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Abstract: The crystal structure, electron charge density, band structure, density of states, and optical
properties of pure and strontium (Sr)-doped β-Ga2O3 were studied using the first-principles calcula-
tion based on the density functional theory (DFT) within the generalized-gradient approximation
(GGA) with the Perdew–Burke–Ernzerhof (PBE). The reason for choosing strontium as a dopant is
due to its p-type doping behavior, which is expected to boost the material’s electrical and optical
properties and maximize the devices’ efficiency. The structural parameter for pure β-Ga2O3 crystal
structure is in the monoclinic space group (C2/m), which shows good agreement with the previous
studies from experimental work. Bandgap energy from both pure and Sr-doped β-Ga2O3 is lower
than the experimental bandgap value due to the limitation of DFT, which will ignore the calculation
of exchange-correlation potential. To counterbalance the current incompatibilities, the better way to
complete the theoretical calculations is to refine the theoretical predictions using the scissor oper-
ator’s working principle, according to literature published in the past and present. Therefore, the
scissor operator was used to overcome the limitation of DFT. The density of states (DOS) shows the
hybridization state of Ga 3d, O 2p, and Sr 5s orbital. The bonding population analysis exhibits the
bonding characteristics for both pure and Sr-doped β-Ga2O3. The calculated optical properties for
the absorption coefficient in Sr doping causes red-shift of the absorption spectrum, thus, strengthen-
ing visible light absorption. The reflectivity, refractive index, dielectric function, and loss function
were obtained to understand further this novel work on Sr-doped β-Ga2O3 from the first-principles
calculation.

Keywords: first-principles; density functional theory; pure β-Ga2O3; Sr-doped β-Ga2O3; p-type
doping; band structure; density of states; optical absorption

1. Introduction

Gallium oxide (Ga2O3) embraces five different kinds of polymorphism, such as α, β,
γ, δ, and ε phase [1,2]. Other examples of metal oxide structures are lead oxide (Pb2O3) [3],
molybdenum dioxide (MoO2) [4], aluminium oxide (Al2O3) [5], and zirconium oxide
(ZrO2) [6], which have a variety of polymorph phase similar to Ga2O3. Among all of
these polymorphs of gallium oxide, β-Ga2O3 plays an essential role in ultrawide bandgap
(UWBG) applications, with a bandgap energy of 4.8 eV between the valence band and
conduction band [7,8]. This UWBG material has excellent heat thermal stability utilized in
power electronics applications [9,10]. Perhaps, history of the monoclinic β-Ga2O3 can be
traced back in the recent past few years due to its stable properties that eventually draw
scientists’ profound interest [11–13].
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One of the significant applications of β-Ga2O3 which is still being used now is its meta-
stable state crystal structure compared to other Ga2O3 polymorphs [14]. This is because
β-Ga2O3 is a wide bandgap semiconductor with a bandgap (Eg) of about 4.8 eV [15]. The
wide-bandgap material can sustain high incoming voltage resulting from large electrical
breakdown strength when it comes to short circuit situation. Recently, β-Ga2O3 has
attracted much attention for its potential use in the next-generation optoelectronic devices
in the near UV wavelength region. It shows the shortest cut-off wavelength at around
270 nm, whereas conventional transparent conductive oxides (TCOs) belongs to the visible
wavelength region. The applications for a monoclinic β-Ga2O3 structure are such as in solar
energy devices [16], passivation coating [17], optoelectronic devices [18], gas sensor [19],
and deep ultraviolet radiation devices [20].

The strontium element has the same chemical properties as alkaline earth metals such
as beryllium, magnesium, calcium, and barium from group II elements. It is generally
used for fireworks and flares purposes [21]. It is also used to produce ferrite magnets and
is responsible for zinc’s refining process [22]. One famous application of the strontium-
90 radio-isotope is in the military field, especially nuclear weapons [23] and nuclear
reactors [24]. The radio-isotope of the strontium-90 is the by-product of a nuclear explosion
that initially comes from the uranium element’s nuclear fission [25]. It has a half-life of
29 years [26], which was considered a long duration to degenerate its radioactivity. As for
the application of semiconductors, strontium ions can be reused for the color television
cathode ray tube (CRTs) to avoid X-ray emission [26,27].

There are no reports on the strontium (Sr2+) doping, to date with the pure β-Ga2O3
based on density functional theory (DFT) in the present first-principles study. The impor-
tance of this paper is to determine the effect of Sr doping in Ga2O3 as p-type doping based
on its material properties in the simulation structure. Therefore, this paper will focus on the
theoretical investigation of the electronic band structure, total and partial density of states,
and optical properties of pure and Sr-doped β-Ga2O3. Besides, this simulation process
allow researchers to discover more about the material’s theoretical part.

2. Materials and Methods

The calculations were carried out using Cambridge Serial Total Energy Package
(CASTEP) code. This simulation can be traced back to the application of density functional
theory (DFT), which utilizes the total-energy plane-wave pseudopotential method [28,29].
The exchange-correlation potential effects were handled by the generalized gradient approx-
imation (GGA) with the Perdew–Burke–Ernzerhof (PBE) functional [30–32]. Theoretically,
the DFT is based on the ground state, which causes the exchange-correlation potential
between the excited electrons to be underestimated [33]. Thus, the calculations from
GGA-PBE results in lower energy levels above the valence band than that of experimental
results. The utilization of the GGA-PBE in this simulation work was used to compare the
parameters, cell volume, and cell angle. β-Ga2O3 crystal structure belongs to the C2/m
group, which is monoclinic. Figure 1 shows the crystal structure of the unit cell (1 × 1 × 1)
of pure β-Ga2O3 and Sr-doped β-Ga2O3, while Figure 2 show the crystal structure of su-
percell (1 × 2 × 2) of pure β-Ga2O3 and Sr-doped β-Ga2O3. The unit cell crystal structure
consists of 20 atoms (8 Ga atoms and 12 O atoms), and the supercell crystal structure
consists of 80 atoms (32 Ga atoms and 48 O atoms). Ga atoms occupy 4i Wyckoff position
at Ga1(0.09050, 0, 0.79460) and Ga2(0.15866, 0.5, 0.31402), whereas the O atoms occupy 4i
Wyckoff positions defined by O1(0.1645, 0, 0.1098), O2(0.1733, 0, 0.5632), and O3(−0.0041,
0.5, 0.2566) [34]. For obtaining exact band gaps and optical properties, the scissors operator
has been carried out.
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Figure 2. Crystal structure of 1 × 2 × 2 supercell of (a) pure β-Ga2O3, (b) Sr-doped β-Ga2O3 at Ga1,
and (c) Sr-doped Ga2O3 at Ga2.

The electronic interaction between the valence electrons and conduction holes was
modeled using ultra-fine quality pseudopotentials with an energy cut-off of 380 eV. This
cut-off energy was able to bring out the optimized results of the band structure, density
of states, electron density, and optical properties calculations. As for the Monhorst Pack
scheme k-point grid sampling of the reduced Brillouin zone, 1× 1× 1 and 1× 2× 2 k-points
were set for pure β-Ga2O3 and Sr-doped β-Ga2O3, respectively. The valence electronic
configurations for Ga, O, and Sr are 3d104s24p1, 2s22p4, and 3d104p65s2, respectively.
During the geometry optimization, the cut-off energy for both the structure model was
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380 eV, the energy convergence for this structure is 1.209 × 10−6 eV/atom, the maximum
displacement is 5 × 10−4 Å, maximum stress is 0.02 GPa, and maximum force is 0.01 eV/Å.

3. Results and Discussion
3.1. Structural Properties

The structure of β-Ga2O3 and Sr-doped β-Ga2O3 were investigated, and the geometry
optimized crystal structure is shown in Figures 1 and 2. Table 1 shows the list of the
optimized lattice parameters, cell volume, and angle from GGA-PBE functional. The
theoretical value for β-Ga2O3 from GGA-PBE calculation has a small difference in lattice
parameter, cell volume, and angle value compared to the experimental value. The lattice
parameter difference is less than 2.29% while for the cell volume, it gives a 6.14% error. As
for the Sr-doped β-Ga2O3 part, the error percentage indicates the differences in theoretical
results between β-Ga2O3 and Sr-doped β-Ga2O3. The lattice parameter and volume of
Ga2O3 increase after Sr doping. This is similar to the other reports using Mg-doped Ga2O3.
The ionic radius of Mg2+ of 0.72 Å is larger than that of Ga3+ of 0.62 Å. Thus, it is reasonable
that the lattice parameters of Ga2O3 increases after Mg doping [35]. Furthermore, Zn-doped
Ga2O3 also shows the increase of structural parameter after Zn doping because of the ionic
radius of Zn2+ of 0.74 Å is larger than that of Ga3+ of 0.62 Å, which resulted in the lattice
spacing gradually being enlarged [36]. However, to the best of our knowledge, there is no
theoretical and experimental data available for Sr-doped β-Ga2O3 for comparison with
this work.

Table 1. Calculated lattice parameter (a, b and c), cell volume, and cell angle for pure and Sr-doped
β-Ga2O3 crystal structure in 1 × 1 × 1 unit cell.

Structures Parameters GGA-PBE Experiment [37]

β-Ga2O3 a (Å) 12.494 (+2.29%) 12.214
b (Å) 3.096 (+1.94%) 3.037
c (Å) 5.898 (+1.72%) 5.798

Cell Volume (Å3) 221.647 (+6.14%) 208.835

Cell Angle (◦)
α = 90◦

β = 103.705◦

γ = 90◦

α = 90◦

β = 103.830◦

γ = 90◦

Sr-doped β-Ga2O3 a (Å) 12.506 (+0.10%) -
b (Å) 3.158 (+2.00%) -
c (Å) 5.794 (–1.76%) -

Cell Volume (Å3) 222.317 (+0.30%) -
Cell Angle (◦) α = 90◦ -

β = 103.701◦ -
γ = 90◦ -

As for Table 2, different doping sites were taken at Ga1 and Ga2 for 1× 2× 2 supercells.
Sr-doped β-Ga2O3 has a greater lattice parameter and cell volume compared to pure β-
Ga2O3. This also means that Sr-dopant enlarged the original size of pure β-Ga2O3. The
highest error of estimation for the lattice parameter between Sr-doped β-Ga2O3 at Ga1 and
Ga2 are about 1.11 % indicates that the results are nearly close to each other.

The average bond length for pure and Sr-doped β-Ga2O3 is shown in Table 3, while
the average bond length for pure and Sr-doped β-Ga2O3 at Ga1 and Ga2 in 1 × 2 × 2
supercell were listed in Table 4. It is shown that the atomic radius of the Ga atom (1.36 Å)
is smaller than the Sr (2.19 Å), according to the periodic table. Therefore, Ga-O bond length
is shorter than Sr-O and O-O bonds in Sr-doped β-Ga2O3. This situation is the same as the
pure β-Ga2O3, where Ga-O bond length is shorter than O-O bonds. After Sr doping, the
overall bond length for Sr-doped β-Ga2O3 is increased more than pure β-Ga2O3 due to the
presence of Sr2+ ions.



Micromachines 2021, 12, 348 5 of 16

Table 2. Calculated lattice parameter (a, b, and c), cell volume, and cell angle of pure and Sr-doped
β-Ga2O3 crystal structure in 1 × 2 × 2 supercell at Ga1 and Ga2.

Parameters Pure β-Ga2O3
Sr-Doped β-Ga2O3

at Ga1
Sr-Doped β-Ga2O3

at Ga2

a (Å) 12.497 12.545 (+0.38%) 12.599 (+0.82%)
b (Å) 6.187 6.218 (+0.50%) 6.233 (+0.74%)
c (Å) 11.806 11.937 (+1.11%) 11.857 (+0.43%)

Cell Volume (Å3) 886.770 903.865 904.761

Cell Angle (◦)
α = 90◦

β = 103.723◦

γ = 90◦

α = 90◦

β = 103.903◦

γ = 90◦

α = 90◦

β = 103.667◦

γ = 90◦

Table 3. Calculated average bond length of pure β-Ga2O3 and Sr-doped β-Ga2O3 for 1 × 1 × 1
unit cell.

Bond Length
1 × 1 × 1 Unit Cell

Pure β-Ga2O3 Sr-Doped β-Ga2O3

Ga-O (Å) 1.964 1.965
O-O (Å) 2.861 2.864
Sr-O (Å) - 2.426

Table 4. Calculated average bond length of pure β-Ga2O3 and Sr-doped β-Ga2O3 for 1 × 2 × 2
unit cell.

Bond Length
1 × 2 × 2 Supercell

Pure β-Ga2O3 Sr-Doped β-Ga2O3 at Ga1 Sr-Doped β-Ga2O3 at Ga2

Ga-O (Å) 1.971 1.979 1.973
O-O (Å) 2.882 2.873 2.876
Sr-O (Å) - 2.229 2.366

The spatial electron density maps determine whether the structure model belongs
to ionic or covalent bonds. Figure 3 exhibits the distribution of the different structure’s
electron density in pure and Sr-doped β-Ga2O3. It shows that pure β-Ga2O3 has strong
covalent bonding characteristics before doping. On the other hand, the bond population
analysis for Sr-doped β-Ga2O3 exhibits a weak ionic bonding effect compared to pure
β-Ga2O3. This is because, the Sr2+ dopant had changed the bonding characteristics of
β-Ga2O3 after doping. Table 5 shows the bond population analysis indicator for electron
density distribution in pure and Sr-doped β-Ga2O3. It can be determined from Figure 3a
that pure β-Ga2O3 shows strong covalent bonding characteristics. This is because the Ga
and O atoms were located at the strong covalent region nearby to the red color region. On
the other hand, there were weak ionic bonding characteristics in Sr-doped β-Ga2O3, where
some of the Ga and O atoms are located in the green color indicator region.

Table 5. Indicator of population analysis for electron density.

Bonding Characteristics Ionic Weak Ionic Weak Covalent Covalent

Bond Population 0–0.32 0.32–0.50 0.50–0.75 0.75–1.0
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3.2. Properties of Electronic Structure

This section will discuss the electronic structure properties used to determine the
band structure, total and partial density of states (DOS) of β-Ga2O3. Gallium oxide
displays an indirect bandgap of 4.8–4.9 eV, both for the experimental and simulation
work [38,39]. Besides, the application of Ga2O3 is applied in power MOSFETs, where high
breakdown electric field and large Balinga’s figure of merit occur [40]. The (100) plane of
Ga2O3 is mostly taken in experimental work because it gives a high resolution of result
analysis which takes places at the specific Brillouin zone, Γ-Z and A-M directions [41]. This
unique electronic structure properties of Ga2O3 bring out new hope in future applications,
especially in electronics, optoelectronics, and sensing systems [7].

The bandgap is usually measured between the conduction band minimum (CBM) and
the valence band maximum (VBM), located at the Fermi level. The high-symmetry direction
of the Brillouin zone of pure β-Ga2O3 along with the G-F-Q-Z-G path, is illustrated in
Figure 4. Figure 5a shows that pure β-Ga2O3 has a bandgap energy of 1.939 eV, lower than
the bandgap energy from the experimental work but consistent with other calculated results
from DFT [42,43]. The measured bandgap energy for experimental work is 4.8 eV [15].
This phenomenon can be explained by the underestimation of density functional theory
(DFT) limitations. Therefore, the calculations of band structures with scissor operator
were considered to overcome bandgap underestimation from the DFT method. The scissor
operator was introduced to shift all the conduction levels to agree with the band gap’s
measured value [44]. In our case, the scissor operator’s value for unit cell 1 × 1 × 1 was
taken to be 4.8 − 1.939 = 2.861 eV, accounting for the difference between the experimental
band gap (4.8 eV) [15] and the calculated GGA bandgap (1.939 eV) for β-Ga2O3. For
supercell 1 × 2 × 2, the scissor operator’s value is 2.868 eV. The band structure of pure
β-Ga2O3 in P1 symmetry along with G-F-Q-Z-Q path is shown in Figure 5 to compare
with the band structure of Sr-doped β-Ga2O3 also in P1 symmetry. Figure 5b shows
that the bandgap energy decreases to 1.879 eV after Sr doping. This indicates that Sr2+

ions possess p-type doping behavior, which creates more holes to accept electrons that
allow the semiconductor to perform efficiently during the presence of conducting current.
Figure 6 presents the band structures of pure β-Ga2O3 and Sr-doped β-Ga2O3 with a
scissor operator. It shows that the bandgap of pure β-Ga2O3 was corrected to match the
experimental band gap at 4.8 eV [15] while the bandgap of Sr-doped β-Ga2O3 is 4.740 eV
which is lower than pure β-Ga2O3.
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Figure 6. Band structure of (a) pure β-Ga2O3 and (b) Sr-doped β-Ga2O3 with scissor operator.

As for Figure 7, it is the band structure for 1 × 2 × 2 supercell for pure and Sr-doped
β-Ga2O3. Pure β-Ga2O3 has a bandgap of 1.932 eV. On the other hand, the Sr-doped at
different doping sites at Ga1 and Ga2 have bandgaps of 1.826 and 1.840 eV, respectively.
The band structure for unit cell and supercell show slight differences in bandgap, according
to this investigation. For band structures with scissor operator of 1 × 2 × 2 supercell
for pure and Sr-doped β-Ga2O3 in Figure 8, the bandgap of pure β-Ga2O3 in 1 × 2 × 2
supercell is 4.8 eV, and the bandgap of Sr-doped β-Ga2O3 at Ga1 and Ga2 is 4.694 and
4.708 eV, respectively.
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Figure 8. Band structure of (a) pure β-Ga2O3, (b) Sr-doped β-Ga2O3 at Ga1, and (c) Sr-doped β-Ga2O3 at Ga2 with scissor
operator.

Figure 9 shows the total and partial DOS of pure and Sr-doped β-Ga2O3. Pure β-
Ga2O3 comprises of Ga 4s at the top of the valence band and O 2p located at the bottom of
the conduction band. As for the Sr-doped β-Ga2O3, the Sr atom has an atom of s orbital
and introduces dopant energy levels in the pure β-Ga2O3. The valence band mainly consist
of Sr 5s, Sr 4p, O 2p, and Ga 3d at−32,−12.5,−2, and−13 eV, respectively. The conduction
band was dominated by Sr 3d, O 2p, and Ga 4p. Therefore, Sr dopant changes the covalent
bonding characteristics of pure β-Ga2O3. This also indicates that weak ionic bonding
characteristic appears between Ga, O, and Sr atoms. Figure 10 shows the total and partial
DOS for 1 × 2 × 2 supercell of pure and Sr-doped β-Ga2O3 at different doping sites Ga1
and Ga2. The same hybridization states occur in the valence band, such as Sr 5s, Sr 4p, O
2p, and Ga 3d. The conduction band is also dominated by the same hybridization states of
Sr 3d, O 2p, and Ga 4p. All these results could be determined when comparing 1 × 1 × 1
unit cell and 1 × 2 × 2 supercell.
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3.3. Optical Properties

Optical properties’ importance is usually highlighted in the absorption coefficient,
reflectivity, refractive index, dielectric function, and loss function. All these optical proper-
ties features are related to the complex dielectric function formula, which is written as in
Equation (1):

ε(ω) = ε1(ω) + iε2(ω). (1)

The ε1(ω) and ε2(ω) are the real and imaginary part, respectively. The real part
is correlated to the degree of electronic polarization and calculated from the Kramers–
Kronig relation. On the other hand, the imaginary part is associated with the material’s
dielectric losses. All other optical properties can be derived from ε1(ω) and ε2(ω) by the
Kramer–Kronig relation.

The other well-known formula for optical properties such as absorption (α(ω)), re-
flectivity (R(ω)), refractive index (n(ω)), and loss function (L(ω)) is defined as follows in
Equations (2)–(5):

α(ω) =
4πk

λ
=

2kω

c
=
√

2ω

[√
ε2

1(ω) + ε2
2(ω)−ε1(ω)

]1/2
, (2)
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R(ω) =

∣∣∣∣∣1−
√

ε(ω)

1 + ε(ω)

∣∣∣∣∣
2

, (3)

n(ω) =

√
|ε(ω)|+ ε1(ω)

2
, (4)

L(ω) = Im
[
−1

ε(ω)

]
=

ε2(ω)

ε2
1(ω) + ε2

2(ω)
. (5)

The band structure of pure β-Ga2O3 shows an underestimated bandgap value of
1.939 eV compared to the experimental bandgap. Such underestimation of calculated
bandgap values is a common feature of the DFT calculations and can be overcome by
applying the so-called scissor operator [45]. Such a correction is significant for calculations
of the optical properties. To facilitate comparison with the experimental results, we utilized
a scissor operator to match the calculated optical gap determined via experimental tech-
niques. The calculated optical properties of pure Ga2O3 and Sr-doped β-Ga2O3 without
and with scissor operator are presented in Tables 6 and 7. For the absorption coefficient, the
absorption edge with the scissor operator shifts the light absorption towards the UV light
region, corresponding to the bandgap value of β-Ga2O3. This result is consistent with other
experimental results for absorption spectra in a deep UV-Vis range of 200 to 300 nm using
UV-Vis spectroscopy [46]. The scissor operator’s shifts the major peak of reflectivity and
loss function towards higher photon energy. For the refractive index of pure Ga2O3 and
Sr-doped β-Ga2O3, the scissor operator decreases its value by 11.4% and 31.8%, while the
dielectric constant decreases by 21.6% and 52.9% as compared to the calculations without
scissor operator. Figures 11–13 present the optical properties using a scissor operator.

Table 6. Calculated optical properties without and with scissor operator (SO) of pure Ga2O3 and
Sr-doped β-Ga2O3.

Pure Ga2O3 Sr-Doped β-Ga2O3

without SO with SO without SO with SO

Absorption edge 400–700 nm 100–300 nm 400–700 nm 100–300 nm
Dielectric constant 3.05 2.39 5.37 2.53
Refractive index 1.75 1.55 2.33 1.59
Reflectivity peak 13.3 eV 16.3 eV 11.1 eV 15.5 eV

Loss function peak 14.3 eV 17.4 eV 13.3 eV 16.3 eV

Table 7. Calculated optical properties without and with scissor operator (SO).

Pure Ga2O3 Sr-Doped β-Ga2O3 at Ga1 Sr-Doped β-Ga2O3 at Ga2

without SO with SO without SO with SO without SO with SO

Absorption edge 400–700 nm 100–300 nm 400–700 nm 100–300 nm 400–700 nm 100–300 nm
Dielectric constant 2.18 1.74 14.7 3.11 9.63 2.55
Refractive index 1.48 1.32 3.88 1.76 3.13 1.60
Reflectivity peak 9.46 eV 12.3 eV 9.46 eV 3.54 eV 9.33 eV 12.3 eV

Loss function peak 9.69 eV 12.7 eV 9.69 eV 12.8 eV 9.57 eV 12.5 eV
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Figure 11 presents the absorption spectrum of pure and Sr-doped β-Ga2O3 structure
in 1 × 1 × 1 unit cell and 1 × 2 × 2 supercell. It can be observed that the absorption region
is a broad spectrum. The most important wavelength emission for pure and Sr-doped
β-Ga2O3 system mainly resides in the deep UV region, as shown in Figure 11d. After
Sr-doping, the wavelength emission increases as the bandgap energy of Sr-doped β-Ga2O3
decreases. This simulation result matches with the principle of the Einstein–Planck relation:
E = hf = hc/λ, where its bandgap energy decreases and increases the wavelength emission
spectrum.

Meanwhile, this also indicates that the emission spectrum has been red-shifted after
Sr-doping, proving that Sr dopant possesses p-type doping behavior. There is no available
absorption spectrum report for Sr-doped β-Ga2O3 for comparison with this theoretical
work. However, this finding is similar to other dopants in Ga2O3, such as Mg-doped
Ga2O3 [46] and Zn-doped Ga2O3 from experimental work, which decreases the bandgap
after doping and also possesses p-type doping behavior. The results for Mg-doped Ga2O3
suggested that it is a promising material candidate for solar-blind photodetector due to
its lower dark current, higher sensitivity, and faster decay time which can be attributed
to the high insulating and low defect concentration. For Zn-doped Ga2O3, its bandgap is
4.90–4.93 eV for different Zn doping contents which is reduced by 0.20–0.81% compared to
pure β-Ga2O3 (4.94 eV). This is agreeable with our theoretical work, which decreases the
bandgap after Sr doping by 1.25–5.49%.

Figures 12 and 13 shows the reflectivity, refractive index, dielectric function, and loss
function of pure and Sr-dopedβ-Ga2O3 for both the 1× 1× 1 unit cell and 1× 2× 2 supercell.
The energy range is shown as ~0–25 eV in this simulation work. For the energy spectrum
of reflectivity, the energy increases slightly to 16 eV. Simultaneously, this incident causes
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a decrease of reflectivity after the Sr-doping, which eventually affects surface material
effectiveness to reflect the electromagnetic radiation energy. More input electromagnetic
radiation energy cannot be reflected completely and finally reside in the Sr-doped β-Ga2O3
structure compared to pure β-Ga2O3.

The refractive index exhibits a different growing emission spectrum trend compared
to reflectivity. It has a real (n) and imaginary (k) part for both pure and Sr-doped β-Ga2O3.
The emission spectrum releases energy in the range of ~0–25 eV for both systems. However,
there are still differences in its refractive index spectrum in both real (n) and the imaginary
(k) parts between pure and Sr-doped β-Ga2O3. The refractive index of Sr-doped β-Ga2O3
is 1.59, which is slightly higher than pure β-Ga2O3 (1.55).

As for the dielectric function, this feature of optical properties is usually observed
in the spectrum’s imaginary part (ε2). It has dielectric constant, ε0 = 2.39 for pure Ga2O3
and ε0 = 2.53 for Sr-doped Ga2O3. The imaginary part’s major peaks are located at 11.5
and 11.8 eV for pure and Sr-doped β-Ga2O3. This result indicates that the Sr dopant could
affect the optical properties to determine the energy range. After the Sr-doping, the peak
energy spectrum increases compared to pure β-Ga2O3. The peak energy shift also means
a shift in the localized degree of a free electron and holes between the conduction and
valence band in the impurity doping structure.

Lastly, the loss function feature in the optical properties is often used to determine the
energy loss of the free electrons crossing along with the material. The major peak energy
for the Sr-doped β-Ga2O3 is located at 16.3 eV, and the pure β-Ga2O3 is located at 17.4 eV,
which is lower than Sr-doped β-Ga2O3. The Sr doping causes a decrease in the energy
loss function of β-Ga2O3. This indicates that the Sr dopant tends to reduce its energy loss
and improve its emission of peak energy efficiency for better performance in the material,
matching with the characteristic of p-type doping material. It can withstand high voltage
and current with minimum energy loss.

4. Conclusions

In conclusion, the first-principles studies provided calculations of the structural,
electronic, and optical properties of pure and Sr-doped β-Ga2O3. There are not many
differences in the calculated lattice parameter, cell volume, and angle of the pure β-Ga2O3
structure at GGA-PBE with experimental data. GGA-PBE is still preferable for the calcu-
lated structural parameter as it has good theoretical results, which almost matches the
experimental work. Pure β-Ga2O3 has an indirect bandgap of 1.939 eV while for Sr-doped
β-Ga2O3, the bandgap is 1.879 eV for 1× 1× 1 unit cell. Meanwhile, the 1× 2× 2 supercell
for pure β-Ga2O3 has a bandgap of 1.932 eV and Sr-doped β-Ga2O3 at different doping
sites Ga1 and Ga2 have bandgaps of 1.826 and 1.840 eV, respectively. This bandgap was
underestimated compared to the experimental value, so the scissor operator was used to
correct the bandgap. The decrease in bandgap energy was due to the creation of more holes
to accept more incoming free electrons, indicating a p-type doping behavior for Sr dopant.
The electronic interaction between the valence band and conduction band contains O 2p
and Ga 4s orbital for pure β-Ga2O3. On the other hand, Sr-doped β-Ga2O3 consists of Sr 5s,
Sr 4p, O 2p, and Ga 3d for the electronic interaction between valence and conduction band.
These hybridization states can be observed from the total and partial DOS for both 1× 1× 1
unit cell and 1× 2× 2 supercell. The population analysis for pure β-Ga2O3 was considered
as strong covalent bonding characteristics. As for the Sr-doped β-Ga2O3, it changes its
bonding characteristics to weak ionic bonds. The optical absorption for Sr-doped β-Ga2O3
exhibited a red-shifted spectrum compared to pure β-Ga2O3. This matches the optical
behavior for p-type doping, where the material emits broader wavelength emission, and a
red-shifted spectrum occurred. The optical absorption for both pure and Sr-doped β-Ga2O3
was found in the deep ultraviolet light (DUV) region according to the absorption coefficient.
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