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Previous cognitive behavioral studies based on Acquired Equivalence Associative

learning Task (AEALT) showed a strong relation between hippocampus and basal

ganglia in associative learning. However, experimental behavioral studies of patients

with Generalized Tonic Clonic (GTC) epilepsy remained sparse. The aim of the present

study is to integrate a classical behavioral cognitive analysis with a computational model

approach to investigate cognitive associative learning impairments in patients with GTC

epilepsy. We measured the accuracy of associative learning response performance in

five GTC epileptic patients and five control subjects by using AEALT, all subjects were

matched in age and gender. We ran the task using E-Prime, a neuropsychological

software program, and SPSS for data statistical analysis. We tested whether GTC

epileptic patients would have different learning performance than normal subjects, based

on the degree and the location of impairment either in basal ganglia and/or hippocampus.

With the number of patients that was available, our behavioral analysis showed no

remarkable differences in learning performance of GTC patients as compared to their

control subjects, both in the transfer and acquisition phases. In parallel, our simulation

results confirmed strong connection and interaction between hippocampus and basal

ganglia in our GTC and their control subjects. Nevertheless, the differences in neural firing

rate of the connectionist model and weight update of basal ganglia were not significantly

different between GTC and control subjects. Therefore, the behavioral analysis and the

simulation data provided the same result, thus indicating that the computational model

is likely to predict cognitive outcomes.

Keywords: generalized tonic clonic epilepsy, cognitive impairment, acquired equivalence associative learning

task, basal ganglia, hippocampus, connectionist model

INTRODUCTION

Acquired Equivalence Associative learning Task (AEALT) is a psychological cognitive task for
associative learning assessment (Moustafa et al., 2000; Myers et al., 2003; Herzallah et al.,
2010; Moustafa and Gluck, 2011). Importantly, several behavioral and experimental studies
based on AEALT provided evidence for a strong interaction between hippocampus and basal
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ganglia in associative learning (Honey and Hall, 1991; Hall
et al., 1993; Moustafa et al., 2000; Coutureau et al., 2002;
Myers et al., 2003; Bodi et al., 2009). Moreover, it has been
used to assess cognitive impairment in several brain regions,
in particular the temporal lobe including the hippocampus and
the frontal lobe including the basal ganglia (Moustafa et al.,
2000; Myers et al., 2003; Herzallah et al., 2010; Moustafa and
Gluck, 2011). Additionally, various cognitive profiles of different
neurological and neuropsychological disorders have been also
investigated using AEALT (Moustafa et al., 2000; Myers et al.,
2003; Herzallah et al., 2010;Moustafa andGluck, 2011). However,
an AEALT-based behavioral study of Generalized Tonic Clonic
(GTC) epilepsy remains sparse. In the present study; we
applied AEALT (Moustafa et al., 2000; Myers et al., 2003;
Herzallah et al., 2010; Moustafa and Gluck, 2011), to investigate
cognitive impairments in GTC epileptic patients using combined
experimental behavioral and computational approaches. Our
main focus is to show how such computational approach could
reproduce, at the functional level, the result obtained from the
experimental analysis, thus validating the simulation protocol.
Thus, our main purpose does not purely focusing on presenting
a separate computational-theoretical study neither a segregated
clinical case report independently but rather to validate the
simulation approach by comparing our simulated results with
the experimental behavioral results as measured in GTC-epileptic
patients and controls. In other words, our attention was to test
how our computational model (if correctly fed with experimental
data from representative patients) could mimic the results of
cognitive behavioral test.

Our neurobiological hypothesis is based on the fact that
GTC is characterized by generalized seizures which invade most
brain regions, in particular the temporal lobe also involving
hippocampus and the frontal lobe, including basal ganglia. In
parallel, the theoretical hypothesis of AEALT (Moustafa et al.,
2000; Myers et al., 2003; Herzallah et al., 2010; Moustafa and
Gluck, 2011), which is one of the classical cognitive learning
tasks to measure the associative learning performance, relied
on the idea that one region is associated with the acquisition
while the other one with the transfer phase. This hypothesis
suggests that this category of learning might be altered in
GTC patients. Therefore, we measured associative learning
performances in a group of GTC patients and in their matched
healthy controls. For this purpose, AEALT (Moustafa et al., 2000;
Myers et al., 2003; Herzallah et al., 2010; Moustafa and Gluck,
2011), was used for describing the connection between basal
ganglia and hippocampus and their interaction in acquisition
and transfer phases (Moustafa et al., 2000; Myers et al., 2003;
Herzallah et al., 2010; Moustafa and Gluck, 2011). It is often
difficult to identify the appropriate level of modeling for a
particular problem and it is a frequent mistake to assume
that a highly detailed model is necessarily superior. In the
present study, we did not try to set a pure abstract cognitive
model but, rather to feed this model with the output of the
subjects’ data. Accordingly, we used the actual experimental
data collected from our groups, GTC-epileptic patients and
controls, after performing AEALT (Moustafa et al., 2000; Myers
et al., 2003; Herzallah et al., 2010; Moustafa and Gluck, 2011),

whereas these actual data represented the input values for
our simulated model. In other word, the behavioral task,
AEALT (Moustafa et al., 2000; Myers et al., 2003; Herzallah
et al., 2010; Moustafa and Gluck, 2011), served as a read
out for cognitive functions and documented the associative
learning. In addition, the modeling approach explored the role
of the temporal and frontal lobe, and more particularly of
the hippocampus and basal ganglia in the AEALT associative
learning task.

METHODOLOGY

Experimental Behavioral study
Description of Acquired Equivalence Associative

Learning Task (AEALT)
This task (adapted from Moustafa et al., 2000; Myers et al., 2003;
Herzallah et al., 2010; Moustafa and Gluck, 2011) comprises of
two sorts of stimuli; antecedent and consequent (see Figure 1).
On one hand, the antecedent stimuli are represented by four
drawings of human faces show distinctive ages, youthful and
adult human, and genders, females and males; i.e., woman, boy,
man, and girl. On the other hand, four drawings of fish with
several colors, red, orange, purple, and pink, are related to the
consequents. In general, this task incorporates two phases: (i)
The acquisition phase, and (ii) The transfer phase. During the
acquisition phase, both stimuli are associated with each other;
the antecedent and the consequent one. Each subject has to
associate a particular human face with a specific colored fish,
by clicking on the keyboard arrow either right or left (see
Figure 1A). In the training stage, two antecedent stimuli A1
and A2, are associated with the same consequent stimulus X1,
while two antecedent stimuli B1 and B2 are associated with
consequent Y1, i.e., subject has to guess which face is related
to which fish. Immediately, the selected fish is circled and the
correct feedback is given (Figure 1B). Next, A1 is associated with
a new consequent X2 while B1 is associated with another novel
consequent Y2. (ii) Finally, a transfer phase tests whether patients
would show acquired equivalence and associate A2 with X2, and
B2 with Y2, even though these particular stimulus pairings had
never been trained. This phase corresponds to a new association
that could be formed according to the principle of acquired
equivalence.

Subjects

Neuropsychological background
We tested five subjects with GTC epilepsy (n = 5, Women,
over 19 year old) and five controls. All subjects were matched on
gender, age and education. Importantly, they were all matched in
terms of educational levels and seizure onset. All GTC patients
were on treatment since early age, between 12 and 16 years
old. Their ages were above 19 and up to 41 years old and their
controls are matching them. Additionally, we screened them
for the absence of any neurological or psychiatric disorders
that could interfere with epileptic symptoms. We allowed our
subjects to perform AEALT (Moustafa et al., 2000; Myers et al.,
2003; Herzallah et al., 2010; Moustafa and Gluck, 2011), after
they passed the average scores of several Intelligence Quotient
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FIGURE 1 | It shows Acquired Equivalence Associative learning Task (AEALT); this task is (adapted from Moustafa et al., 2000; Myers et al., 2003;

Herzallah et al., 2010; Moustafa and Gluck, 2011). (A) Represents the phases of AEALT; acquisition and transfer phases (see task description, Methodology

Section), whilst (B) is a screen snapshot represents experimental trials in an early stage of acquisition phase which is considered as shaping and training stage. In this

latter stage, the stimulus is represented as a human face appearing on the screen and subsequently, the subject responds by choosing one of the colored fish either

by clicking left or right, only then, the correct feedback is given (see task description, Methodology Section).

(IQ) subtests, which represented Wechsler Intelligence Scale
for Children (WISC). The original WISC (Wechsler, 1949) is
an adaptation of several of the subtests used for the Wechsler
Bellevue Intelligence Scale (Wechsler, 1939), which also proposed
several specific subtests. These subtests were organized into
Verbal and Performance scales, and provided scores for Verbal
(VIQ), Performance (PIQ), and Full Scale IQ (FSIQ). We only
selected the GTC patients who had a relatively high IQ score to
ensure that they were able to go through the AEALT (Moustafa
et al., 2000; Myers et al., 2003; Herzallah et al., 2010; Moustafa
and Gluck, 2011). That was one of the reasons that made
us ending up with small sample size, only five patients and
five healthy controls. These averages of scores were in the
following ranges (IQ = 60–79, VIQ= 62–80, PIQ= 63–77), we

observed that the level of IQ and its subtests decreased with the
increasing the age.

Ethical approval for subjects’ participation
We performed this experimental behavioral study in accordance
with the declaration of the medical university, after getting
the official approval by Assiut Medical hospitals, Assiut, Egypt
whereas all participant subjects gave written informed consent.

Statistical analyses
After task performance, we saved patients’ data and imported
them directly into the SPSS, statistical software for analysis
of the learning performance. Then, we performed a Mann–
Whitney test to assess the significance level of learning response
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accuracy between GTC epileptic patients and their healthy
controls.

Computational Study
Computational Model Structure and Description
For computational and simulation study, we introduced an
abstract connectionist model (for similar study; see Gluck and
Rumelhart, 1990; Dayan and Abbott, 2001; Chapter 9 Classical
Conditioning and Reinforcement Learning, and Moustafa et al.,
2009), which is based on the structural analysis of AEALT
(Moustafa et al., 2000; Myers et al., 2003; Herzallah et al., 2010;
Moustafa and Gluck, 2011). We used it to explore the behavioral
and cognitive significance of associative learning in GTC epileptic
patients. We represented the connection between hippocampus
and basal ganglia as two modules connected to each other by
one-to-one connection (see Figure 2).

1. Hippocampus Module: It is a two layered network module
consists of 10 patches and 20 nodes, each is considered to
be a separate representation code of the input (Grossberg,
1988; Hemmen and Schulten, 1991; Hertz et al., 1991; Kearns
and Vazirani, 1994; Miller and MacKay, 1994; Moustafa et al.,
2009). We used winner-take-all for simulating the lateral
inhibitory connections among neurons in each patch, which
are connected to the basal ganglia module (Barto, 1995; Berns
and Sejnowski, 1996; Schultz et al., 1997; Suri and Schultz,
1998; Moustafa et al., 2009). Additionally, weight update of
the hippocampus was based on soft max probability (see
Equations 1.0 and 1.1, Mathematical Appendix).

2. Basal Ganglia Module: It is based on a trial by trial learning
rule known as the Rescorla-Wagner rule (Rescorla and
Wagner, 1972). This rule relies on a simple linear prediction of
the reward associated with a stimulus. We used a binary input
variable (u) as an indication of the presence or absence of the
stimulus (u = 1 in case the stimulus is present while u = 0
in case of its absence), (see Equations 2 and 3, Mathematical
Appendix). The basal ganglia input represents the learning
rate value; enabling to assess the association between all the

possible input stimuli with the reward (see Equations 3, 4.0,
4.1, 4.2, 5.1, and 5.2, Mathematical Appendix).

Model Fitting to AEALT
We specified the pattern of inputs in term of task stimuli
(antecedent and consequent) which were randomly assigned
in AEALT (see task description and Figure 1). Therefore, we
considered a stochastic policy, which means that when subject
used to choose a particular colored fish associated with a specific
human face, it would be associated with probabilities of choice
either left or right (see Equations 1.0, 1.1, and 3, Mathematical
Appendix). We adjusted the values of such probabilities during
the associative learning process on the basis of the reward
provided for the subject according to the slope of soft max
probability (β). For large β; the probability of an action was
either raised rapidly to 1 or fallen rapidly to 0, as the difference
between the action values increased or decreased, then, the action
choice of the subject almost a deterministic choice action. When
β is small, the soft max probability is approaching to 1 or 0
more slowly, and the subject’s actions are more variable and
random. In ourmodel, we adjusted β of soft-max function in each
simulation time step of the hippocampus weight update, whereas
we represented action selection using soft-max function, which
was responsible for hippocampus weight updates. All possible
inputs for AEALT (Moustafa et al., 2000; Myers et al., 2003;
Herzallah et al., 2010; Moustafa and Gluck, 2011), consists of 16
input from antecedent and consequent stimuli and four inputs
from the hippocampus. The 16 inputs represent four different
human faces; each one is associated with four different colored
fishes, only two are appearing on the screen for each face per
trial. For hippocampus inputs; they represent the hippocampus
strength having value in the ranges of 0, 1, 2, 3, 4. We considered
the direct actor as a simple method for solving the subject’
learning response performance in AEALT (Moustafa et al., 2000;
Myers et al., 2003; Herzallah et al., 2010; Moustafa and Gluck,
2011), since we focused on static action choice where the reward
immediately was followed by the taken action (Montague et al.,
1995; Dayan and Abbott, 2001; Chapter 9 Classical Conditioning

FIGURE 2 | It represents structural description of the connectionist model, see text for illustration, Methodology Section.
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and Reinforcement Learning; see Equations 3, 4.0, 4.1, and 4.2,
Mathematical Appendix). Accordingly, the choice of actions was
based directly on maximizing the expected average reward. On
the other hand, we represented this reward value using stimulus
index associated with choosing actions, where we represented a
list of rewards for each stimulus in rows featuring all possible
inputs, and columns featuring left or right choosing action.
Accordingly, we computed Q-values for direct actor for this
chosen action. Also, we represented the learning rate value as
basal ganglia input and the connection between both modules
by one-to-one connection. By the end, we computed the mean
and variance of the accuracy, correct performance of the subject.
Importantly, we fitted themodel with the average of experimental
block trials that GTC epileptic and control subjects performed
during each phase of AEALT (see Figure 3), before running the
simulation for each subject.

Mathematical Appendix
(I) Parameterization of choice probabilities either left or

right using softmax distribution:

p[r] = exp(βmr)/((exp(βmr)+ (exp(βml)),

p[l] = exp(βml)/((exp(βml)+ (exp(βmr)). (1.0)

Where P[r] and P[l] represent the probability of right and
left choices, respectively, both probabilities are similar to
a sigmoid function of β (mr − ml) and β (ml − mr). β

represents the slope of soft max function. The parameters
mr andml determine the frequency at which corresponding
face is chosen. P[r] + P[l] = 1, indicates the fact that the
model invariably makes one of the two choices, either left
or right. The values of P[r] and P[l] are adjusted during
AEALT on the basis of the reward provided. For large β ,
the probability of an action rises rapidly to one, or falls
rapidly to zero, as the difference between the action values
increase or decrease. This makes the chosen action of the
subject almost a deterministic function of the m variables.
If β is small, then, the softmax probability approaches
one or zero more slowly, and the action choices of the
subject are more variable and random. We adjusted β-
value over simulation trials, according to the value of the
hippocampus input, which represented the hippocampus
strength.

P[a] = exp(βma)/

2∑
à = 1 (βmà). (1.1)

Where P[a] is the probability vector m of choosing action
a, which controls the decision process. à= 1, 2 represents
the possibility of choices between two actions; right or left.

(II) The Rescrola-Wagner learning rule(a version of delta

rule):

w → w+ εδu with δ = r − υ . (2)

Where w represents the weight update, δ represents the
prediction error. U is a binary variable which indicates the

presence or absence of the stimulus, if u = 1, then the
stimulus is present and u = 0 in case of its absence. υ

is the expected reward. ε is a coefficient which indicates
balancing state of the weight update; if it is sufficiently
small, the rule changes w systematically until the average
value of δ reaches to zero, at this point w fluctuates about
the equilibrium value in approximation.

(III) Direct Actor Equations:

< r >= P[r] < rr > +P[l] < rl > . (3)

Where <r> is the expected average of the reward, P[r]
is the probability of choosing the right choice. <rr> is
the average of reward based on choosing the right choice.
P[l] is the probability of choosing the left choice. <rl> is
the average of reward based on choosing the left choice.
In the Direct Actor method, the choice of actions is
based directly on maximizing the expected average of the
reward.

mà → mà + ε(δaà − P[à])(ra − ŕ). (4.0)

Wheremà is an action, which is taken for all value of à.

mà(u) → mà(u)+ ε(δaà − P[à; u]) δ. (4.1)

Where u is a binary stimuli input.

m = M. u(u) or ma =

∑
b
Marur(u). (4.2)

In Equations (4.1) and (4.2); the update of action
probability depends on value of δ, when δ > 0 is taken,
which increases the probability of the action and when
δ < 0 is taken, this value decreases the probability of the
action. This means increasing the chance that the subject
makes the correct accurate response. Then, the actor
learning rule is modified to make use of the information
provided by the state vector through generalizing the
action from value vector m to action matrix M. M has
as many columns as there are components of u (binary
stimuli input) and as many rows as there are actions
(reward). Given a binary stimuli input u, action a is chosen
at location u with the soft max probability of Equations
(1.0) and (1.1), using component a of the action value
vector.
These previous equations show how to change the elements
of the action matrix (M), when action a is chosen at
location u with state vector u(u), leading to location u.

(IV) Policy Actor learning rule equations:

mr → mr + ε(δar − P[r])(ra − ŕ). (5.1)

ml → ml + ε(δal − P[l])(ra − ŕ). (5.2)

Where ra is the selected action; either right or left. δar and
δal are the Kronecker delta, δar = 1 if a = r and δar = 0
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FIGURE 3 | This figure represents the data of our subjects which considered as an input for our computational model. Panel (A) shows the average of the

accurate response in associative learning in GTC epileptic patients and their healthy controls during both phases of AEALT; acquisition and transfer phases of whilst

the associated table to (A) represents the mean and the standard deviation of the average accuracy responses. (B) Represents the average of block trials which were

(Continued)
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FIGURE 3 | Continued

performed by the GTC epileptic patients and their healthy controls during acquisition and transfer phase, whereas these values, which are represented in the

associated table to (B), were required as input for our simulated model. (C) Indicates the average of block trials which were performed by the GTC epileptic patients

and their healthy controls during the stages of shaping and equivalence training, and in the new consequent one, which resemble the acquisition phase, whereas

these values, which are shown in the adjacent table to (C), were required as inputs for our simulated model.

if a = l and δal = 1 if a = l and δal = 0 if a = l. ŕ is
the mean of the reward under the specified policy. These
equations perform the stochastic gradient ascent on the
average reward, whatever the value of ŕ (the mean of the
reward). Different values of ŕ lead to different variation of
the stochastic gradient terms, and thus different speeds of
learning.

Model Implementation
The algorithms had been adjusted from Dayan and Abbott
(2001), Chapter 9 Classical Conditioning and Reinforcement
Learning whilst the code was implemented using Python (Python
Software Foundation. Python Language Reference, version 2.7;
van Rossum, 1995), BRIAN, neurosimulator based Python
Library (Stimberg et al., 2014) and Mat Lab (MATLAB 8.0
and Statistics Toolbox 8.1, The Math Works, Inc., Natick,
Massachusetts, United States) softwares.

RESULTS

Experimental Behavior
Our experimental behavioral results showed no considerable
differences in the average of accuracy in learning response
performance of GTC epileptic patients and controls during
acquisition and transfer phases of AEALT. In the acquisition
phase; the average accurate performance of associative learning
in GTC was not significantly different (p = 0.68, two-tailed test)
from controls. Similarly, in the transfer phase the difference was
not strong either (p = 0.97, two-tailed test) (see Figure 3). These
results indicated that AEALT did not reveal cognitive impairment
in GTC epileptic patients, neither in hippocampus (associated
with the transfer (Tamminga et al., 1992; Buchanan et al., 1993;
Bunsey and Eichenbaum, 1995; Henke et al., 1997; Heckers et al.,
1999; Myers et al., 2003; Polgár et al., 2010; Moustafa and Gluck,
2011), nor in basal ganglia (associated with the acquisition;
Tamminga et al., 1992; Buchanan et al., 1993; Moustafa et al.,
2000; Myers et al., 2003; Polgár et al., 2010; Moustafa and Gluck,
2011).

Computational Modeling
Our abstract model-based analysis of AEALT (Moustafa et al.,
2000; Myers et al., 2003; Herzallah et al., 2010; Moustafa and
Gluck, 2011), showed a strong connection between hippocampus
and basal ganglia in GTC epileptic patients. This connection
was represented in our connectionist model by two modules
(hippocampus and basal ganglia), which connected to each other
by one-to-one connection. We introduced different values of
hippocampus input representing differential states hippocampus
strength. Then, we associated each of these values with different
values of the basal ganglia input representing the learning rate

values. In our simulation, we considered two different conditions
based on the strength of hippocampus (hippocampus input)
while fixing the values of basal ganglia input (the learning rate
values) to have range of values in each condition between 0, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1. In each condition, we
measured the changes in the neural firing rate and observed the
evaluation of the basal ganglia weight update in response to the
changes in the inputs of hippocampus and basal ganglia. For
the first condition, the hippocampus strength was equal to zero
while the second one represented it to be above zero, with values
ranging between 1, 2, 3, and 4. In the first condition, we observed
that the percentage of the neural firing rate in GTC epileptic
patients and controls was below 55%. Additionally, the weight
update evaluation of the basal ganglia was in the same range as
the neural firing rate (below 55%). Thus, the learning rate of basal
ganglia had an impact on scaling the average of neural firing rate
and also a robust role in guiding the choosing action either left
or right when hippocampus strength was zero (see Figure 4 and
Table 1).

In the second condition, we observed that the percentage of
the neural firing rate in our subjects was increasing to be above
50%. Also, the weight update evaluation of the basal ganglia
was in the same range as the neural firing rate in this condition
(above 50%), (see Figure 4 and Table 1), which means that the
neural firing rate was increasing with increasing hippocampus
strength (hippocampus input). GTC epileptic patients showed
less neural firing rate as compared to controls in each state of
hippocampus strength (i.e.; different hippocampus input values).
Additionally, changes in such neural firing rate were sensitive to
the changes in the basal ganglia inputs. All together indicated
that the learning rate values of the basal ganglia were critical for
modulating the neural firing rate of the connectionist model by
stabilizing it as long as its’ increase remained comprised between
68 and 81%. In general, there was a reasonable correlation
between the percentage of the neural firing rate (see Figure 4

and Table 1), and evaluation of weight update in GTC epileptic
patients and controls in each condition. For example, when
hippocampus strength was above zero, the percentage of weight
update was above 50% for both GTC epileptic patients and
controls. Moreover, the weight update of the basal ganglia was
increasing with increasing in the hippocampus strength, i.e.;
the weight update of the basal ganglia was very sensitive to
hippocampus strength. For example, the evaluation of weight
update of the basal ganglia was increasing rapidly when the
hippocampus strength was large (values 3 and 4) while this
increase was slow when the hippocampus strength was less
(values 1 and 2). This observation suggested a strong influence
of the hippocampus strength on weight update evaluation
of the basal ganglia and hence strong connection between
them.
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TABLE 1 | It represents the values of the neural firing rate in GTC epileptic patients and their controls in our connectionist simulated model which are

shown in Figure 4.

Learning rate values 0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(A) Mean firing rate values

Control 50.33 49.67 53.59 49.93 47.19 52.55 50.85 52.03 48.89 48.23 50.59

GTC 51.12 46.45 53.55 47.66 48.50 50.19 47.66 50.09 49.25 50.28 47.38

(B) Mean weight update values

Control 50.85 48.13 48.37 50.85 50.2 49.15 53.46 46.41 49.54 48.89 52.94

GTC 50.37 51.21 50.28 50.37 50.8 52.24 49.99 48.04 47.85 49.25 52.15

(C) Mean firing rate values

Control Hippocampus strength 1 52.17 53.46 61.57 64.84 65.36 69.41 68.37 68.6 72.94 70.33 70.72

GTC 1 49.63 59.81 65.61 67.2 68.22 70.09 70.28 69 70.47 72.52 69.72

Control 2 49.15 65.36 62.88 77.78 76.73 70.06 69.93 67.8 71.76 70.06 72.29

GTC 2 52.8 72.43 75.14 82.06 77.94 72.62 69.63 68.6 68.32 69.25 69.99

Control 3 51.24 73.46 77.39 67.58 69.67 72.55 75.95 71.1 74.77 72.81 75.42

GTC 3 51.87 79.25 78.88 71.96 71.59 74.86 74.21 74.6 74.11 78.22 75.89

Control 4 47.84 81.57 72.29 75.82 77.38 78.69 80.52 74.3 75.55 76.08 79.22

GTC 4 49.81 84.86 72.8 75.79 75.7 77.1 76.26 79.7 77.48 77.85 77.01

(D) Mean weight update values

Control Hippocampus strength 1 51.37 58.82 66.4 65.49 65.8 66.54 70.59 71.5 69.93 70.59 69.93

GTC 1 50.75 61.03 63.46 65.79 65.9 69.16 70.09 67.9 67.57 67.2 69.53

Control 2 52.94 67.19 73.72 79.08 75.8

GTC 2 49.06 74.39 77.2 77.48

Control 3 48.89 73.33

GTC 3 51.59 78.41

Control 4 53.72 79.48

GTC 4 49.53 83.08

Panel (A) is linked to Figure 4A whilst panels (B–D) are associated to Figures 4B–D, respectively.

DISCUSSION

To our knowledge, this present study is the first to assess AEALT
(Moustafa et al., 2000; Myers et al., 2003; Herzallah et al., 2010;
Moustafa and Gluck, 2011), in patients with the GTC epilepsy.
We measured the accuracy of associative learning in GTC
epileptic patients through AEALT. We relied on using combined
experimental behavioral and computational study to link our
experimental findings with associative acquired equivalence
principles; neurobiological, psychologically and theoretically.
One clear limitation of our study is the low number of GTC
patients and their healthy subjects that was studied. Therefore,
our results will need to be confirmed by further complementary
studies at larger scale in the near future. However, our approach
allowed to design a computational model that can be fed from
actual subjects’ data. Therefore, this model will be useful to test
the role of the connectivity between the frontal and temporal
lobes in cognitive functions, and its possible alterations in
epilepsy. Importantly, most of the studies dealing with epilepsy
used a low number of subjects due to the difficulty to recruit large
populations, in particular in a case of cognitive and behavioral
studies. Even within the largest postoperative cognitive study in
adult, Helmstaedter and Witt (2008) included only 39 patients
and the largest pediatric study of Gleissner included only 15
patients (Gleissner et al., 2008). Even the study with the most

comprehensive neuropsychological testing and the largest sample
(n = 11) (Picard and Craig, 2009) had only 5 patients in the
sample having IEDs on EEG, and the IEDs. In addition, these
studies are composed of highly heterogeneous groups of patients,
including wide age ranges, divergent seizure characteristics and,
in some cases, even different surgical procedures (e.g., cortical
reactions, lesions and/or multiple transactions). In order to
be more consistent, we paid a special attention to investigate
homogenous group made of healthy subjects and matched
GTC patients, that is of patients suffering from a specific type
of epilepsy. Due to the limited size of our sample groups,
it was difficult to draw a robust statistical significance from
our results, whereas; we focused on testing the validation of
this connectionist model through using our patients’ data as
an input for the model. Our experimental behavioral results
showed that the accuracy of learning performance was not
different in GTC patients as compared to controls (see Figure 3).
This result indicated no impairments neither in hippocampus
(associated to transfer phase; Tamminga et al., 1992; Buchanan
et al., 1993; Bunsey and Eichenbaum, 1995; Henke et al., 1997;
Heckers et al., 1999; Myers et al., 2003; Polgár et al., 2010;
Moustafa and Gluck, 2011), nor in basal ganglia (associated
with acquisition phase; Tamminga et al., 1992; Buchanan et al.,
1993; Moustafa et al., 2000; Myers et al., 2003; Polgár et al.,
2010; Moustafa and Gluck, 2011). On the other hand, our
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FIGURE 4 | This figure represents the average of the neural firing rates in response to the connection between basal ganglia and hippocampus when

representing different values of hippocampus input indicating hippocampal strength. Panel (A) shows the average of neural firing rates when hippocampal

input equal to zero, which triggers the neural firing rate relates to GTC epileptic patients and their controls as an outcome of our simulated model. The X axis represents

the learning rate of basal ganglia, as basal ganglia input, and hippocampus input, as hippocampus strength, whereas a zero value of hippocampus input refers to its

absence whilst Y axis shows the proportion of the neural firing rate which is in approximation below 55% for both subjects. In GTC-epileptic patients, this firing rate is

lower than the controls except when the values of learning rate parameters of the basal ganglia are 0.2 and 0.8 and this rate tends to increase to be higher in GTC

than in controls when the learning rate value is 0.9. (B) Represents the evaluation of weight update in basal ganglia module when hippocampus strength is absent, as

in (A), whereas hippocampus input is equal to zero. This evaluation is represented in terms of percentages referring to GTC epileptic patients and their controls as an

outcome of our simulated model. Notably, the percentage of weight update is still below 55% for both GTC epileptic patients and controls, whereas the evaluation of

weight update of the basal ganglia relates to the action of the direct actor either right or left. In GTC epileptic patients, the evaluation of weight update of basal ganglia

is higher as compared to controls when the learning rate value of basal ganglia is below 0.6. Above 0.6, this evaluation starts to decline to be lower than that of control.

Additionally, this evaluation of the weight update is in synchronization with that of controls when the learning rate of basal ganglia is around 0.9. Panel (C) shows the

average of neural firing rates when hippocampal input is above zero, taking the values of 1, 2, 3, and 4, whereas each value resemble a different state of hippocampus

strength which is represented mathematically as input values. Controversially to (A), Hippocampus inputs with values higher than zero refers to the presence of

hippocampus with differential strengths. The learning rate values of the basal ganglia were critical for modulating the neural firing rates produced by stabilizing it.

However, as long as they increase, the firing rate activities remained comprised between 68 and 81%. (D) Represents the evaluation of weight update in basal ganglia

module when hippocampus strength, input, is above zero, taking the same values mentioned in (C). In general, the evaluation of weight update of the basal ganglia

increased rapidly when the hippocampus strength was large (values 3 and 4) while it slowly increased when the hippocampus strength was less (values 1 and 2).

computational simulation findings confirmed our experimental
behavioral results since they showed strong connection between
hippocampus and basal ganglia modules. We segregated our
simulation into two conditions based on the strength of the
hippocampus (hippocampus input); either equal or above zero.
In each condition, we fixed the values of the basal ganglia inputs,
which represented the learning rate values, to be in the ranges of
0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1. Then, we measured
the average of the neural firing rate and weight update evaluation
of the basal ganglia in response to the changes of the input
of the hippocampus referring to hippocampus strength. In the

first condition, when hippocampus strength was equal to zero,
the average of the neural firing rate in both GTC and controls
was below 55%. In addition, the weight update evaluation of
the basal ganglia was similar to this range (below 55%); this
observation indicated the robust role of the basal ganglia input in
guiding the direct actor either left or right. All together approved
the considerable impact of hippocampus strength, hippocampus
input, and the learning rate of basal ganglia, basal ganglia input,
on modulating of the neural firing rate of our connectionist
model (see Figures 4A,B and Table 1). On the other hand, in
the second condition, when hippocampus strength was above
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zero, taking ranges of 1, 2, 3, and 4, the average of the neural
firing rate in GTC and controls was above 50% and the weight
update evaluation of basal ganglia was in line with this range
of the neural firing rate (above 50%), (see Figures 4C,D and
Table 1). In this case, changes in the basal ganglia inputs were
sensitive to the changes in the hippocampus input (differential
state of hippocampus strength). However, this sensitivity was
observed only when hippocampus strength had a value of 1, with
increasing hippocampus inputs; the influence of basal ganglia
inputs was decreasing. For example, the average of the neural
firing rate reached to the highest peak when hippocampus input
was in the range of 4 and 3 although the value of basal ganglia
input was very small or nearly absent (around 0–0.1). Then,
there was no need for increasing the value of basal ganglia
input above 0.1 to enhance the neural firing rate of our model.
This observation indicated that learning rate values of basal
ganglia had a role in modulating and stabilizing the mean
neural firing rate of the model only when hippocampus strength
was around 1. Additionally, weight update of the basal ganglia
increased rapidly and immediately when hippocampus strength
was larger (values 3 and 4) while it increased slowly and regularly
when hippocampus strength was smaller (values 1 and 2).
Generally, GTC epileptic patients showed less neural firing rate
as compared to controls in each state of hippocampus strength.
In conclusion, the two conditions that we explored in our study
explained how the interactive connection between basal ganglia
and hippocampus module influenced the neural activity after
changing the learning rate of both, the basal ganglia, representing
in basal ganglia input, and the hippocampus strength, which
resembles hippocampus input. We did not include Temporal
Difference (TD) learning Algorithm (Dayan and Abbott, 2001;
Chapter 9 Classical Conditioning and Reinforcement Learning)
to measure the temporal differences in GTC epileptic patients
within both phases of acquired equivalence task; acquisition and
transfer. Alternatively, We relied on using direct actor method
and Rescorla Wagner rule instead of TD since we preferred
to use this simple method in the beginning of our study with
GTC epileptic patients, aiming to extend this study with GTC
epileptic patients further in the future studies. While cognitive
impairments, and especially memory disruption (Henke et al.,
1997), are prominent comorbidity in patients with epilepsy, their
path physiology remains unknown (Bell et al., 2011). Recent
studies concluded that cognitive impairment in epilepsy results
from a network disorder in which the micro-structures as well
as the functionality can be disturbed (Braakman et al., 2012). In
this present study, however, we did not find any considerable

difference in associative learning between GTC patients and
control subjects. This lack of impairment may be due to several
factors. First, the number of our subjects remained small and
the study should be extended to a larger number of subjects,
which we are planning to do in the future studies. No doubt,
including more GTC epileptic patients with different ages and/or
sex will enable us to detect possible correlation between ages
and/or sex in shaping the acquired learning performance in GTC
epileptic patients. Second, the age of the patients seems to be a
critical factor. Indeed, a very recent study found no difference
in neuropsychological performances in children with temporal

lobe epilepsy (Mankinen et al., 2014) whilst a study with animal
models has shown that early-life seizures are key events that
contribute to deficits in learning (Lugo et al., 2014). In this
current study, our patients did not experience a long history of
seizures, which can explain the absence of associative learning
impairment. Despite lack of differences with AEALT (Moustafa
et al., 2000; Myers et al., 2003; Herzallah et al., 2010; Myers
et al., 2003), the GTC patients may show fine structural and/or
functional alterations of the brain networks, which could be
involved, besides, the relatively small sample size examined here
may limit the representativeness of patients with GTC. Therefore,
additional numbers of patients with GTC will be added in further
future studies as a continuation of the present work. Moreover,
to address this question further, we will need to complement
these behavioral and model studies with imaging studies aiming
to describe the functional connectivity between basal ganglia
and hippocampus in the future. Regarding the methodological
aspect of our study, independently of the functional result, our
main aim was to validate a modeling approach. Importantly, our
simulation protocol proved a reasonable efficiency to reproduce
the results obtained with a cognitive behavioral task. In summary,
the main result of the present work was to provide a simulation
method that permits to analyses functionally the network (i.e.,
basal ganglia and hippocampus) underlying cognitive processes
within the context of a neurological pathology.
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