CORRECTION Open Access

Correction to: Fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C

Zhaoyu Lin^{1*}, Fei Liu², Peiliang Shi¹, Anying Song¹, Zan Huang³, Dayuan Zou¹, Qin Chen¹, Jianxin Li² and Xiang Gao¹

Erratum

The original article [1] mistakenly omitted a source of funding, and the authors would like to rectify this by acknowledging the additional support of the Natural Science Foundation in Jiangsu Province (BK20150687).

Author details

¹State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Collaborative Innovation Center of Genetics and Development, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China. ²State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China. ³Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agriculture University, Nanjing, China.

Received: 13 April 2018 Revised: 13 April 2018 Accepted: 13 April 2018 Published online: 19 April 2018

Reference

 Lin Z, et al. Fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C. Stem Cell Res Ther. 2018:9:47.

¹State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Collaborative Innovation Center of Genetics and Development, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China

^{*} Correspondence: Linzy@nju.edu.cn