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A B S T R A C T   

Purpose: This study aimed to investigate differences in cervical lymph node image quality on dual-energy 
computed tomography (CT) scan with datasets reconstructed using filter back projection (FBP), hybrid itera-
tive reconstruction (IR), and deep learning–based image reconstruction (DLIR) in patients with head and neck 
cancer. 
Method: Seventy patients with head and neck cancer underwent follow-up contrast-enhanced dual-energy CT 
examinations. All datasets were reconstructed using FBP, hybrid IR with 30 % adaptive statistical IR (ASiR-V), 
and DLIR with three selectable levels (low, medium, and high) at 2.5- and 0.625-mm slice thicknesses. Herein, 
signal, image noise, signal-to-noise ratio, and contrast-to-noise ratio of lymph nodes and overall image quality, 
artifact, and noise of selected regions of interest were evaluated by two radiologists. Next, cervical lymph node 
sharpness was evaluated using full width at half maximum. 
Results: DLIR exhibited significantly reduced noise, ranging from 3.8 % to 35.9 % with improved signal-to-noise 
ratio (11.5–105.6 %) and contrast-to-noise ratio (10.5–107.5 %) compared with FBP and ASiR-V, for cervical 
lymph nodes (p < 0.001). Further, 0.625-mm-thick images reconstructed using DLIR-medium and DLIR-high had a 
lower noise than 2.5-mm-thick images reconstructed using FBP and ASiR-V. The lymph node margins and vessels on 
DLIR-medium and DLIR-high were sharper than those on FBP and ASiR-V (p < 0.05). Both readers agreed that 
DLIR had a better image quality than the conventional reconstruction algorithms. 
Conclusion: DLIR-medium and -high provided superior cervical lymph node image quality in head and neck CT. 
Improved image quality affords thin-slice DLIR images for dose-reduction protocols in the future.   

1. Introduction 

In patients with head and neck cancer, computed tomography (CT) is 
the common first-line standard imaging for evaluating primary tumors 
and regional lymph nodes. Sufficient image quality and spatial resolu-
tion are essential for diagnosing different conditions, particularly 
lymphadenopathy. Meanwhile, misclassifying lymph nodes before 

treatment may lead to poor prognosis. CT plays an important role in 
providing morphological information on the characteristics of lymph 
nodes (such as shape, size, and pattern on contrast enhancement) [1]. 
Generally, metastasis is defined as lymph nodes with a short axis (>10 
mm) [1]. Some studies have reported that nodal size measurement, 
particularly in small-sized lesions, may be reader-dependent due to 
irregular or poorly defined margins [2]. Thus, imaging with a high 
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spatial resolution is helpful to determine the risk of nodal metastasis. In 
conventional CT, assessing metastasis to normal-sized lymph nodes with 
subtle intranodal necrosis or extracapsular spread remains challenging. 
A better visualization of lymph nodes may increase diagnostic accuracy 
for treatment decision-making. 

Filtered back projection (FBP) is an algorithm used in conventional 
image reconstruction (conversion from the measured data to the image) 
on CT scanners. FBP is a fast and direct method for generating CT images 
[3]. By contrast, hybrid model-based adaptive statistical iterative recon-
struction (ASiR-V) [4], which uses a more complex system of prediction 
models, is an algorithm utilized in iterative reconstruction (IR) and can 
reduce image noise and improve image quality compared with FBP [5,6]. 
Currently, the deep learning technology has an excellent performance in 
various fields of medical imaging. A commercial deep learning–based 
image reconstruction (DLIR) algorithm has been recently utilized in 
image noise reduction on CT [7]. DLIR can deal with complex models 
and large parameters via training processes. This post-processing tech-
nique can improve the quality of CT images, thereby leading to signifi-
cant progress in most clinical situations, particularly when performing 
high-resolution CT imaging. 

DLIR outperforms FBP and IR techniques in terms of CT image 
quality in different fields, particularly the chest and abdominal regions 
[8–10]. However, it has not been previously applied on cervical lymph 
node CT in patients with head and neck cancer. Thus, this study aimed to 
investigate differences in the image quality of cervical lymph nodes on 

CT with datasets reconstructed using FBP, ASiR-V, and DLIR in patients 
with head and neck cancer. It primarily aimed to identify the recon-
struction method with the best image quality. 

2. Materials and methods 

2.1. Study design and population 

This retrospective study was approved by the Research Ethics 
Committee of *BLINDED* (approval number: 2019019900B0). The 
requirement for informed consent was waived owing to the retrospec-
tive design of this study. Fig. 1 shows the diagram of the study design. 
There were 70 post-treatment patients aged 38–81 years with histo-
logically confirmed head and neck cancer. Among them, 63 were men 
and 7 women (mean ± standard deviation: 56.4 ± 10.4 years). The 
patients underwent contrast-enhanced standard-of-care follow-up CT 
study between June 2021 and August 2021. The datasets of contrast- 
enhanced head and neck CT were evaluated with the dual-energy pro-
tocol using a 256-multidetector CT scanner (Revolution CT, 
*BLINDED*) at a standard dose. 

Images were acquired 60 s after injecting 100 mL of contrast agent 
intravenously (Omnipaque 350 mg/mL; iohexol, *BLINDED*) at a rate 
of 2.5 mL/s. The main scanning parameters were as follows: tube 
voltage, 80–140 kVp; noise index, 9; gantry rotation time, 0.5 s; detector 
collimation, 40 × 0.625 mm; pitch factor, 0.984:1; and matrix, 

Fig. 1. Flow chart of the study design.  
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512 × 512 with auto current modulation. The data of each patient were 
reconstructed with 120-kVp-like images at both 2.5-mm (thick) and 
0.625-mm (thin) slice thickness with the FBP, ASiR-V, and DLIR algo-
rithms (TrueFidelity, *BLINDED*). ASiR-V was reconstructed at a 
blending level of 30 % ASiR-V. DLIR was reconstructed with three 
strength levels (low, medium, and high). Metal artifact reduction was 
used if implants were installed. In addition to evaluating thick-slice 
images, the overall image quality of the cervical lymph nodes was 
assessed using thin-slice images that simulated dose-reduction protocols 
with higher noise levels. 

2.2. Assessment of overall image quality 

To compare image quality, the signal (mean attenuation value), noise, 
signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) in all datasets 
were evaluated. Circular regions of interest (ROI) measuring 20 mm2 

were placed on the masseter muscle, sternocleidomastoid muscle, in-
ternal jugular vein, submandibular gland, and fat as background using 
an advanced workstation (AW 4.7, *BLINDED*). CT number and stan-
dard deviation represent the mean attenuation value (HU) and noise 
(SD) of each ROI. SNR and CNR were calculated using the following 
formula (1− 2): 

SNR =
average of ROIIJV

standard deviation of ROIfat
(1)  

CNR =
average of ROIIJV − average of ROIfat

standard deviation of ROIfat
(2) 

Two radiologists, one with 27 years of experience in head and neck 
imaging and the other with 4 years of experience as a resident, assessed 
all images reconstructed at 2.5-mm slice thickness. Both were blinded to 
patient information and reconstruction types, and they independently 
evaluated images in random order with fixed window widths and levels 
of 350 and 50 Hounsfield Units (HU), respectively. The overall image 
quality and noise were rated with a five-point scale (5 = excellent 
quality/minimal noise, 4 = better quality for diagnosis/less than 
average noise, 3 = average quality/acceptable noise, 2 = suboptimal 
quality/above than average noise, and 1 = poor quality/unacceptable 
noise). Meanwhile, the artifact was graded with a three-point scale (3 =

no artifact/excellent visualization, 2 = minor artifact/acceptable for 
diagnosis, and 1 = major artifact/unacceptable for diagnosis). 

2.3. Image quality evaluation of the lymph node region 

In total, 46 lymph nodes (29 normal and 17 malignant lymph nodes) 
around the vessels at different neck levels were identified by the radi-
ologist with 6 years of experience, and a circular ROI was placed at its 
largest diameter section on 2.5- and 0.625-mm images. Objective and 
subjective analyses were performed to investigate the lymph nodes. In 
addition, the noise reduction rate and differences in SNR and CNR were 
calculated between DLIR and both FBP and ASiR-V. The equations were 
as follows (3− 5): 

Noise reduction rate (%) =
NDLIR(L,M,H) − NFBP,ASIR

NFBP,ASIR
× 100 (3)  

Differences of SNR (%) =
SNRDLIR(L,M,H) − SNRFBP,ASIR

SNRFBP,ASIR
× 100 (4)  

Differences of CNR (%) =
CNRDLIR(L,M,H) − CNRFBP,ASIR

CNRFBP,ASIR
× 100 (5) 

The sharpness of lymph nodes on 2.5-mm images was evaluated via 
histogram analysis with full width at half maximum (FWHM). One 
three-Gaussians kernel was used to fit the distribution of selected ROIs, 
including the lymph nodes, arterial, and venous regions in each. The 
FWHM values of each region were used to assess the sharpness of images 

via DL and non-DL reconstructions. In addition, the two readers rated 
the sharpness and noise of lymph nodes on 2.5- and 0.625-mm slice- 
thickness images with a five-point scale (5 = sharpest/minimal noise, 
4 = better than average/less than average noise, 3 = average/accept-
able noise, 2 = suboptimal/acceptable for diagnosis, and 1 = blurry/ 
unacceptable for diagnosis). 

2.4. Statistical analysis 

Data were presented as mean ± standard deviation and were 
analyzed using GraphPad Prism 5 (GraphPad Prism Software). The fig-
ures in this study were expressed using both bar charts, which showed 
the mean and standard error of the mean, and box plots, which depicted 
the mean and standard deviation. Within all tables, the values were dis-
played as mean along with standard deviation. A p-value of 0.05 was 
considered statistically significant. To compare reconstructions in terms 
of objective image quality, repeated-measures analysis of variance was 
used, followed by the post-hoc Tukey’s test for multiple comparisons. 
The paired t-tests were utilized to compare differences between DLIR at 
all strength levels and the two conventional reconstruction algorithms. 
All datasets were tested for linearity using the Shapiro–Wilk test. Sub-
jective analysis within readers across reconstructions was performed 
using the Likert scale and the Kruskal–Wallis test. We investigated the 
intraclass correlation coefficient (ICC) to investigate the agreement be-
tween readers. 

3. Results 

3.1. Objective evaluation of the overall image quality 

Fig. 2 shows the head and neck CT images reconstructed with 
different algorithms at 2.5- and 0.625-mm slice thicknesses. The lymph 
node is highlighted with an arrow. Based on the images, DLIR was su-
perior to the conventional reconstruction algorithms in terms of image 
quality, noise, and sharpness. Table 1 depicts the objective analysis re-
sults. In particular, on the 2.5-mm image, only the signal of the ster-
nocleidomastoid muscle and submandibular gland was significantly 
higher in DLIR-high (H) than in FBP (p = 0.008 and 0.028, respectively) 
(Supplementary Table 1). On the 0.625-mm image, the sternocleido-
mastoid muscle and masseter muscle had a higher signal in DLIR-H than 
in FBP and ASiR-V (p < 0.001). DLIR had a significantly higher noise 
reduction than the two reconstruction methods (p < 0.001) across all 
ROIs and slice thicknesses (Supplementary Table 2). In addition, DLIR 
had a better SNR and CNR (p < 0.001), with DLIR at the highest strength 
outperforming all other reconstructions in terms of SNR and CNR, fol-
lowed by ASiR-V and FBP at medium and low strengths (Table 1). 
Notably, despite higher noise levels, 0.625-mm images from DLIR-M and 
DLIR-H had a lower noise than 2.5-mm images from FBP and ASiR-V. 

3.2. Subjective evaluation of the overall image quality 

Table 2 shows the subjective scores of image quality, noise, and ar-
tifacts from the two readers. Both agreed that images reconstructed 
using DLIR had a better image quality than those reconstructed using 
ASiR-V and FBP (p < 0.001). In particular, DLIR-medium (M) had the 
best image quality score from one reader. Meanwhile, the other reader 
assigned the highest score to DLIR-H. With the metal artifact reduction 
technique, DLIR had significantly less artifacts (p < 0.05 and 0.001 for 
both readers). DLIR-H had the best noise score, followed by ASiR-V and 
FBP at medium and low strengths (p < 0.001). The ICCs for image noise, 
artifact, and image quality were 0.79 (95 % confidence interval [CI]: 
0.74–0.82), 0.31 (95 % CI: 0.21–0.4), and 0.48 (95 % CI: 0.38–0.56) 
(p < 0.001), respectively. 
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3.3. Lymph node evaluation 

The image signals of the lymph nodes significantly differed between 
thin- and thick-slice images (p < 0.001) (Table 3). DLIR had the highest 
noise reduction (p < 0.001). According to the post-hoc tests, DLIR-H and 
DLIR-M had significant noise reduction compared with ASiR-V on 2.5- 
mm images. However, DLIR-low (L) and ASiR-V had similar noise 
levels. Images reconstructed using DLIR had a significantly better SNR 
and CNR (Fig. 3). 

DLIR at increasing strengths had higher noise reduction rates 
(3.8–35.8 %) and SNR and CNR improvements (10.5–73 %) compared 
with FBP. Hence, DLIR had an effective noise reduction ability (Table 4). 
Thin-slice images were used to simulate the reduced-dose protocol, 
which results in higher noise reduction rates, leading to SNR and CNR 
improvements. According to the two readers, DLIR significantly out-
performed ASiR-V and FBP in terms of sharpness and noise (p < 0.001) 

Fig. 2. Images reconstructed with each algorithm at 2.5-mm (upper row) and 0.625-mm (lower row) slice thickness. The lymph node is pointed with a yellow arrow.  

Table 1 
Overall image quality. SNR and CNR of each ROI at 2.5- and 0.625-mm slice 
thicknesses using different reconstruction algorithms.   

FBP ASiR-V DLIR-L DLIR-M DLIR-H p-value 

Thick slice (2.5 mm) 
SNR SCM  8.0 

(1.9)  
9.9 

(2.6)  
11.3 
(2.9)  

12.9 
(3.6)  

15.2 
(14.8) 

<0.0001* 

SNR MM  5.8 
(1.8)  

7.1 
(2.5)  

8.0 
(2.8)  

9.0 
(3.4)  

10.4 
(4.2) 

<0.0001* 

SNR IJV  20.5 
(7.2)  

24.9 
(9.3)  

27.2 
(10.1)  

30.6 
(11.8)  

35.4 
(14.6) 

<0.0001* 

SNR SM gland  8.6 
(4.0)  

10.4 
(5.3)  

11.4 
(6.0)  

12.7 
(7.1)  

14.3 
(8.5) 

<0.0001* 

SNR Fat  9.1 
(2.5)  

11.1 
(3.3)  

12.2 
(3.7)  

13.6 
(4.4)  

15.8 
(5.4) 

<0.0001* 

CNR  32.3 
(10.4)  

39.3 
(12.0)  

43.2 
(14.2)  

48.4 
(16.7)  

55.4 
(19.2) 

<0.0001* 

Thin slice (0.625 mm) 
SNR SCM  5.7 

(1.2)  
7.0 

(1.5)  
8.7 

(1.9)  
10.3 
(2.4)  

12.9 
(3.3) 

<0.0001* 

SNR MM  4.5 
(1.1)  

5.5 
(1.5)  

6.7 
(1.8)  

7.8 
(2.3)  

9.4 
(3.1) 

<0.0001* 

SNR IJV  15.2 
(4.6)  

18.5 
(5.8)  

22.1 
(7.1)  

25.8 
(8.7)  

31.1 
(11.2) 

<0.0001* 

SNR SM gland  7.1 
(3.1)  

8.6 
(2.1)  

10.2 
(4.8)  

11.7 
(5.8)  

13.7 
(7.1) 

<0.0001* 

SNR Fat  6.8 
(1.6)  

8.3 
(2.1)  

10.2 
(2.7)  

12.1 
(3.4)  

14.7 
(4.6) 

<0.0001* 

CNR  24.2 
(6.6)  

29.2 
(8.3)  

36.0 
(10.8)  

42.4 
(13.2)  

51.5 
(17.2) 

<0.0001*  

* Denotes a significant mean difference between each reconstruction 
algorithm. 

Table 2 
Overall image quality. Subjective score of the overall images using different 
reconstruction algorithms.   

FBP ASiR-V DLIR-L DLIR-M DLIR-H p-value 

Reader 1 
Image quality  2.9 

(0.8)  
3.8 
(0.8)a  

3.9 
(0.8)a  

4.3 
(0.6)ab  

4.1 
(0.7)a  

<0.0001 

Artifact  2.2 
(0.7)  

2.3 
(0.6)  

2.3 
(0.7)  

2.5 
(0.6)  

2.6 
(0.6)a  

<0.05 

Noise  2.1 
(0.5)  

2.9 
(0.6)a  

3.4 
(0.6)ab  

4.0 
(0.4)abc  

4.7 
(0.5)abcd  

<0.0001 

Reader 2 
Image quality  2.8 

(0.5)  
2.9 
(0.4)  

3.5 
(0.5)ab  

3.8 
(0.5)ab  

4.1 
(0.5)abc  

<0.0001 

Artifact  1.8 
(0.5)  

1.9 
(0.3)  

2.0 
(0.5)  

2.1 
(0.6)a  

2.3 
(0.6)ab  

<0.0001 

Noise  2.4 
(0.5)  

2.9 
(0.4)  

3.7 
(0.5)ab  

4.1 
(0.5)ab  

4.9 
(0.3)abcd  

<0.0001 

a denotes a significant mean difference compared with FBP. 
b denotes a significant mean difference compared with ASiR-V. 
c denotes a significant mean difference compared with DLIR-L. 
d denotes a significant mean difference compared with DLIR-M. 

Table 3 
Objective evaluation of the lymph nodes using different reconstruction 
algorithms.   

FBP ASiR-V DLIR-L DLIR-M DLIR-H p-value 

Thick slice (2.5 mm) 
SLN  78.8 

(22.9)  
78.1 
(23.0)a  

79.4 
(22.9)ab  

79.1 
(22.9)b  

78.9 
(23.0)bc  

<0.0001 

NLN  13.9 
(4.3)  

12.3 
(4.4)a  

12.1 
(4.5)a  

11.6 
(4.6)abc  

11.0 
(4.8)abcd  

<0.0001 

SNRLN  7.7 
(3.0)  

9.3 
(3.6)a  

10.3 
(4.0)ab  

11.5 
(4.6)abc  

13.1 
(5.3)abcd  

<0.0001 

CNRLN  16.7 
(4.6)  

20.2 
(5.8)a  

22.3 
(6.6)ab  

25.0 
(7.8)abc  

28.5 
(9.5)abcd  

<0.0001 

Thin slice (0.625 mm) 
SLN  81.1 

(23.4)  
80.4 
(23.4)a  

80.6 
(23.3)  

80.3 
(23.2)a  

79.9 
(23.3)abc  

<0.0001 

NLN  16.8 
(4.3)  

14.4 
(4.2)a  

13.1 
(3.9)ab  

12.0 
(4.0)abc  

10.9 
(4.1)abcd  

<0.0001 

SNRLN  5.9 
(2.0)  

7.1 
(2.5)a  

8.6 
(3.1)ab  

10.1 
(3.8)abc  

12.3 
(4.8)c  

<0.0001 

CNRLN  12.6 
(3.0)  

15.2 
(3.9)a  

18.6 
(5.0)ab  

21.9 
(6.2)abc  

26.6 
(8.2)abcd  

<0.0001 

a denotes a significant mean difference compared with FBP. 
b denotes a significant mean difference compared with ASiR-V. 
c denotes a significant mean difference compared with DLIR-L. 
d denotes a significant mean difference compared with DLIR-M. 
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(Fig. 4 and Supplementary Table 3). Superior ICCs for lymph node 
sharpness are found in thin-slice images (ICC = 0.61, 95 % CI: 
0.52–0.68) compared with thick-slice images (ICC = 0.46, 95 % CI: 
0.35–0.56, p < 0.0001). Additionally, highly correlated ICCs of lymph 
node noise were observed on both thick and thin-slice images (ICC =
0.75 and 0.73, 95 % CI: 0.68–0.8 and 0.66–0.78, respectively, 
p > 0.001). 

Results showed significant differences between DLIR at all strengths 
and FBP in the lymph nodes and arterial and venous regions (p < 0.001) 
(Fig. 5). 

Furthermore, DLIR-L showed no significant difference compared to 
ASiR-V in cervical lymph nodes, while medium and high strengths 
exhibited statistically significant improvement (p < 0.05). In the ar-
teries, significant differences were observed between all datasets for FBP 
and ASiR-V (p < 0.01). However, in the venous regions, the FWHM of 
DLIR-L and DLIR-M was similar to that of ASiR-V. 

4. Discussion 

This study performed the first clinical evaluation of DLIR applied on 
cervical lymph nodes on head and neck CT study based on the standard- 
dose protocol. DLIR outperformed ASiR-V and FBP in terms of overall 
image quality, as evidenced by significant improvement in objective and 
subjective outcomes. DLIR is a newly developed deep neural network- 
based reconstruction engine that is effective in reducing image noise 
while maintaining spatial resolution, texture, and sharpness in the brain, 
chest, and abdominal images based on previous clinical studies [8–10]. 
Furthermore, our study revealed that DLIR provided superior image 
quality for head and neck CT studies, which is consistent with the 
findings of earlier research. 

The IR-based algorithm can reduce the radiation dose without 
degrading image quality compared with FBP, making it a routine choice 
for CT image reconstruction [11]. However, IR has its limitations such as 
diminished lesion detectability due to higher blending strength causing 
texture degradation [11]. DLIR, developed using deep neural networks 
and trained on high-dose FBP data, addresses these issues without 
sacrificing image quality [6]. However, IR has several limitations, which 
include decreased lesion detectability due to a higher blending strength 
leading to texture degradation [12]. DLIR, which was trained based on 
high-dose FBP data via the utilization of deep neural networks, over-
comes such concerns without compromising image quality [7]. 

In clinical settings, three selectable strengths of DLIR with different 
denoise levels from low, medium, to high were used. Our study found 
that DLIR-M and DLIR-H produced the best image quality among all 
datasets, demonstrating statistically significant improvements in objec-
tive and subjective outcomes. Similar results have been reported in 
previous studies focusing on other body regions [9,10,13–17], including 

Fig. 3. Lymph node evaluation: noise, SNR, and CNR of the lymph nodes at 2.5-mm (upper row) and 0.625-mm (lower row) slice thickness.  

Table 4 
Noise reduction rate and differences in SNR and CNR.    

DLIR-L DLIR-M DLIR-H 

Thick slice (2.5 mm) 
FBP Noise (%)  14.2 

(6.9)  
18.6 
(9.4)  

23.1 
(12.7) 

SNR (%)  33.7 
(10.1)  

49.0 
(17.0)  

69.5 
(27.2) 

CNR (%)  33.4 
(10.1)  

48.9 
(17.1)  

69.7 
(27.4) 

ASiR-V Noise (%)  3.8 
(2.9)  

7.3 
(5.5)  

12.5 
(9.6) 

SNR (%)  11.5 
(6.1)  

24.1 
(10.8)  

41.0 
(18.5) 

CNR (%)  10.5 
(6.0)  

23.2 
(10.8)  

40.3 
(18.5) 

Thin slice (0.625 mm) 
FBP Noise (%)  22.5 

(7.4)  
29.1 
(10.2)  

35.8 
(13.0) 

SNR (%)  45.8 
(10.5)  

70.5 
(18.1)  

106.2 
(32.6) 

CNR (%)  46.4 
(10.0)  

71.6 
(17.4)  

108.0 
(31.9) 

ASiR-V Noise (%)  9.5 
(4.5)  

17.4 
(7.6)  

25.5 
(10.9) 

SNR (%)  22.0 
(6.8)  

42.6 
(12.6)  

72.3 
(24.4) 

CNR (%)  21.9 
(6.4)  

42.8 
(12.1)  

73.0 
(23.8)  
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noncontrast-enhanced head CT images for trauma patients suspected of 
intracranial hemorrhage [16]. Further, Kim et al. revealed that images 
reconstructed with medium- and high-strength DLIR have a better image 
quality with reduced noise and artifacts [17]. Our findings are in line 
with those of prior research, indicating that DLIR holds significant po-
tential as an advanced reconstruction method for diagnostic head and 
neck CT images. 

In this study, we utilized images reconstructed with 0.625-mm slice 

thickness to simulate reduced-dose protocol while maintaining diag-
nostic accuracy. DLIR consistently provided superior SNR and CNR 
values even with increased noise in thin-slice images. Moreover, me-
dium- and high-strength DLIR demonstrated similar or better SNR and 
CNR than conventional reconstruction algorithms applied to thick-slice 
images. Sun et al. [9] showed that 0.625-mm thin-slice DL-H images 
enhanced lesion detection and produced comparable image noise to 
routine 5-mm ASiR-V images. The head and neck region contains 

Fig. 4. Lymph node evaluation. Subjective score for sharpness and noise at 2.5-mm (a) and 0.625-mm (b) slice thickness provided by two readers.  

Fig. 5. Sharpness of the lymph nodes with peripheral arteries and veins between DLIR and FBP (upper row) and ASiR-V (lower row).  
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numerous small anatomically important structures, making thinner-slice 
images preferable for more precise diagnoses in CT images. Njølstad 
et al. found that DLIR achieved equal or superior abdominal image 
quality in 0.625-mm slices than in 2.5-mm slices using the standard 
ASiR-V algorithm [12]. Our findings suggest that DLIR can be effectively 
employed in reduced-dose protocols to decrease radiation exposure, 
particularly for pediatric and oncology patients who require frequent 
follow-up CT examinations. This has important clinical implications, as 
it enables more accurate diagnoses and monitoring while minimizing 
radiation exposure-associated potential risks. 

In our clinical assessment, both readers were agreed that DLIR had 
superior quality for neck lymph node images and overall CT images 
based on visual scores. The ICC results indicated substantial agreement 
between readers when assessing image noise (ICC = 0.79) and reason-
able agreement for artifact and image quality (ICC = 0.31 and 0.48, 
respectively). Jensen et al. reported that a reviewer observed minor 
blurring of extremely small lesions and vessels with high-strength DLIR 
[14]. Herein, the reader who awarded the highest rating for overall 
image quality and lymph node sharpness using DLIR-M made a similar 
observation. Another study also reported that increasing the strength of 
DLIR resulted in slightly blurred lesions measuring < 5 mm on abdom-
inal CT images [18]. While studies have reported slightly blurred lesions 
with increased DLIR strength, others have revealed that high-strength 
DLIR yields the best visual scores and improved lesion conspicuity 
compared with different blending levels of ASiR-V [8,9,15,19]. This 
indicates that the overall benefits in terms of image quality and lesion 
detection can significantly contribute to more accurate diagnoses and 
treatment planning for patients while some minor trade-offs may exist 
with higher DLIR strengths. 

In general, DLIR enhances the lesion visibility on diagnostic images 
for radiologists, particularly those of cervical lymph nodes that are often 
difficult to interpret due to adjacent metal implants. Since several 
studies only rely on visual assessment for evaluating sharpness, we 
employed FWHM to assess the margin of lymph nodes and peripheral 
vessels without reader bias. Most studies compared the sharpness be-
tween DLIR and ASiR-V rather than FBP; hence, we investigated dif-
ferences in FWHM between DLIR and both reconstruction algorithms. 
DLIR-H and DLIR-M had superior performance in lymph nodes. How-
ever, there were no significant difference between DLIR-L and ASiR-V. 
These findings were in accordance with those of a previous study 
showing that DLIR had an unchanged or sharper peripancreatic vessel 
and common bile duct margins [8]. Additionally, higher ICCs of lymph 
node sharpness were demonstrated on thin-slice images compared with 
thick-slice images, indicating that reduced-dose protocol using DLIR can 
improve margin delineation. DLIR had a clearer morphological infor-
mation on neck lymph nodes. Another study performed by the same 
team showed that with an increasing dose-reduction rate, the differences 
were more significant via visual assessment. This finding was in accor-
dance with the results of this study [20]. In summary, the current study 
highlights significant improvements in the quality of cervical lymph 
node images on CT using medium- and high-strength DLIR. 

We acknowledge the overarching importance of lymph node 
detectability and characterization in clinical practice while focusing on 
the comparison of the performance between different reconstruction 
algorithms in terms of image quality. The metrics evaluated in this 
study, such as noise reduction and edge sharpness, lay the groundwork 
for any subsequent clinical evaluations. We found no significant differ-
ences in lymph node sizes (5.21 ± 0.09, p = 0.66) using these recon-
struction algorithms, but we evaluated image-edge sharpness, which 
plays an essential role in the clinician’s ability to accurately differentiate 
and characterize lymph nodes. Understanding these factors significantly 
enhances the diagnostic use of cervical CT scans. However, further 
research is required to directly assess the effects of these algorithms on 
lymph node detectability and characterization in various clinical 
scenarios. 

This retrospective study had several limitations. First, it included a 

relatively small sample size, and all data were collected from a single 
center. Second, there was sex bias that might require further investiga-
tion. Third, only the standard-dose protocol was used in this study, and 
the use of the reduced-dose protocol in clinical practice should be 
further evaluated. Additionally, additional readers are necessary to 
validate the diagnostic acceptability and confidence of precise clinical 
staging because this would help determine the clinical effect of our 
findings on patient management and outcomes. Furthermore, DECT- 
specific images were frequently used to assist diagnosis. The current 
study only demonstrated the results of 120-kVp-like images because 
120-kVp-like images remain the primary choice for diagnosis. An 
investigation into image quality, specifically concerning low-keV images 
(at 60 keV) and iodine maps, was also conducted across all reconstruc-
tion algorithms for lymph nodes. These results have been appended to 
the supplementary figure (Supplementary Figure 1) and were closely 
aligned to 120-kVp-like images. 

5. Conclusion 

DLIR-M and DLIR-H outperformed conventional reconstruction al-
gorithms in assessing the image quality of cervical lymph nodes on CT. 
In addition, thin-slice images reconstructed using DLIR-M and DLIR-H 
had similar quality to and better visual scores than thick-slice images 
reconstructed using FBP or ASiR-V. This advancement suggests that dose 
reduction can be implemented in clinical settings without sacrificing 
image quality in the future, ultimately enhancing the accuracy of cer-
vical lymph node evaluations. 

Funding statement 

This study was financially supported by Ministry of Science and 
Technology of Taiwan. Grant numbers: MOST 111-2314-B-182A-037 
and MOST 111–2314-B-182A-041. 

Ethical statement 

This retrospective study was approved by the Research Ethics 
Committee of Chang Medical Foundation (approval number: 
2019019900B0). The requirement of informed consent was waived 
because of the retrospective nature of this study. 

Declaration of Competing Interest 

Author Ai-Chi Chen and Chia-Wei Lee were employed by General 
Electric (GE) Healthcare. The remaining authors declare no conflict of 
interest. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.ejro.2023.100534. 

References 

[1] P. Veit, et al., Lymph node staging with dual-modality PET/CT: enhancing the 
diagnostic accuracy in oncology, Eur. J. Radio. 58 (3) (2006) 383–389, https://doi. 
org/10.1016/j.ejrad.2005.12.042. 

[2] A. McErlean, et al., Intra- and interobserver variability in CT measurements in 
oncology, Radiology 269 (2) (2013) 451–459, https://doi.org/10.1148/ 
radiol.13122665. 
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