorithm to predict target variables that are 
difficult or costly to measure (An et al., 2023). The machine learning 
method (ML) could provide a prediction of complex unknown relations 
between the input data and desired output data (An et al., 2023). For 
example, when 12 physicochemical data were used, the predicted ac
curacy of the model using the support vector machine algorithm (belong 
to ML) on wine quality reached 68.94% (Kumar et al., 2020). Likewise, 
when 12 physicochemical data were used as input data, soft sensors 
using decision trees could predict red wine quality (as a score from 3 to 
8) with an accuracy of 61.1% (Lee et al., 2015). The soft sensor using an 
adaptive boosting classifier (within ML) could successfully predict bi
nary high and low qualities of New Zealand Pinot noir wines with 100% 
accuracy using 7 physicochemical and 47 chemical values (Bhardwaj 
et al., 2022). Furthermore, when 20 chemical variables were used as 
input data, wine astringency could be predicted using a support vector 
regression algorithm, presenting a root-mean-square error value of 
0.190 (Sáenz-Navajas et al., 2019). 

However, the use of soft sensors has limitations, such as the 
impracticality of measuring a large number of chemical parameters for 
every wine and poor predictability when little or irrelevant input data is 
used (Callejón et al., 2016). To overcome these limitations, it is essential 
to understand the relationship between sensory attributes and input 
data. One major factor to consider is phenolic compounds that are 
critical to wine quality as they contribute to oxidative stability and 
organoleptic characteristics (Lorrain et al., 2013). For example, varia
tions in total polyphenol concentration can result in a significant loss of 
aroma compounds due to intermolecular interactions (Ferrer-Gallego 
et al., 2014). Moreover, the intensities of fruity, citrus, strawberry, 
cooked fruit, and floral aromas decreased when the level of polyphenols 
increased (Goldner et al., 2011). Toasted oak chips can alter the aromas 
of wine by introducing compounds such as volatile phenols (e.g., 
vanillin, eugenol and guaiacol) (Alencar et al., 2019). Phenolic com
pounds can release H+ to arouse sourness perception in panellists, and 
the degree of polymerisation of flavanols influences bitter and astringent 
sensations simultaneously (Peleg et al., 1999). Wines with high aging 
ability contain high levels of tannins, total phenols, anthocyanins, 
saturated colour, high astringency, moderate acidity, and suitable 
alcohol content (Jaffré et al., 2009). Such wines also showed minor 
change in colour properties over time, indicating slower pigment for
mation rates. In summary, there are close relationships between 
phenolic compounds and sensory attributes, which must be considered 
to develop effective soft sensors. 

This study aimed to build regression and classification models to 
predict New Zealand Pinot noir wines’ 35 sensory attributes. The 
importance of Pinot noir wines to New Zealand is highlighted as they are 

the second-most planted variety and have the highest export sales,1 

attracting the attention of the New Zealand Government.2 A represen
tative sample of 39 wines from diverse regions, vintages and price points 
was chosen for the study. To improve R2 values in regression models and 
prediction accuracy in classification models, statistical approaches such 
as Box plots, Tucker-1 plots and PCA score plots were used to modify 
output data (sensory attributes rated by wine experts). Relevant chem
ical parameters were identified through pH and UV–Visible spectro
photometry analysis. Complementary sensory analyses were conducted 
by seven experts to compose wine sensory quality mapping. The 
following sections describe the methods and materials used, and the 
subsequent results are discussed before conclusions are made. 

2. Materials and methods 

2.1. Materials 

2.1.1. Pinot noir wines 
In this paper, 78 commercial New Zealand Pinot noir wines were 

sourced, with 39 different wines each in duplicate. The wines were 
sourced from five regions: Central Otago, Marlborough, Nelson, Mar
tinborough, and North Canterbury, with at least seven samples from 
each region. The retail prices of the wines ranged from NZ $10 to NZ 
$80, with vintages from 2011 to 2020. The Pinot noir wines were cat
egorised into three price groups: low price (< NZ $30), middle price (NZ 
$30–60 NZ), and high price (>NZ $60), and two vintage ranges: older 
vintages (vintage 2016 and older) and newer vintages (vintages newer 
than 2016). The 78 bottles of Pinot noir wines were labelled as No.1- 
No.78, with the numbers known only to researchers. The product 
extrinsic cues for these wines are presented in Supplementary Table 1 in 
Supplementary Material. 

2.1.2. Chemical reagents 
Folin-Ciocalteu reagent (Merck), vanillin (99%, ECP), gallic acid 

(98%, ACROS), catechin-hydrate (99.8%, Sigma Aldrich), methyl cel
lulose (1500cp, Sigma Aldrich), methanol (Merck), ρ-(dimethylamino) 
cinnamaldehyde (ρ-DMACA) (Sigma Aldrich), HCl (37%, Thermo Fisher 
Scientific), glycerol (99%, Thermo Fisher Scientific), Na2CO3 (99.5%, 
ECP), and ammonium sulfate (100.1%, AnalaR NORMAPUR®) were 
used in the analytical work performed in this study. 

2.2. Analytical measurements 

A Shimadzu UV-2550 spectrophotometer was utilised to measure 
various colour parameters, including yellow colour at absorbance 420 
nm (A420nm), red colour at absorbance 520 nm (A520nm), and blue colour 
at absorbance 620 nm (A620nm), as well as total phenolics, total flava
nols, total flavan-3ols, total anthocyanins, total tannins, and chemical 
age. Cuvettes with a 0.2 cm path length were used for the colour mea
surements (Merkytė et al., 2020). Chemical age analysis was performed 
by diluting red wines 100 times with 1 N HCl and measure including 
A520nm

HCl , A280nm
HCl and chemical age was performed by diluting red wine 

100 times with 1 N HCl and measuring A280nm
HCl (absorbance at 280 nm, 

positively correlated with total phenolics), A520nm
HCl (absorbance at 520 

nm, positively correlated with total red pigments), and chemical age 
(calculated as A520nm

HCl /A280nm
HCl and positively correlated with vintage) 

(Dobrei et al., 2010). Total phenolics were measured using 
Folin-Ciocalteu methods at absorbance 750 nm, total flavanols (includes 
flavan-3ols) were measured using vanillin assay at absorbance 500 nm, 
total flavan-3ols (within total flavanols) were measured using ρ-(dime
thylamino)cinnamaldehyde at absorbance 640 nm, total anthocyanins 
were measured after dilution with a solution consisting of 70/30/1 

1 https://www.nzwine.com/en/media/statistics/annual-report/  
2 https://bri.co.nz/current-research/#pn. 
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(v/v/v) ethanol/water/HCl at absorbance 540 nm, and total tannins 
were measured using methyl cellulose precipitable (MCP) tannin assay 
at absorbance 280 nm (Ivanova et al., 2010, 2011; Tabart et al., 2010; 
Aleixandre-Tudo et al., 2017). Wine pH was measured using an edge pH 
meter and alcohol content was obtained from wine labels. All chemical 
measurements were conducted in triplicate. For more detailed infor
mation on these analytical measurements and chemical results, please 
check Supplementary Table 2. 

2.3. Sensory evaluation 

Seven wine experts (six men and one woman, aged 24 to 40, who had 
resided in New Zealand for at least six years and held the WSET 3 cer
tificate) were asked to rate the 35 sensory attributes of 78 bottles of 
Pinot noir wines in Table 1. One of the seven experts was a winemaker, 
three were international wine traders, two were graduate students in 
Viticulture and Oenology, and one was a member of the wine evaluation 
teaching team. All had more than five years of involvement in the wine 
science/industry. These panellists were considered wine experts ac
cording to the definition from wine specialist Parr et al. (2002). 

The wine experts completed the evaluation over two consecutive 
days, assessing the sensory attributes of the 39 samples (No.1-No.39) on 
the first day, and the remaining 39 samples (No.40-No.78) on the second 
day. To eliminate bias, wine samples (30 mL) were poured into ISO 
standard tasting glasses that were randomly labelled with a two-digit 
code by researchers during the sensory evaluation. Each taster spent 

roughly 10 min evaluating the sensory attributes of a single glass of 
Pinot noir wine and took a 20-min break after every ten glasses of Pinot 
noir wines. To cleanse the palate, soda water was offered, and coffee 
beans were provided to refresh the nose. The sensory attributes were 
rated by experts on a scale of 1–10. A score of 1 indicated that the 
sensory attribute had a low intensity, while a score of 10 indicated that 
the sensory attribute had a high intensity. The sensory results for 78 
bottles of Pinot noir wines are displayed in Supplementary Table 3. 

2.4. Machine learning methods 

Wineinformatics is a new data science research field that focuses on 
analysing huge quantities of wine-related data using supervised machine 
learning techniques to predict wine quality, prices, and regions (McCune 
et al., 2021). Table 2 summarises the supervised machine learning 
techniques used to construct regression models that quantitatively pre
dict wine sensory attributes. Meanwhile, Table 3 summarises the su
pervised machine learning techniques employed to construct 
classification models that qualitatively predict wine sensory attributes 
such as wine quality or regions. 

The machine learning methods listed in Table 2 were used to build 
regression models that could quantitatively predict New Zealand Pinot 
noir wines’ sensory attributes from Table 1, using the chemical param
eters outlined in Section 2.2 Analytical measurements. Similarly, the 
machine learning methods listed in Table 3 were used to create classi
fication models that could qualitatively predict the same collected 

Table 1 
Sensory attributes evaluated by experts.  

Appearance data Aromatic profile Palate data Quality indicators Readiness for drinking 

Basic tastes Mouthfeel Flavour attributes  

• Clarity  
• Viscosity  

• Primary aromas  
• Fresh fruit aromas  
• Fresh floral aromas  
• Fresh vegetable aromas  
• Secondary aromas  
• Tertiary aromas  

• Sweetness  
• Sourness  
• Bitterness  
• Saltiness  
• Umami  

• Astringency  
• Tannins  
• Residual sugar  
• Hotness  
• Texture  
• Body  
• Freshness  
• Softness  

• Green notes  
• Reductive notes  
• Fruit ripeness  
• Oak influence  

• Overall quality  
• Overall complexity  
• Overall harmony  
• Overall balance  
• Overall persistence  
• Pinot noir varietal typicality  
• Concentration in mouth  
• Expressiveness  
• Balanced acidity  

• Aging potential  

Table 2 
The usage of machine learning methods in regression models.  

Machine 
learning 
methods 

Decision tree Support vector machine 
(SVM) 

Partial least regression (PLS) Multivariate linear regression Artificial Neutral Network 
(ANN) 

Definition The decision tree is a tree-like 
flowchart structure in each 
internal node represents a test 
on an attribute, each branch 
represents a trial outcome, 
and each leaf node holds a 
class label, which could be 
used in classification and 
regression analysis (Thomas 
et al., 2020). 

Support vector machine 
(SVM) is an algorithm 
used in supervised 
machine learning for 
classification and 
regression analysis. 
Costa et al., 2019a,b 

Partial least squares (PLS) 
regression is a technique that 
reduces the predictors to a 
smaller set of uncorrelated 
components and performs 
least squares regression on 
these components instead of 
on the original data ( 
Kalogiouri and Samanidou, 
2021). 

Multivariate linear regression is a 
technique used to measure the 
degree to which the various 
independent and dependent 
variables are linearly related to 
each other (Aleixandre-Tudó 
et al., 2015). 

An ANN consists of 
computing units called 
artificial neurons that are 
equivalent to the neurons of 
the biological nervous 
system. The ANN model 
consists mainly of three 
layers: input, hidden, and 
output (Kalogiouri and 
Samanidou, 2021). 

Traits The benefit of the decision 
tree is that the mined 
information has high 
readability. Usually, 
important attributes are 
presented at the top of the tree 
(De Ville, 2013). 

When there are limited 
training data available, 
this classifier is a helpful 
classification algorithm 
(,Costa et al., 2019b) 

PLS has many advantages 
over regression since it 
robustly handles descriptor 
variables while it provides 
high predictive accuracy and 
low risk of chance correlation 
(Kalogiouri and Samanidou, 
2021). 

Multivariate linear regression 
could be used to solve large, high- 
dimensional data setsa. 

ANNs can handle large 
amounts of datasets, 
presenting powerful 
mechanisms to capture 
patterns in data (Kalogiouri 
and Samanidou, 2021). 

Application   Sensory attributes (Kalogiouri 
and Samanidou, 2021). 

Wine quality (Aleixandre-Tudó 
et al., 2015) 

Sensory attributes ( 
Kalogiouri and Samanidou, 
2021).  

a https://au.mathworks.com/help/stats/multivariate-regression-1.html. 
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sensory attributes and chemical parameters. In this study, all regression 
models and classification models were performed using software 
Matlab. 

Furthermore, Box plots, Tucker-1 plots, and PCA score plots were 

used to reject outliers (abnormal sensory scores) to improve the R2 

values of the regression models and prediction accuracy of the classifi
cation models. PCA loading plots, regression tree structures and Partial 
least square were used to select the significant explanatory variables for 
the regression models to balance the cost and R2 values of the regression 
models. 

3. Results and discussion 

Soft sensors may exhibit low prediction quality when based on a 
small amount of input data, or high prediction quality but require a large 
amount of input data. Obtaining a substantial quantity of input data may 
necessitate a great deal of laboratory work from skilled lab technicians 
and incur high measurement costs. Therefore, it is preferable to achieve 
a balance between the prediction quality of soft sensors and the amount 
of data that needs to be input. It is the hypothesis that these works can be 
done by identifying a data set of a reduced number of key parameters. In 
this section, three primary tasks were carried out: (1) revising output 
data (sensory attributes), (2) identifying the key chemical parameters, 
(3) reducing input data (chemical parameters). 

3.1. Building regression models to quantitatively predict New Zealand 
pinot noir wines’ sensory attributes 

3.1.1. Original sensory attributes (output data) and chemical data (input 
data) 

Five machine learning methods, namely PLS, decision trees, SVM, 
ANN with two hidden layers, and Multivariate linear regression (MVR), 
were employed to develop soft sensors for all attributes. The models 
built using decision trees performed better than the other four methods 
according to their overall R2 values and mean square errors (MSE) 
(Table 4, Supplementary Tables 4–7, and Supplementary Figs. 1–2) 
when 13 chemical parameters including total anthocyanins, total fla
vanols, total flavan-3-ols, total tannins and total anthocyanins, A420nm, 
A520nm, A620nm, A280nm

HCl , A520nm
HCl , chemical age, pH and alcohol content 

(obtained from the wine label) worked as input data. Additionally, the 
performance of the regression models using decision trees to predict 35 
sensory attributes was evaluated by cross-validation tests. The overall 
mean MSE ranged from 0 to 0.76 when the k-fold was 6 and from 0 to 
0.77 when the k-fold was 3. 

Table 3 
The usage of machine learning methods in classification models.  

Machine 
learning 
methods 

Decision 
tree 

Naive Bayes K-nearest 
neighbours 
(KNN) 

Support 
vector 
machine 
(SVM) 

Definition See  
Table 1. 

Naive Bayes is a 
classification 
technique based 
on Bayes’ 
Theorem and the 
predictor 
independence 
assumption ( 
Kwabla et al., 
2021) 

K - nearest 
neighbour 
(KNN) is a 
simple, easy 
machine 
learning 
algorithm that 
can be used to 
solve 
classification 
and regression 
problems 
Bhardwaj et al. 
(2022) 

See  
Table 1 

Traits See  
Table 1. 

There are no links 
between the 
input data and 
attributes. 
Typically, input 
data or attributes 
influence the 
prediction of 
output data with 
equal weight ( 
Dong et al., 2021) 

K-nearest 
neighbour 
(KNN) is a 
method for 
classifying 
objects based on 
the training 
examples in the 
feature space 
that is closest to 
the target object. 

See  
Table 1 

Application Wine 
quality ( 
Bhardwaj 
et al., 
2022) 

Wine quality ( 
Dong et al., 2020) 

Wine quality ( 
Bhardwaj et al., 
2022) 

1. Wine 
quality ( 
Jana 
et al., 
2023) 
2. Region 
of origin ( 
Costa 
et al., 
2019b)  

Table 4 
R2 values of decision trees in predicting 35 sensory attributes.  

Appearance data Aromatic profiles Basic tastes Mouthfeel Flavour attributes Quality indicators Readiness for 
drinking  

● Clarity (R2 =

0.672)  
● Primary aromas 
(R2 = 0.729)  

● Sweetness 
(R2 = 0.762)  

● Astringency (R2 =

0.799)  
● Green notes 
(R2 = 0.77)  

● Overall quality 
(R2 = 0.728)  

● Aging potential 
(R2 = 0.858)  

● Viscosity (R2 

= 0.86)  
● Tannins (R2 =

0.845)    
● Fresh fruit aromas 
(R2 = 0.773)  

● Sourness 
(R2 = 0.703)  

● Residual sugar (R2 

= 0.808)  
● Reductive notes 
(R2 = 0.719)  

● Overall complexity 
(R2 = 0.798)    

● Hotness 
(R2 = 0.797)    ● Fresh floral aromas (R2 

= 0.729)  
● Bitterness 
(R2 = 0.708)  

● Fruit ripeness 
(R2 = 0.785)  

● Overall harmony 
(R2 = 0.773)    

● Fresh vegetable aromas 
(R2 = 0.889)  

● Texture 
(R2 = 0.804)    

● Secondary aromas 
(R2 = 0.789)  

● Saltiness 
(R2 = 0.827)  

● Oak influence (R2 

= 0.87)  
● Overall balance 
(R2 = 0.833)    

● Body 
(R2 = 0.821)     ● Tertiary aromas 

(R2 = 0.811)  
● Umami 
(R2 = 0.774)   

● Overall persistence 
(R2 = 0.885)    ● Freshness 

(R2 = 0.779)        ● Pinot noir varietal typicality 
(R2 = 0.807)     

● Softness 
(R2 = 0.808)   

● Concentration in mouth (R2 

= 0.842)       
● Expressiveness (R2 = 0.812)        
● Balanced acidity (R2 =

0.868)   
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3.1.2. Excluding abnormal sensory scores from sensory attributes (output 
data) 

Some abnormal sensory data may significantly reduce the quality of 
soft sensors. Therefore, the Box plot, Tucker-1 plot and PCA score plots 
were used to identify abnormal sensory scores (outliers) and subse
quently exclude them from sensory data to improve R2 values of 
regression models. 

3.1.2.1. Removing abnormal sensory scores. A Box plot (Fig. 1) is a 
suitable approach to describe the behaviour of sensory data in the 
middle and at the ends of the distributions. Traditionally, Box plots are 
used to provide a visual summary of the data, enabling researchers to 
quickly identify mean values, the dispersion of the data set, and outliers. 
In Box plots (SPSS software), outliers are identified based on their dis
tance from the median or the quartiles. Specifically, an observation is 
considered an outlier if it falls below the lower quartile minus 1.5 times 
the interquartile range (IQR) or above the upper quartile plus 1.5 times 
the IQR. These outliers are marked with asterisks or dots on the plot to 
make them visible. By using a Box plot, it is possible to infer which 
panellists (marked as asterisks or dots in the Box plot visually) have 
abnormal sensory scores in a particular number of Pinot noir wine. In 
this case, the sensory score for that wine should be excluded from the 
sensory attribute. 

Using Fig. 1 as an example, the Box plot was used to depict the 
bitterness scores of the first 10 of the 78 bottles of Pinot noir wines 
obtained from seven panellists. Outliers in the Box plot are appeared in 
No.2, No.3, No.5 and No.7 Pinot noir wines. The number near the out
liers identifies the panellists who recorded the abnormal bitterness 
scores. For example, the scores given by No.4 panellists for the second 
Pinot noir wine and No.7 panellist for the third Pinot noir wine should 
be removed as outliers. 

With the help of Box plots, when outliers (abnormal bitterness score) 
were subtracted from whole bitterness scores, and the whole chemical 
data set was used worked as input data, the prediction results for 
bitterness was R2 of 0.853, compared to the R2 value of 0.708 with the 
outliers included. Similarly, after removing abnormal sourness scores, 
primary aromas scores, reductive notes scores and clarity scores with the 
help of Box plots, the predicted results for sourness, primary aromas, 
reductive notes, and clarity were improved to R2 value of 0.774, R2 

value of 0.772, R2 value of 0.801, and R2 value of 0.809, respectively. 
Following the removal of abnormal sensory attributes and using the 
average of sensory scores as output data, the quality (R2 values) of the 
regression models using decision trees to predict 35 sensory attributes 
are presented in Supplementary Table 8. 

3.1.2.2. Checking panellists’ agreements. The Tucker-1 plot (PanelCheck 
Software) is commonly used to determine whether or not assessors agree 
on sensory attribute scores (Losó et al., 2012). Two ellipses appear on 
the plot, the outer ellipse representing 100% and the inner ellipse rep
resenting 50% of the explained variance in Fig. 2. In Tucker-1 plots, 
outliers are identified based on their location relative to the inner ellipse 
circle, which represents the range of agreement among the panellists 
when the accumulated PCs account for more than 60% of the total 
variances. If a panellist’s sensory score falls outside or on the inner el
lipse circle visually, it suggests that the panellist strongly disagree with 
the sensory attribute scores and is regarded as an outlier. For example, 
panellists 1 and 7 are located on the inner ellipse circle in PC1 vs. PC2 in 
Fig. 2, and these panellists are assumed to strongly disagree with the 
sensory attribute scores. In this situation, the panellist’s sensory scores 
are entirely removed from the sensory attributes for all 78 bottles of 
Pinot noir wines. 

Fig. 2 shows the Tucker-1 plot obtained for the seven panellists’ 

Fig. 1. Box plot used to remove sensory scores considered to be outliers, relating to the bitterness scores for 7 panellists, and for the first 10 of 78 Pinot noir wines. 
Notes: the numbers in the body of the figure represent the panellist number whose sensory score was outliers. 

Fig. 2. Tucker-1 plot (exclude panelists who are positioned in the outlier circle). Notes: inner ellipse = 50% variance, outer ellipse = 100%.  
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scores for bitterness. When the accumulated PCs are greater than 60% of 
total variances about bitterness, namely in PC1, PC2 and PC3, validation 
analysis can be performed (McAlinden et al., 2010). It can be seen that 
panellists 2, 3, 5 and 6 agree on bitterness, whereas the scores for 
panellists 1, 4 and 7 are unacceptable. When the average scores from 
panellists 2, 3, 5 and 6 worked as output data, and the whole chemical 
data set as input data, the prediction effect of the decision tree for 
bitterness had an R2 value of 0.781. The prediction quality (R2 values) of 
the regression models using decision trees to predict 35 sensory attri
butes processed by Tucker-1 plot is displayed in Supplementary Table 9. 

3.1.2.3. Comparing panellists’ similarities. PCA score plots (generated 
using Matlab software) can be used to assess the similarities and dif
ferences in panellists’ behaviour during sensory evaluation (Chen et al., 
2020). For example, in the case of bitterness, PCA score plots provide 
visual information about how the panellist cluster with six other pan
ellists during sensory evaluation, as shown in Fig. 3 (a). Additionally, 
actual distances between any two PCA scores (total variances = 100%) 
can also be provided, as shown in Fig. 3(b), and the distances between 
the panellist and another six panellists are summed in PCA score plot. If 
the distance between the panellist and another six panellists in the PCA 
score plot is above the upper bound of the 95% confidence interval, this 
panellist would be regarded as an outlier. In this situation, the panellist’s 
sensory scores are entirely removed from the sensory attributes for all 78 
bottles of Pinot noir wines.  

(a) PCA score plots (b) Pairwise distances between PCA scores 

The prediction quality (R2 values) of the regression models using 
decision trees to predict 35 sensory attributes was processed by the PCA 
score plot, and No.1 and No.7 panellists were considered outliers and 
their bitterness scores were removed. The remaining 5 panellists’ 
bitterness scores were used as input data, resulting in an R2 value of 
0.752 for the regression models using decision trees. The results of the 
prediction quality (R2 values) are shown in Supplementary Table 10. 

Overall, the study utilised three methods to improve the prediction 
quality of soft sensors in predicting sensory attributes of Pinot noir 
wines. The Box plot, Tucker-1 plot, and PCA score plot were used to 
revise the output data by removing abnormal sensory scores, eliminating 
panellists who disagree with the sensory scores, and identifying simi
larities and differences among panellists, respectively. The Box plot was 
found to significantly improve the prediction quality of soft sensors in 
predicting bitterness. It was hypothesised that the abnormal bitterness 
scores would have a significant impact on the soft sensor’s ability to 
predict bitterness, as opposed to panellists who disagree with bitterness 
or have different behaviours in evaluating it. 

Finally, the highest R2 values from the regression models using de
cision trees in Table 4, Supplementary Tables 8–10 were combined in 
Table 5. In Table 5, regression models using decision trees could predict 
sensory attributes with R2 values above 0.75. 

The prediction quality of the soft sensors to predict basic tastes such 

Fig. 3. Seven panellists’ distances in PCA score plots.  

Table 5 
The highest R2 values of regression models to predict 35 sensory attributes.. 
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as sweetness, sourness, bitterness, saltiness, and umami has significantly 
improved by Box plots and Tucker-1 plots. These five primary sensations 
are activated by tongue buds in the mouth and have strong in
terrelationships, which can usually confuse panellists. For example, 
phenolic compounds can contribute to astringency, bitterness and 
sourness. Sweetness can inhibit sourness and bitterness, while umami 
can enhance sweet and salty flavours and reduce bitterness (Kim et al., 
2015; Koone et al., 2014). It is important to note that sensory evaluation 
is a complex process, and the interplay between different tastes and 
sensory attributes requires careful consideration to achieve accurate 
predictions. 

3.1.3. Selecting the significant explanatory variables from chemical data 
(input data) 

As the regression models have demonstrated the ability to predict all 
sensory attributes with R2 values above 0.75, it is possible to explore 
ways to reduce the amount of input data required, to save costs. Three 
methods were utilised to achieve this, including PCA loading plot, 
regression tree structures, and PLS. These methods are also important 
tools for identifying key chemical parameters that contribute to sensory 
attributes. 

3.1.3.1. Reducing the input data set requirements with the help of PCA 
loading plot. PCA is a holistic representation algorithm that represents 
the original data sample to varying degrees and learns a set of linearly 
uncorrelated features known as principal components to describe data 
variance. By projecting the input data onto a subset of principal com
ponents that best describe the data’s variance, the dimensional reduc
tion is achieved. The characteristics that contribute less to the variances 
are deemed less descriptive and are therefore eliminated (Kasun et al., 

2016). When the distances between chemical parameters and the point 
of origin are short in this section, it indicates that these chemical pa
rameters contribute less to the variance. 

The PCA loading plot displays the chemical variables of 78 bottles of 
New Zealand Pinot noir wines. According to Fig. 4 (a)-(c), pH, alcohol 
content, total tannins, total flavan-3ols, total phenolics, and total an
thocyanins are closet to origin point when total variances in PCAs above 
60%. Conversely, when pH and total flavan-3ols were removed from 13 
chemical parameters, the prediction quality of soft sensors to predict 35 
sensory attributes are R2 values low 0.7. But when alcohol content, total 
phenolics, and total anthocyanins were removed from 13 chemical pa
rameters, the prediction quality of soft sensors to predict 35 sensory 
attributes were R2 values above 0.7. Low total anthocyanins in Pinot 
noir grapes compared to other red wine grape varieties may contribute 
to the colour of Pinot noir wines (Weber et al., 2013). Isolated antho
cyanins are tasteless, but the interaction of anthocyanins and flavanols 
can form pigments during wine aging and lead to sensory changes such 
as lower levels of astringency (Oberholster et al., 2013). Compared to 
other phenolic parameters like total tannins, total flavanols (including 
total flavan-3ols), total phenolics, total flavan-3-ols (within total flava
nols), total anthocyanins did not function as a key chemical parameter. 

Additionally, PCA loading plots can reveal similar relationships be
tween chemical variables. For example, total phenolics, total flavanols, 
total flavan-3-ols, total tannins and A280nm

HCl are close in Fig. 4 (a)–(c), 
indicating that these chemical variables have similar effects on Pinot 
noir wines and could work alternatives for each other. Similarly, A420nm, 
A520nm, and A620nm have similar effects on Pinot noir wines, A520nm

HCl , 
chemical age and total anthocyanins have similar effect as well. After 
removing A420nm and chemical age from the rest chemical parameters, 
the R2 values of regression models to predict all sensory attributes were 

Fig. 4. PCA loading plots for the chemical variables from 78 bottles of Pinot noir wines.  

Fig. 5. The number of occurrences of chemical parameters in regression tree structures.  
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basic above 0.7. Furthermore, when A280nm
HCl and A620nm were removed 

from the rest of the input data, the R2 values of the regression models to 
predict all sensory attributes were above 0.65. Followed by removing 
total flavan-3-ols and A520nm, the R2 values of regression models to 
predict all sensory attributes were above 0.6. The R2 values of regression 
models to predict sensory attributes above 0.7, above 0.65 and above 0.6 
are displayed in Supplementary Tables 11–13. 

3.1.3.2. Reducing the input data set with the help of regression tree 
structure. The regression tree structure is a versatile widget with 2-D 
visualization, which could help researchers understand how chemical 
parameters (input data) could influence the prediction quality of soft 
sensors to predict sensory attributes. Please refer to Supplementary 
Fig. 4 for more detailed information. Among the 35 regression tree 
models, A420nm appeared 30 times, followed by total flavan-3ols. 

According to Fig. 5, it could be inferred that A420nm is the most 
important chemical parameter, followed by total flavan-3-ols, and total 
tannins. Usually, A420nm, A520nm and A620nm are measured together and 
removing one of them from input data cannot save time and cost. When 
A420nm, A520nm, A620nm, total flavan-3-ols and total tannins worked as 
input data, the prediction ability of soft sensors to predict the Pinot noir 
wines’ 35 sensory attributes was indicated by R2 values above 0.60. 
Moreover, when A420nm, A520nm, A620nm, total flavan-3ols, total tannins, 
A280nm

HCl and pH worked as input data, the prediction ability of the soft 
sensors to predict Pinot noir wines’ 35 sensory attributes was shown by 
R2 values above 0.65. Meanwhile, when alcohol content and A520nm

HCl 

were removed from 13 chemical parameters, the prediction ability of the 
soft sensors to predict Pinot noir wines’ 35 sensory attribute was shown 
R2 values are above 0.7. The R2 values of regression models to predict 
sensory attributes above 0.65 and 0.60 are displayed in Supplementary 
Tables 14–15. 

3.1.3.3. Reducing the input data set with the help of PLS. Partial least 
square (PLS) regression is a technique that reduces a small set of un
correlated components and performs least squares regression on these 
components, instead of on the original data.3 PLS is especially useful 
when there is close collinear relationship between input data and output 
data. In this section, the coefficient between individual chemical pa
rameters and individual sensory attributes in PLS is obtained. Moreover, 
the coefficient between individual chemical parameter with 35 sensory 
attributes are summed in Fig. 6. 

According to Fig. 6, it can be inferred that A420nm, A520nm, and 
A620nm have the highest accumulated coefficient, while pH has the 

lowest accumulated coefficient. When A420nm, A520nm, A620nm, chemical 
age, alcohol content, A520nm

HCl , total anthocyanins and total flavan-3-ols 
were used as input data, the prediction qualities of soft sensors had R2 

values above 0.6 (Supplementary Table 16). However, removing pH 
from 13 chemical parameters could suddenly lower the prediction 
quality of soft sensors with R2 value above 0.65. 

In summary, in machine learning, PCA loading plot, regression tree 
structures, and PLS are all available methods to select important 
chemical parameters and reduce input data. However, there are still 
some differences. PCA mainly focuses on the similarities between 
chemical parameters. For example, A420nm, A520nm, and A620nm have 
similar effects, and removing one of them may not significantly lower 
the prediction quality of regression models. However, determining 
which chemical parameter to remove first from those with similar effect 
should be done through a trial-and-error approach. Previously, it has 
been found that regression tree structures could work as feature selec
tion methods (Chen et al., 2017), which is also available in this work. 
Moreover, PLS usually focuses on the linear relationship between 
chemical parameters and sensory attributes, and it is also available as 
the feature selection method in this work. 

From chemical standpoint, it can be inferred that when the predic
tion qualities of soft sensors are R2 values above 0.6 in Section 3.1.1.1 to 
Section 3.1.1.3, colour parameters (A420nm, A520nm and A620nm), total 
tannins, and total flavan-3-ols are key chemical parameters compared to 
other chemical parameters. During maturation and ageing, the wine 
colour shifts from the red-purple hues of young red wines (A520nm) to 
orange-like hues (A420nm) (He et al., 2010). A420nm, A520nm, and A620nm 
all have close relationships with tannins (Dobrei et al., 2010). Phenolic 
compounds, such as tannins and flavan-3-ols, are important contributors 
to the sensory characteristics of Pinot noir wines, along with colour 
parameters (Soares et al., 2017). Condensed tannins (polymerised 
flavan-3-ols) in wine have a substantial effect on quality-related sensory 
characteristics, such as astringency and mouthfeel (Setford et al., 2017). 
Bitterness and astringency are defining characteristics of flavanol-rice 
foods, and the degree of flavanol polymerisation influences bitter and 
astringent tastes (Griffin et al., 2020). Obviously, among phenolic 
compounds, especially tannins (include polymerised flavan-3-ols), are 
the basic skeleton to contribute to Pinot noir wines’ sensory attributes. 

In contrast, alcohol content is controversial chemical substances that 
influences Pinot noir wines’ sensory attributes. While alcohol content 
has limited influence on Pinot noir wines’ sensory attributes based on 
PCA loading plots and regression tree structures, it does play a certain 
role according to PLS. The first component of wine is water, followed by 
alcohol. Although alcohol has a lesser impact on sensory attributes than 
phenolic compounds, it still has direct effects on bitterness, sweetness, 
and perceived viscosity, and indirect effects on astringency, sourness, 
and aromas (Waterhouse et al., 2016). 

Fig. 6. The summed coefficient between individual chemical parameters and 35 sensory attributes.  

3 https://support.minitab.com/en-us/minitab/20/help-and-how-to/statisti 
cal-modeling/regression/supporting-topics/partial-least-squares-regression/wh 
at-is-partial-least-squares-regression/. 

J. An et al.                                                                                                                                                                                                                                       

https://support.minitab.com/en-us/minitab/20/help-and-how-to/statistical-modeling/regression/supporting-topics/partial-least-squares-regression/what-is-partial-least-squares-regression/
https://support.minitab.com/en-us/minitab/20/help-and-how-to/statistical-modeling/regression/supporting-topics/partial-least-squares-regression/what-is-partial-least-squares-regression/
https://support.minitab.com/en-us/minitab/20/help-and-how-to/statistical-modeling/regression/supporting-topics/partial-least-squares-regression/what-is-partial-least-squares-regression/


Current Research in Food Science 6 (2023) 100514

9

3.2. Building classification models to qualitatively predict New Zealand 
pinot noir wines’ sensory attributes 

When regression models are used to precisely predict the intensity of 
sensory attributes of New Zealand Pinot noir wines, more input data 
must be collected for regression models. However, it is not always 
necessary to obtain the precise intensity of the sensory attributes. In this 
case, a classification model could forecast Pinot noir wines’ sensory 
attributes with an intensity rated as high, middle, or low. The average 
sensory scores of 78 Pinot noir wines from New Zealand were graded 
from highest to lowest. Every 26 bottles of Pinot noir wine were clas
sified as having high-intensity, medium-intensity, or low-intensity sen
sory attributes. 

3.2.1. Original sensory attributes (output data) and chemical data (input 
data) 

When total anthocyanins, total flavanols, total flavan-3ols, total 
tannins and total anthocyanins, A420nm, A520nm, A620nm, A280nm

HCl , A520nm
HCl , 

chemical age, pH and alcohol content (obtained from wine label) were 
used as input data, and output data were high-, middle- and low- 
intensity sensory attributes, classification models were developed with 
machine learning methods including SVM, KNN, Naive Bayes and de
cision trees respectively. The soft sensors built by machine learning 
methods SVM and KNN had low prediction accuracy (The majority of 
soft sensors with prediction accuracy lower than 60%) for predicting 
intensities of sensory attributes. And the soft sensors built by the ma
chine learning method Naive Bayes exhibited prediction accuracy 
ranging from 60% to 80% for estimating intensities of sensory attributes. 
In contrast, soft sensors using decision trees were superior classification 
models (All soft sensors with prediction accuracy greater than 75%) for 
predicting the intensities of sensory attributes in Table 6. 

According to Tables 6 and it can be inferred that the soft sensors 
could predict all sensory attributes with prediction accuracy above 75%. 

Table 6 
The accuracy of classification models to predict 35 sensory attributes.  

Appearance data Aromatic profiles Basic tastes Mouthfeel Flavour attributes Quality indicators Readiness for 
drinking  

• Clarity 
(0.7564)  

• Viscosity 
(0.8462)  

• Primary aromas 
(0.8333)  

• Fresh fruit aromas 
(0.8205)  

• Fresh floral aromas 
(0.8462)  

• Fresh vegetable aromas 
(0.7821)  

• Secondary aromas 
(0.7949)  

• Tertiary aromas (0.859)  

• Sweetness 
(0.7949)  

• Sourness 
(0.8077)  

• Bitterness 
(0.8333)  

• Saltiness 
(0.8333)  

• Umami 
(0.8077)  

• Astringency 
(0.8077)  

• Tannins (0.8462)  
• Residual sugar 

(0.8077)  
• Hotness (0.7821)  
• Texture (0.8846)  
• Body (0.8462)  
• Freshness (0.8077) 
•Softness (0.8333)  

• Green notes 
(0.8205)  

• Reductive notes 
(0.8077)  

• Fruit ripeness 
(0.8462)  

• Oak influence 
(0.859)  

• Overall quality (0.859)  
• Overall complexity 

(0.8205)  
• Overall harmony (0.8718)  
• Overall balance (0.8846)  
• Overall persistence 

(0.8205)  
• Pinot noir varietal 

typicality (0.859)  
• Concentration in mouth 

(0.7949)  
• Expressiveness (0.7564)  
• Balanced acidity (0.859)  

● Aging potential 
(0.8333) 

Notes: Sensory attributes are coloured purple when the soft sensors using decision trees could predict sensory attributes with prediction accuracy above 80%. 

Table 7 
The highest accuracy of classification models to predict 35 sensory attributes.. 
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However, the soft sensor for predicting expressiveness had the lowest 
prediction accuracy. Wine expressiveness is defined as a wine with 
distinguished aromas and flavours.4 It has positive correlations with 
Pinot noir varietal typicality, which is linked with perceived quality and 
complexity (Parr et al., 2020). It appears to be challenging for experts to 
properly comprehend expressiveness, which may result in low predic
tion accuracy of soft sensors. 

3.2.2. Excluding abnormal sensory scores from sensory attributes (output 
data) 

The sensory attributes of 78 bottles of New Zealand Pinot noir wines 
processed by the Box plots, Tucker-1 plots and PCA score plots were also 
used in the classification models. The prediction accuracy of soft sensors 
using decision trees to predict the intensities of sensory attributes are 
listed in Supplementary Tables 17–19, respectively. The soft sensors 
with highest prediction accuracy from Table 7, Supplementary 
Tables 17–19 were summarised in Table 7. 

Overall, Table 7 shows that the soft sensors can predict the sensory 
attributes of New Zealand Pinot noir wines with high prediction accu
racy, indicating their potential as a useful tool for quality control in wine 
production. The different quality indicators associated with wine quality 
highlight the complex nature of wine evaluation and the importance of 
considering both intrinsic and extrinsic dimension (Sáenz-Navajas et al., 
2013). For instance, while experts associate wine quality with low levels 
of whiskylactones and volatile phenols, and high levels of nor
isoprenoids, consumers associate it with high levels of oak-related vol
atiles and 4-ethylphenol (Sáenz-Navajas et al., 2015). Furthermore, 
several parameters, such as concentration of phenolic compounds, aro
matic composition, alcohol strength, acidity, and consumer preferences, 
influence wine quality based on intrinsic dimensions (Cáceres-Mella 
et al., 2018). Concentration in mouth, related to the concept of wine 
body, is a quality indicator that has been overlooked by researchers 
(Parr et al., 2020). Interestingly, Pinot noir wines produced from Wai
para (North Canterbury) have been found to have the highest intensity 
concentration in mouth, followed by those produced from Central Otago 
when comparing Pinot noir wines from Marlborough, Martinborough, 
Waipara, and Central Otago (Tomasino et al., 2013). 

3.2.3. Selecting the significant explanatory variables from chemical data 
(input data) 

After improving the prediction accuracy of soft sensors, it is neces
sary to reduce the input data to balance the cost and maintain prediction 
quality of soft sensors. Less input data was needed for the classification 
models than for the regression models. The predicted accuracy of a 
classification model cannot be considerably altered by lowering the 
input data randomly. In light of this, the choice of input data is mostly 
based on how simple it is to get the necessary chemical data. Chemical 
parameters such as pH, A420nm, A520nm, A620nm, A280nm

HCl , A520nm
HCl and 

chemical age are easier to collect than others. When chemical age, 
A520nm

HCl , A280nm
HCl and pH worked as input data, the classification model 

predicted all sensory attributes with an accuracy above 70% (Supple
mentary Table 20). However, the classification models could not predict 
all the sensory attributes with an accuracy above 75% when only pH, 
A420nm, A520nm, A620nm, A280nm

HCl , A520nm
HCl , chemical age and alcohol con

tent worked as input data. Among the phenolic measurements, total 
anthocyanins was comparably easy to collect. When total anthocyanins, 
pH, A420nm, A520nm, A620nm, A280nm

HCl , A520nm
HCl and chemical age were used 

as input data, the classification models predicted all the sensory attri
butes with an accuracy above 75% (Supplementary Table 21). 

3.3. Calculating the cost of soft sensors 

Table 8 summarises the labour cost and chemical cost to collect input 
data based on the price of chemical reagents displayed in Supplementary 
Table 22 pH, A420nm, A520nm and A620nm were measured directly. The 
alcohol content was obtained directly from the wine labels. Total phe
nolics, total flavanols, total flavan-3-ols, total anthocyanins, total tan
nins, and chemical age are measured in each sample at the cost of 0.12 
NZ dollars, 0.1295 NZ dollars, 0.1616 NZ dollars, 0.112 NZ dollars, 
0.127 NZ dollars and 0.014 NZ dollars, respectively. 

In New Zealand, the average salary for a lab technician is 22 NZ 
dollars/hour.5 Based on lab technician salary, the costs for regression 
and classification models for various input data were calculated in 
Table 9. According to Table 9, the implementation of the developed soft 
sensors based on eight key chemical parameters (selecting significant 
explanatory variables by PCA loading plot), seven chemical parameters 
(selecting significant explanatory variables by decision tree structure), 
and eight key chemical parameters (selecting significant explanatory 
variables by PLS) could result in a 26%, 39% and 56% reduction, 
respectively, in the regression models, which have R2 values above 0.7, 
R2 values above 0.65 and R2 values above 0.6 for the 35 sensory attri
butes. In addition, the developed soft sensors based on eight and four 
key chemical parameters could reduce the classification models’ cost by 
64% and 83%, respectively, which have prediction accuracy above 75% 
and 70% for the 35 sensory attributes, respectively. 

4. Conclusions 

Replacing panellists with high-quality and sparse input data and 
using soft sensors to predict the sensory attributes of Pinot noir wines 
quantitatively and qualitatively is a crucial topic in the wine industry. 
The most significant part of this study offered suggestions for outlier 
rejection and significant explanatory variable selection for regression 
models and classification models. In regression models, the input data 
was reduced by decreasing input data from regression models with the 
help of PCA loading plot, regression tree structures and PLS. In classi
fication models, the input data was reduced by balancing cost and model 

Table 8 
Chemical measurement costs.  

Experimental 
content 

Time cost (per 
sample) 

Chemical cost 
(per sample) 

Data collection 

Alcohol content 0 min 0 NZ dollars Alcohol content 
pH 1 min (measure 

samples) 
0 NZ dollars pH 

Colour 
measurement 

1 min (measure 
samples) 

0 NZ dollars A420nm, A520nm, 
A620nm 

Total phenolics 
assay 

2 min (measure and 
prepare samples) 

0.12 NZ dollars Total phenolics 

Total flavanols 
assay 

2 min (measure and 
prepare samples) 

0.1295 NZ 
dollars 

Total flavanols 

Total flavan-3-ols 
assay 

2 min (measure and 
prepare samples) 

0.1616 NZ 
dollars 

Total flavan-3-ols 

Total 
anthocyanins 
assay 

2 min (measure and 
prepare samples) 

0.112 NZ 
dollars 

Total anthocyanins 

Total tannins 
assay 

4 min (measure and 
prepare samples) 

0.127 NZ 
dollars 

Total tannins 

Chemical age 2 min (measure and 
prepare samples) 

0.014 NZ 
dollars 

A280nm
HCl , A520nm

HCl , 
chemical age 

Total cost 16 min 0.6641 NZ 
dollars  

Notes: The time cost does not include the time to prepare the chemical reagent; 
The time cost is based on the authors’ time consumption after three years of 
experience in a chemical laboratory. 

4 https://en.wikipedia.org/wiki/Wine_tasting_descriptors#cite_note-FOOT 
NOTEMacNeil20015-14. 5 https://nz.talent.com/salary?job=lab+technician 
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quality. In addition, given that the wine industry has varying quality 
requirements for soft sensors, this article has provided various budgets 
for soft sensors. In this work, machine learning methods decision trees 
were both used in regression models and classification models. Based on 
regression models, only four key chemical parameters (Total flavanols, 
total tannins, A520nm

HCl and pH) were required to accurately predict 35 
sensory attributes of a wine with R2 values above 0.6 simultaneously. In 
addition, for classification models to accurately predict 35 sensory at
tributes of a wine at once with prediction accuracy above 70%, only four 
key chemical parameters (A280nm

HCl , A520nm
HCl , chemical age and pH) were 

required. 
Furthermore, it demonstrated that phenolic compounds, especially 

polymerised flavan-3ols (condensed tannins) measured in this paper are 
essential for developing regression models and classification models to 
predict 35 sensory attributes quantitatively and qualitatively, which 
have been composed as sensory quality mapping for Pinot noir wines. 
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Table 9 
The costs of regression models and classification models with various input data.  

Model type  Input data Quality of 
model 

Chemical 
cost (NZD) 

Labor cost 
(Time 
cost) 

Total 
cost 
(NZD) 

Regression 
model 

Original input data and output data Total phenolics, total flavanols, total flavan-3ols, 
total anthocyanins, total tannins, A280nm

HCl , A520nm
HCl , 

chemical age, pH, A420nm, A520nm, A620nm, alcohol 
content 

R2 > 0.65 0.6641 16 min 6.53  

Excluding abnormal sensory scores from 
sensory attributes (output data) 
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total anthocyanins, total tannins, A280nm

HCl , A520nm
HCl , 

chemical age, pH, A420nm, A520nm, A620nm, alcohol 
content 

R2 > 0.75 0.6641 16 min 6.53  

Excluding abnormal sensory scores and 
select significant explanatory variables from 
chemical data (input data) by PCA loading 
plot 

Total flavanols, total flavan-3ols, total tannins, 
A280nm

HCl , A520nm
HCl , pH, A520nm, A620nm, 

R2 > 0.7 0.4321 12 min 4.83   

Total flavanols, total flavan-3ols, total tannins, 
A520nm
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select significant explanatory variables from 
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3-ols 

R2 > 0.6 0.2876 7 min 2.85 

Classification 
model 

Original input data and output data Total phenolics, total flavanols, total flavan-3ols, 
total anthocyanins, total tannins, A280nm

HCl , A520nm
HCl , 

chemical age, pH, A420nm, A520nm, A620nm, alcohol 
content 

Accuracy>75% 0.6641 16 min 6.53  

Excluding abnormal sensory scores from 
sensory attributes (output data) 

Total phenolics, total flavanols, total flavan-3ols, 
total anthocyanins, total tannins, A280nm

HCl , A520nm
HCl , 

chemical age, pH, A420nm, A520nm, A620nm, alcohol 
content 

Accuracy>80% 0.6641 16 min 6.53  

Excluding abnormal sensory scores and 
select significant explanatory variables from 
output data based on the chemical cost and 
labor cost 

A280nm
HCl , A520nm

HCl , chemical age, A420nm, A520nm, 
A620nm, total anthocyanins, pH 

Accuracy>75% 0.126 6 min 2.33   

A280nm
HCl , A520nm

HCl , chemical age, pH Accuracy>70% 0 3 min 1.114  

J. An et al.                                                                                                                                                                                                                                       

https://doi.org/10.1016/j.crfs.2023.100514
https://doi.org/10.1016/j.crfs.2023.100514
https://doi.org/10.17221/370/2014-CJFS
https://doi.org/10.17221/370/2014-CJFS
https://doi.org/10.1021/acs.jafc.7b01724


Current Research in Food Science 6 (2023) 100514

12

Alencar, N.M.M., Ribeiro, T.G., Barone, B., Barros, A.P.A., Marques, A.T.B., Behrens, J. 
H., 2019. Sensory profile and check-all-that-apply (cata) as tools for evaluating and 
characterizing syrah wines aged with oak chips. Food Res. Int. 124, 156–164. 
https://doi.org/10.1016/j.foodres.2018.07.052. 

An, J., Deed, R.C., Kilmartin, P.A., Yu, W., 2023. Could collected chemical parameters Be 
utilized to build soft sensors capable of predicting the provenance, vintages, and 
price points of New Zealand Pinot noir wines simultaneously? Foods 12 (2), 323. 
https://doi.org/10.3390/foods12020323. 

Barton, A., Hayward, L., Richardson, C.D., McSweeney, M.B., 2020. Use of different 
panellists (experienced, trained, consumers and experts) and the projective mapping 
task to evaluate white wine. Food Qual. Prefer. 83, 103900 https://doi.org/ 
10.1016/j.foodqual.2020.103900. 

Bhardwaj, P., Tiwari, P., Olejar, K., Parr, W., Kulasiri, D., 2022. A machine learning 
application in wine quality prediction. Machine Learning with Applications 8, 
100261. https://doi.org/10.1016/j.mlwa.2022.100261. 
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