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Abstract: Unlike mammals, zebrafish are capable to regenerate many of their organs, however, the
response of tissue damage varies across tissues. Understanding the molecular mechanism behind
the robust regenerative capacity in a model organism may help to identify and develop novel
treatment strategies for mammals (including humans). Hence, we systematically analyzed the current
literature on the proteome profile collected from different regenerated zebrafish tissues. Our analyses
underlining that several proteins and protein families responsible as a component of cytoskeleton
and structure, protein synthesis and degradation, cell cycle control, and energy metabolism were
frequently identified. Moreover, target proteins responsible for the initiation of the regeneration
process, such as inflammation and immune response were less frequently detected. This highlights
the limitation of previous proteomic analysis and suggested a more sensitive modern proteomics
analysis is needed to unfold the mechanism. This brief report provides a list of target proteins with
predicted functions that could be useful for further biological studies.
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1. Introduction

Regeneration is a process by which an organism restores or replaces damaged tissues
through a complex mechanism, resulting in the same morphological and physiological
properties as the undamaged one [1,2]. In mammals, several tissues such as skin and the gut
epithelia exhibit a highly cellular turnover. On the other hand, neurons and cardiomyocytes
are not completely restored [2,3]. Thus, limited regenerative capacity observed in mammals
is believed to contribute to a variety of diseases, such as neurodegenerative disorders and
heart failure. Additionally, regeneration in mammalian cells typically leads to scarring [4].
This possibly due to the imbalance between regeneration and scar formation [5,6].

In contrast to mammals, zebrafish exhibits a highly regenerative capacity in response
to cellular damage [7]. Hence, it has been extensively emerged as a promising model for
the study of regeneration [2,7-9]. Zebrafish regeneration studies are typically focused on
adult tissues that include the spinal cord, brain, retina, caudal fin, and heart [2,8]. Although
it is notable that stem/progenitor cells are crucial elements in eliciting regenerative re-
sponse [4], other factors such as inflammatory mediators and extracellular matrix (ECM)
play an important role during cellular remodeling [1,10]. Growing evidence shows that the
mechanisms of regeneration are frequently examined by gene expression through several
approaches, including PCR, in situ hybridization (ISH), microarray, and sequencing [11].
However, such results did not reflect protein levels. To fill such gap, we here analyze the
available literature evaluating proteomic changes during zebrafish regeneration. This study
provides hints to unlock the molecular mechanism of regenerative processes, which may
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be useful to explore a possible therapeutic approach as well as to expand our knowledge
on regenerative medicine.

2. Methods
2.1. Literature Search

A literature search was conducted in PubMed and Scopus databases using the fol-
lowing search terms: “proteomic” (all fields), “regeneration” (all fields), and “zebrafish”
(all fields), dated up to 31 December 2020. Titles and abstracts were screened for dataset
inclusion. The final dataset consisted of 8 studies [1,3,11-16], which were further evaluated.

2.2. Group Definition

The studies were stratified according to the type of regenerating organs (including,
central nervous system (brain, retina), caudal fin, and heart). Additional analysis was also
performed by comparing different studies within a group if they consist of at least two
studies.

2.3. Data Extraction and Analysis

Differentially expressed proteins reported in each study were included in the joint
dataset with the following criteria: (1) Proteins were only counted once for each study
with multiple spot identifications or evaluated in a different time series; (2) proteins were
included if the expression level fold changes were below 0.8 or higher than 1.2. A Venn
diagram was performed using InteractiVenn [17] to visualize the similarities and differences
of the significant protein profiles among groups.

Additionally, to understand more detailed information into the role of the identified
proteins required during zebrafish regeneration, we also looked at the biological processes
and functions of all differentially expressed proteins in each experimental study.

3. Results and Discussion
3.1. Dataset Description

Proteomic alterations of the included studies were evaluated by 2-DiGE (Two-dimensional
difference gel electrophoresis, n = 3) [12,14,15], LC-MS/MS (liquid chromatography-mass
spectrometry, n = 3) [1,11,16], and SILAC (stable isotope labelling with amino acids in
cell culture, n = 2) [3,13]. Proteomic analysis was examined from several regenerating
organs, including the brain, retina, caudal fin, and heart. The complete lists of differentially
expressed proteins extracted with the applied database information from the included
studies are depicted in Supplementary Table S1.

Of the analyzed studies, on average 62 differentially expressed proteins were identified.
Although we did not find any significant number of protein profile changes between
proteomic methods, 2-DiGE methods tended to have a lower number of significantly
identified proteins (Figure 1).

Proteomic method

0 50 100 150 200 250
No. of identified protein

Figure 1. Differentially expressed proteins per study stratified by proteomic methods.



Biomolecules 2022, 12, 35

30f10

A

Nervous system

(40)

35

3.2. Individual Proteins and Protein Families Repeatedly Regulated during Zebrafish Regeneration

Based on our grouping criteria, 486 unique proteins were included for further analysis
(Figure 2A). By combining the outcome, none of the proteins was commonly shared among
the three groups (Figure 2A). On the other hand, collagen (type I, alpha 1) and spectrin alpha
(non-erythrocytic 1) were frequently identified (38%) among the repeatedly 19 identified
proteins in the list (Table 1). Additionally, several other collagen proteins, such as type I
(alpha 2) and type VI (alpha 3 and 4a), were also listed, followed by keratins (5, 8, and 18).
These findings are in line with a previously reported study in mammals [18], indicating
that structural components are often deregulated, regardless of the experimental types.
If we consider the tissue types of these top 19 identified proteins, 17 of them were found
in the heart (except the vimentin and keratin 5); followed by the caudal fin (16 proteins).
Fibulin-1, galectin, and fibrinogen alpha chain were found in the heart but not in the caudal
fin (Table 1).

B

Caudal fin Nervous system Caudal fin
(268) 29 (142)
2 4
252 16 103
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3 14 3 29
161 80
Heart Heart
(178) (118)

Figure 2. Venn diagram of the identified proteins (A) and its families (B) according to the regenerating
organs.

Table 1. List of the top 19 proteins repeatedly identified in the selected studies. F as caudal fin, H as
heart; R as retina; B as brain.

Among the 8 Selected Studies

Rank Position Protein Name
Total Organs
1-2 Collagen, type I, alpha 1 3 FH
1-2 Spectrin alpha, non-erythrocytic 1 3 EH
3-19 Vimentin 2 R,F
3-19 Coactosin-like 1 2 FEH
3-19 Nucleoside diphosphate kinase 2 FH
3-19 Cathepsin B 2 FH
3-19 Fibulin-1 2 B,H
3-19 Galectin 2 R,H
3-19 Fibrinogen alpha chain 2 R H
3-19 Keratin 5 2 R, F
3-19 Collagen, type I, alpha 2 2 FH
3-19 Collagen, type VI, alpha 3 2 FH
3-19 Collagen, type VI, alpha 4a 2 FH
3-19 Periostin, osteoblast specific factor 2 FH
3-19 Keratin, type II cytoskeletal 8 2 FH
3-19 Keratin, type I cytoskeletal 18 2 FH
3-19 Caveolae-associated protein 1b 2 FH
3-19 Lamin A 2 FEH
3-19 60S acidic ribosomal protein P2 2 FH
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We also further analyzed the frequently identified protein families among 8 studies,
and we found that 6 families (actins, cytoskeletal keratins, glutathione transferases, riboso-
mal proteins, histones, and annexins) were detected in all three groups (Figure 2B, Table 2).
Among the top 42 lists of frequently identified protein families, cytoskeletal keratins and
annexins were listed in the two top positions (Table 2), which was in agreement with the
top lists of human studies [18], implying a high similarity between mammals and fish.
Regarding the types of the tissues, caudal fin replaced the heart as the most frequently
identified tissue in terms of protein family. Specifically, fibulins and tubulins were the two
families that could not be identified in the fin. On the other hand, lipid binding proteins
(FABP type), vimentins, tubulins, and transferrins were not found in the heart (Table 2).

Table 2. List of the top 42 protein families repeatedly identified in the selected studies. F as caudal
fin, H as heart; R as retina; B as brain.

Among the 8 Selected Studies

Rank Position Protein Family
Total Organs
1-2 Cytoskeletal keratins 6 R,FH
1-2 Annexins 6 R,EH
3-5 Actins 5 R,EH
3-5 Hypothetical proteins 5 FH
3-5 Zgc 5 FH
6-12 Glutathione transferases 4 R,FH
6-12 Ribosomal proteins 4 R,EH
6-12 Protein phosphatases 4 FH
6-12 Myosins 4 FEH
6-12 Histones 4 R,EH
6-12 Lipid binding proteins (FABP type) 4 R, F
6-12 Collagens 4 FH
13-20 Elongation factors 3 FH
13-20 Heat shock proteins 3 EH
13-20 Carbonic anhydrases 3 FH
13-20 Fibrinogens 3 R, H
13-20 Lamins 3 EH
13-20 Spectrins 3 FEH
13-20 Complement components 3 EH
13-20 Peptidases 3 EH
21-42 Coactosins 2 EH
21-42 Peroxiredoxins 2 EH
21-42 Nucleoside diphosphate kinases 2 FH
21-42 Cofilins 2 FH
21-42 Cathepsins 2 EH
21-42 Fibulins 2 B,H
21-42 Galectins 2 R H
21-42 Vimentins 2 R, F
21-42 Tubulins 2 R, F
21-42 Transferrins 2 R, F
21-42 Periostins 2 EH
21-42 Cavins 2 FH
21-42 Adenylyl cyclase-associated proteins 2 FH
21-42 ATP synthase subunits 2 EH
21-42 Adaptor complexes medium subunits 2 FH
21-42 COX subunits 2 EH
21-42 HD lipoprotein-binding proteins 2 EH
21-42 Integrins 2 EH
21-42 NADH dehydrogenases 2 EH
21-42 Plakophilins 2 EH
21-42 Sex hormone-binding globulins 2 FH
21-42 Thioredoxins 2 EH
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The four and two studies evaluating proteomic profile changes in regenerated caudal
fin and heart were examined, yielding 274 and 184 unique proteins (Figure 3A,C) and
175 and 125 protein families (Figure 3B,D), respectively. None of the identified proteins
observed in a group of the regenerated caudal fin was identical (Figure 3A) [3,13,14,16].
On the other hand, 6 proteins (fibrinogen (beta and gamma chains), collagen (type I and
XII), fibronectin 1a, and cardiac myosin light chain-1) were detected in both studies of
the regenerated heart [1,11]. Three (annexins, zgc, and hypothetical proteins) and seven
(collagens, cytoskeletal keratins, actins, myosins, fibrinogens, fibronectins, and complement
components) protein families were identified in all studies of the regenerated caudal fin
and heart, respectively. Neither individual protein nor its family was identically detected
in regenerated brain and retina (data not shown).

B
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Figure 3. Venn diagram of the identified proteins and its families detected during caudal fin (A,B)
and heart (C,D) regeneration, respectively. Studies are indicated by the name of the first author.

Utilizing the ISH technique, Martorana et al. successfully demonstrated that ker-
atinocyte migration is a key factor for caudal fin regeneration [19]. Similarly, interkinetic
nuclear migration modulated by the interaction between actins and myosins is required to
replace photoreceptors damage [20]. Moreover, inhibition of myosin II disrupts the sub-
cellular localization of crypto (epidermal growth factor-CFC) in facilitating cell-mediated
wound healing in injured-caudal fin [21], thereby implying the interplay between myosin
and cripto is crucial for stem cell proliferation.
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Annexins functions are not limited to the membrane and structural complexes, but also
influence zebrafish’s regenerating capacity [22]. Upregulation of anxa2a and 2b transcripts
and their proteins have been reported in regenerating caudal fin [22,23]. Additionally, the
regulatory region of anxa2a and 2b genes demonstrated the ability to repress histone methy-
lations [23], and hence implicates transcriptional activation. This epigenetic regulatory
mechanism may be necessary to drive a large number of genes that are required for various
cellular events during the initiation of regeneration. Indeed, knocking down of anxa2a and
2b hampered the regenerating capacity of zebrafish fin [22].

Another factor such as collagen seems to be involved in accelerating zebrafish regener-
ation [24]. Transient accumulation of collagen I and XII in the lesion site has been proven
to contribute to the reparative matrixes production as well as a promoter for axonal or
heart regeneration [25,26]. It is interesting to note that the localization of collagen XII is
restricted in a few places of mammalian tissues [26,27]. On the other hand, its expression is
highly distributed throughout the whole tissues of zebrafish [27]. Together, these results
thus strengthen the notion that cytoskeletal proteins may be essential in modulating the
higher regenerative capability observed in zebrafish.

3.3. Biological Processes and Functions among Identified Proteins

We observed a total of 499 unique proteins across all analyzed studies, of which the top
identified terms were cytoskeleton and structure, followed by protein synthesis and degra-
dation, cell cycle control, and energy metabolism (Figure 4). This result is in accordance to
our finding that the structural proteins predominantly (31%) occupied the top 42 lists of
protein families among the included studies (Table 2). The top two identified protein fami-
lies were the cytoskeleton and structure; and the translation and regulation of translation.
These families have been suggested to play critical roles in tissue regeneration [28]. Since
injury will stimulate the extracellular matrix activity via cell-cell and cell-matrix adhesions,
which could be induced by various growth factors [29,30]. Afterwards, the regeneration
process will include the cell proliferation, and the release of various inflammatory factors
and cytokines such as tumor necrosis factor-alpha (TNF- «) and interleukin cytokines for
tissue repair [31,32]. It should be noted that other regulatory proteins that initiate the
regeneration process such as inflammation and /or immune response were detected at low
levels. This is possibly associated with the limitation of current proteomic technologies.
Another plausible explanation is that the inflammatory mediators and immune cells maybe
transiently upregulated and then downregulated after regeneration process was initiated.

Moreover, the regulation of cytoskeleton and metabolic signaling pathways were
involved in tissue regeneration for the cell movement, growth, and proliferation [33,34].
Studies showed that the modification of lipid metabolism is needed in liver and axon
regeneration [35,36]. Lastly, the assembly and activity of ribosomal proteins are required
for protein synthesis and involved in regeneration process [37,38]. The identification of
such protein families as the top enriched terms among the zebrafish regeneration studies
confirmed the importance of these mechanisms during regeneration.

Regarding the mammalian regeneration proteomics studies, a review paper from
deer concluded the differentially expressed proteins were mainly responsible for multi-
ple biological processes and signaling pathways. Among them, cytoskeleton was highly
spotted in various studies [39]. Another review paper summarized the mammalian liver
regeneration further suggesting terms such as the cell—cell contact, and cytokines were
highly identified [28]. Regarding the cardiac progenitor cells and pluripotent stem cell
derived cardiomyocytes, similar enriched terms such as metabolism, cytoskeleton, and cell
adhesion could be spotted [40]. On the other hand, numerous terms were specifically iden-
tified in the various models, which were expected as the regeneration ability between the
zebrafish and mammal are different. Nevertheless, using the zebrafish as the regeneration
model has the advantages of identifying target molecules to provide therapeutic strategies
for repairing the mammalian tissues.
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Figure 4. Proportions of biological processes and functions among differentially expressed proteins
extracted from all included studies. The percentage was calculated from total proteins (499 proteins)
reported in all studies.

Despite being the first systematic analysis in the field, several limitations of this
study should be noted. First, the outcome of different proteomic techniques varied.
This might be the results of biological and methodological differences (e.g., type of tis-
sue/organ, time of evaluation, sample preparation, and type of data analysis). Second,
only a limited number of studies were included for further evaluation. Consequently,
more studies are still warranted to test our findings with a larger dataset. Third, global
proteomic analysis is more likely to miss a target biomarker for specific regenerated tis-
sues. Forth, the identified proteins might be induced by the injury but not responsible
for the regeneration process.

Moreover, in terms of the proteomics technologies, there are several limitations in
identifying the low-abundant proteins, such as several kinds of cytokines and growth
factors. For example, the DIGE method is a powerful tool in evaluating proteomic pro-
files. However, the number of pitfalls should be taken into consideration, for example,
poor visualization of low-copy number proteins and difficulty to separate protein with
very large (>150 kDa) and very small (<10 kDa) protein size [41]. Similarly, LC-MS/MS
is also less sensitive for detection of small peptides e.g., cytokines [42]. Although
SILAC is a suitable technique for quantitative proteomics, its applicability for cytokine
measurement is limited because it cannot be used to directly label tissues or body
fluids [43]. Hence, antibody-based techniques should be performed simultaneously to
facilitate a systematic examination of the proteomic studies in regenerated zebrafish.
These limitations could be improved by modified extraction tools and methods [44,45].
Together with the technological advancement on LC-MS and bioinformatics software,
it is easier to identify qualified proteins in these days. Regarding the quantification,



Biomolecules 2022, 12, 35

8 of 10

References

the Isobaric Tag for Relative and Absolute Quantitation (iTRAQ) has been widely used
in mammalian studies [46]. On the other hand, the application in fishes is still very
limited. Several studies have used the iTRAQ in fish physiology and environmental
studies [47,48]; however, it has not been widely used in the regeneration studies. Fur-
thermore, another isobaric multiplex, Tandem Mass Tag (TMT) could further extend
the number of testing samples to 16 [49]. Lastly, we noticed an increasing usage of the
data independent acquisition (DIA) mass spectrometry in biological research. This
method is claimed to cover most of the low abundance and small peptides [50]. DIA
identifies peptides within the selected m/z windows, and thus has merits like low
missing value and good data reproducibility [51,52]. In addition, the protein identifica-
tion can be performed by various searching engines, such as DIA-Umpire PECAN [53],
or DirectDIA [51], but not limited to the conventional genome-wide species-specific
database that is used in traditional MS/MS ion mass spectrum. All these advantages
suggest that the DIA will become another popular proteomics tool in the near future.
To conclude, the current advancement of the proteomics could be a powerful tool for
identifying the proteins participating in regeneration process.

4. Conclusions

This study demonstrated that the structural proteins are commonly detected or dereg-
ulated with functions like cytoskeleton organization, protein synthesis and degradation,
cell cycle control, and energy metabolism during zebrafish regeneration. On the other
hand, target proteins responsible for the initiation of the regeneration process, such as
inflammation and immune response were less frequently detected. Further functional
research should be performed to find specific targets that are responsible for modulating
the regenerative capacity in fish. To summarize, the studies provide a set of gene list that is
potentially useful to enhance the regeneration process.
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