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There is considerable evidence that ethanol (EtOH) potentiates γ-aminobutyric acid type
A receptor (GABAAR) action, but only GABAARs containing δ subunits appear sensitive to
low millimolar EtOH. The α4 and δ subunits co-assemble into GABAARs which are rela-
tively highly expressed at extrasynaptic locations in the dentate gyrus where they mediate
tonic inhibition. We previously demonstrated reversible- and time-dependent changes in
GABAAR function and subunit composition in rats after single-dose EtOH intoxication. We
concluded that early tolerance to EtOH occurs by over-activation and subsequent inter-
nalization of EtOH-sensitive extrasynaptic α4βδ-GABAARs. Based on this hypothesis, any
highly EtOH-sensitive GABAARs should be subject to internalization following exposure
to suitably high EtOH doses. To test this, we studied the GABAARs in mice with a global
deletion of the α4 subunit (KO). The dentate granule cells of these mice exhibited greatly
reduced tonic currents and greatly reduced potentiation by acutely applied EtOH, whereas
synaptic currents showed heightened sensitivity to low EtOH concentrations. The hip-
pocampus of naive KO mice showed reduced δ subunit protein levels, but increased α2,
and γ2 levels compared to wild-type (WT) controls, suggesting at least partial compensa-
tion by these subunits in synaptic, highly EtOH-sensitive GABAARs of KO mice. In WT
mice, cross-linking and Western blot analysis at 1 h after an EtOH challenge (3.5 g/kg,
i.p.) revealed increased intracellular fraction of the α1, α4, and δ, but not α2, α5, or γ2
subunits. By contrast, we observed significant internalization of α1, α2, δ, and γ2 sub-
units after a similar EtOH challenge in KO mice. Synaptic currents from naïve KO mice
were more sensitive to potentiation by zolpidem (0.3 μM, requiring α1/α2, inactive at α4/5
GABAARs) than those from naïve WT mice. At 1 h after EtOH, synaptic currents of WT
mice were unchanged, whereas those of KO mice were significantly less sensitive to
zolpidem, suggesting decreases in functional α1/2βγ GABAARs. These data further sup-
port our hypothesis that EtOH intoxication induces GABAAR plasticity via internalization of
highly EtOH-sensitive GABAARs.

Keywords: tolerance, dependence, withdrawal, internalization, dentate gyrus, synaptic transmission, alcohol,

receptor trafficking

INTRODUCTION
The mammalian γ-aminobutyric acid type A receptors
(GABAARs) are heteropentameric chloride channel proteins
formed from a family of 19 related subunits, named α1–6, β1–3,
γ1–3, δ, ε, θ, π, and ρ1–3 (Olsen and Sieghart, 2008). Synap-
tic GABAARs mediate the bulk of fast (phasic) inhibition, while
extrasynaptic GABAARs provide a sustained (tonic) inhibitory
influence on brain neurotransmission. GABAARs are important
targets for drugs such as benzodiazepines (BZs), barbiturates,
neurosteroids, ethanol (EtOH), other general anesthetics, and a
number of picrotoxin-like convulsants. Differences in GABAAR
subunit composition are major determinants of channel kinet-
ics, sensitivity to GABA, and cellular localization to synaptic and

extrasynaptic membranes (Olsen and Sieghart, 2009). For exam-
ple, the presence of α4 and δ subunits in GABAARs results in their
extrasynaptic localization (Nusser et al., 1998; Wei et al., 2003;
Liang et al., 2006), sensitivity to low concentrations of ambient
GABA (Wei et al., 2003; Chandra et al., 2006), insensitivity to
the classical BZs such as diazepam, and responsiveness to low
millimolar concentrations of EtOH (Sundstrom-Poromaa et al.,
2002; Wallner et al., 2003; Wei et al., 2004; Liang et al., 2008).
EtOH potentiation of extrasynaptic GABAARs is not universally
accepted, several labs have reported a lack of EtOH potentia-
tion of recombinant δ subunit-containing GABAARs (Borghese
and Harris, 2007; Korpi et al., 2007). Also, at least some of
EtOH’s acute effects on GABAergic transmission are mediated
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by enhancement of presynaptic GABA release (Roberto et al.,
2006).

It is widely accepted that an important aspect of EtOH’s acute
action on the brain is enhancement of inhibition mediated by
GABAARs, while withdrawal involves a reduction in GABAAR-
mediated inhibition (Kumar et al., 2009). A well-substantiated
theory of how repeated use of EtOH leads to dependence is that
the chronic repetition of the mini-withdrawals leads to a persis-
tent state of withdrawal (alcohol withdrawal syndrome, AWS) in
which the withdrawals are more severe and long-lasting, even-
tually permanent (Becker, 2008). Many of the behavioral and
pharmacological changes associated with AWS and dependence
may be explained by alterations in the function of GABAARs
(Kumar et al., 2009). Chronic EtOH, particularly chronic intermit-
tent EtOH (CIE) administration in rodents produces long-lasting
alterations in GABAAR subunit composition, localization, and
function (Mhatre and Ticku, 1992; Devaud et al., 1997; Cagetti
et al., 2003; Liang et al., 2006). Even a single intoxicating EtOH
dose is capable of inducing such alterations, albeit fully reversible
(Liang et al., 2007). However, the cellular and molecular mech-
anisms behind EtOH-induced GABAAR plasticity are not well
understood.

Here we studied the early events in the reversible GABAAR
plasticity produced by EtOH intoxication. We hypothesized that
early tolerance to EtOH occurs by over-activation and subsequent
internalization of EtOH-sensitive extrasynaptic α4βδ-GABAARs
(Liang et al., 2007; Shen et al., 2011). Based on this hypothesis, any
highly EtOH-sensitive GABAARs should be subject to internaliza-
tion following exposure to moderate-high EtOH doses. To test this,
we examined the biochemistry and pharmacology of GABAARs in
mice with a global deletion of the α4 subunit (KO). We previously
demonstrated that dentate granule cells (DGCs) of these mice
exhibit greatly reduced tonic currents (Chandra et al., 2006; Liang
et al., 2008) and greatly reduced potentiation by acutely applied
EtOH (Liang et al., 2008). However, behavioral responses of KO
mice to acute EtOH are almost unchanged (Chandra et al., 2008);
this may be attributed to the heightened sensitivity of synaptic cur-
rents to low EtOH concentrations (Liang et al., 2008). Therefore,
we examined the function, pharmacology and subunit composi-
tion of synaptic GABAARs before and after EtOH intoxication in
KO mice and their wild-type (WT) counterparts. Our data sug-
gest that genetic deletion of α4 subunits results in compensatory
alterations in synaptic GABAAR subunits which undergo rapid
internalization following EtOH intoxication.

MATERIALS AND METHODS
MICE
The α4 KO and WT littermate control mice were produced from
heterozygous breeding pairs on a C57BL/6J N7 genetic back-
ground. Details of mouse production and genotyping have been
previously reported (Chandra et al., 2006). The Institutional Ani-
mal Care and Use Committee approved all animal experiments.
Only adult male (3–9 months old) mice were used in the exper-
iments described here. Animals of different age were distributed
randomly across the different experiments and both biochem-
ical and electrophysiological experiments were often conducted
on different hippocampal slices from the same animal. In some

experiments, mice received an injection of pyrazole (68 mg/kg,
i.p., Sigma, St Louis, MO, USA) 30 min prior to injection of saline
or EtOH (3.5 g/kg, i.p.).

BRAIN SLICE PREPARATION AND WESTERN BLOTTING
Coronal slices (400 μm thick) of mouse dorsal hippocampus
were obtained using standard techniques (Spigelman et al., 2003).
Briefly, mice were anesthetized with isoflurane, decapitated, and
sections obtained using a vibrating blade microtome (VT1200S,
Leica Microsystems, Bannockburn, IL, USA) while immersed in
cold (0–4˚C) artificial cerebrospinal fluid (ACSF) composed of
(in mM): NaCl, 125; KCl, 2.5; CaCl2, 2; MgCl2, 2; NaHCO3, 26
and d-glucose, 10. The ACSF was continuously bubbled with a
95/5% mixture of O2/CO2 to ensure adequate oxygenation of
slices and a pH of 7.4. The dentate gyrus and CA1 regions were
microdissected from individual sections, and incubated in a small
volume chamber with or without the protein cross-linking reagent,
bis(sulfosuccinimidyl)suberate (BS3) in ACSF at 4˚C according to
(Grosshans et al., 2002). BS3 is bifunctional and cross-links all pro-
teins exposed to the medium, i.e., cell-surface proteins. These large
complexes do not enter the gel and are retained at the top; thus
the band of protein at the identified Mr corresponds to that frac-
tion that is intracellular only. The difference between that value
and the amount from an equivalent adjacent slice, untreated, and
thus total, represents the surface pool. After incubation of brain
sections in the absence (total) or presence (intracellular) of BS3,
sections were washed three-times with Tris wash buffer (pH 7.6)
and homogenized in a buffer composed of 1% SDS, 1 mM EDTA,
and 10 mM Tris, pH 8.0. Protein aliquots (40 μg) from samples
were separated on 10% SDS-polyacrylamide gel electrophoresis
under reducing conditions using the BioRad Mini-Protean 3 Cell
system. Proteins were transferred to PVDF membranes (Immun-
Blot PVDF membrane, 0.2 mm, BioRad) by wet transfer (BioRad,
Hercules, CA, USA). Blots were probed with anti-peptide α1 (pro-
prietary N-terminus sequence), α2 (322–357), α4 (379–421), α5
(337–388), γ1 (1–39), γ2 (319–366), or δ (1–44) antibodies (all
at 1 mg/ml), followed by HRP-conjugated anti-rabbit secondary
antibody (1:5000 dilution) and bands detected by ECL detection
kit (Amersham Pharmacia UK), apposed to X-ray film under non-
saturating conditions. The α1 GABAAR antibody was obtained
from Novus Biologicals (Littleton, CO, USA). β-actin (Sigma, St.
Louis, MO, USA) or GAPDH (Santa Cruz Biotech, Santa Cruz,
CA, USA) antibodies were used as a loading controls. Bands
from different samples corresponding to the appropriate subunit
were analyzed and absorbance values compared by densitometry
using ImageJ (NIH, Bethesda, MD, USA). Group differences were
evaluated by unpaired t -test. p < 0.05 was considered statistically
significant.

ELECTROPHYSIOLOGICAL RECORDINGS
Whole-cell patch clamp recordings were obtained from cells
located in the DGC layers at 34 ± 0.5˚C during perfu-
sion with ACSF using patch pipettes containing (in mM):
cesium gluconate, 135; MgCl2, 2; CaCl2, 1; ethylene glycol-
bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid, 11; N-2-
hydroxyethylpiperazine-N′-2-ethanesulfonic acid, 10; K2ATP, 2;
Na2GTP, 0.2; pH adjusted to 7.25 with CsOH. GABAAR-mediated

Frontiers in Neuroscience | Neuropharmacology September 2011 | Volume 5 | Article 110 | 2

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuropharmacology
http://www.frontiersin.org/Neuropharmacology/archive


Suryanarayanan et al. Ethanol and GABA receptor plasticity

mIPSCs were pharmacologically isolated by adding tetrodotoxin
(TTX, 0.5 μM), D(-)-2-amino-5-phosphonopentanoate (APV,
40 μM), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 μM),
and CGP 54626 (1 μM) to the ACSF from stock solutions. Stock
solutions of CNQX were made with pure dimethyl sulfoxide
(DMSO). Final concentration of DMSO did not exceed 42 μM
in the recording chamber. Signals were recorded in voltage-clamp
mode with an amplifier (Axoclamp-2B, Molecular Devices, Sun-
nyvale, CA, USA). Whole-cell access resistances were in the range
of 8–20 MΩ before electrical compensation by ∼70%. During
voltage-clamp recordings,access resistance was monitored by mea-
suring the size of the capacitative transient in response to a 5-
mV step command, and experiments were abandoned if changes
>20% were encountered. At least 10 min was allowed for equili-
bration of the pipette solution with the intracellular milieu before
commencing recordings. Data were acquired with pClamp 9 soft-
ware (Molecular Devices), digitized at 20 kHz (Digidata 1200B,
Molecular Devices) and analyzed using the Clampfit software
(Molecular Devices) and the Mini Analysis Program (versions
5.2.2 and 5.4.8, Synaptosoft).

DETECTION AND ANALYSIS OF mIPSCs
The recordings were low-pass filtered off-line (Clampfit software)
at 2 kHz. The mIPSCs were detected with threshold criteria of:
5 pA, amplitude and 20 fC, charge transfer. Frequency of mIPSCs
was determined from all automatically detected events in a given
100 s recording period. For kinetic analysis, only single event mIP-
SCs with a stable baseline, sharp rising phase, and exponential
decay were chosen during visual inspection of the recording trace.
Double and multiple peak mIPSCs were excluded. The mIPSC
kinetics were obtained from analysis of the averaged chosen single
events (>120 events/100 s recording period) aligned with half rise
time in each cell. Decay time constants were obtained by fitting a
double exponential to the falling phase of the averaged mIPSCs.
The investigator performing the recordings and mIPSC analysis
was blind to the mouse genotypes.

RESULTS
COMPENSATORY CHANGES IN GABAAR SUBUNIT LEVELS IN KO MICE
We first studied compensatory changes in GABAAR subunit levels
in the microdissected DG/CA1 areas of hippocampal slices from
untreated α4 KO mice compared to their WT counterparts. The
DG/CA1 area was kept intact to maximize tissue yield for the
protein assays and because previous studies demonstrated similar
EtOH-induced alterations in the two hippocampal regions (Liang
et al., 2007). As illustrated in Figure 1, KO mice showed significant
decreases in both α4 and δ subunit levels (p < 0.05). By contrast,
significant increases were observed in the α2 (p = 0.032) and γ2
(p = 0.007) subunit levels. Although increases in γ2 subunits con-
firmed previous results (Liang et al., 2008), the compensatory
increases in α2 subunits were surprising given the normally limited
abundance of the predominantly extrasynaptic α4 and δ subunits
in WT mice. There was considerable variability in the γ1 sub-
unit expression and the apparent increases did not reach statistical
significance (p = 0.28). Although compensatory increases in α5
subunit were expected given its relatively high abundance in the
extrasynaptic GABAARs of the CA1 region (Caraiscos et al., 2004),

FIGURE 1 | Altered hippocampal GABAAR subunit levels in untreated

a4 KO. The hippocampal CA1/dentate gyrus (DG) regions were
microdissected from untreated WT and KO mice and prepared for Western
blot detection using appropriate antibodies. (A) Example blots of
differences in total protein levels of select GABAAR subunits between WT
and KO mice. Absorbance values were first normalized to the loading
control (β-actin or GAPDH) signal and then expressed as % of total WT
signal from the same gel. (B) Summary graph of differences in GABAAR
subunit levels between WT and KO mice. Data are mean ± SEM from
(n = 4–12 mice/group). †p < 0.05 (unpaired t -test) compared to WT mice.

these were not observed, nor was there any significant change in
α1 subunit levels (p = 0.25).

ALTERED IDENTITY OF GABAAR SUBUNITS INTERNALIZED BY EtOH
TREATMENT IN α4 KO MICE
We next compared the effects of in vivo EtOH exposure (3.5 g/kg,
i.p.) on the intracellular levels of GABAAR subunits between
WT and KO mice. Since mice rapidly metabolize EtOH, all mice
were pretreated with the alcohol dehydrogenase inhibitor, pyrazole
(68 mg/kg, i.p.) 30 min prior to saline or EtOH treatment. Mice
in both EtOH-treated groups maintained loss of righting reflex
(LORR) by the time isoflurane anesthesia was administered (50–
59 min post-EtOH). By comparing blots of microdissected slices
incubated with or without the membrane-impermeable cross-
linking reagent BS3, we were able to identify the intracellular pools
of GABAAR subunits (Grosshans et al., 2002). Cell-surface pro-
teins form high molecular weight aggregates with BS3, such that
they remain at the top of the gel. By contrast, intracellular proteins
are not accessed by the membrane-impermeant reagent and thus
can be quantified through Western blot analysis.

As illustrated in Figure 2, analyses of the intracellular levels
of WT EtOH-treated, compared to saline-treated mice, revealed
a significant increase in the internal levels of α1 (p = 0.02), α4
(p < 0.01), and δ (p = 0.03) subunits, whereas α2, α5, and γ2
subunits remained unchanged (p > 0.05). These data are con-
sistent with the rapid internalization of α4/δ subunit-containing
GABAARs previously observed after EtOH intoxication in the
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FIGURE 2 | EtOH-induced internalization of α1, α2, and δ subunits in the

hippocampus of α4 KO mice. (A) Representative gels from the hippocampal
CA1 and dentate gyrus (DG) regions microdissected from WT and KO mice at
1 h after vehicle (saline) or EtOH (3.5 g/kg, i.p.) injection. Note the increases in
the intracellular fraction of α1, α4, and δ subunits (*) after EtOH treatment in
WT mice. The α4 signal is absent while α5 and δ signal reduced in KO mice. In
comparison to vehicle treatment, EtOH treatment induces internalization of
α1, α2, δ and γ2 subunits (*) in tissue collected from KO mice at 1 h after
treatment. EtOH treatment also caused a significant increase in internalization
of α2 subunits in KO mice (†) as compared to EtOH-treated WT mice. (B)

Similar experiments in a different gel illustrate internalization of the γ2 subunit
(*) at 1 h after EtOH treatment in KO but not WT mice. (C) Example gel
illustrating the lack of α5 subunit internalization after EtOH treatment of WT or
KO mice. (D) Summary graph of changes in internal subunit levels of WT
(open bars) and KO (closed bars) mice 1 h after EtOH intoxication relative to
vehicle-treated mice (horizontal 100% line). Data are mean ± SEM (n = 4–12
mice/group). The α4 signal was not detected (0%) in the α4 KO samples.
*p < 0.05 (unpaired t -test) compares EtOH-treated with vehicle-treated mice;
†p < 0.05 (unpaired t -test) compares WT EtOH-treated to α4KO EtOH-treated
groups.

rat (Liang et al., 2007). The EtOH-induced increases in inter-
nal α1 subunit levels are consistent with the presence of EtOH-
sensitive α1βδ-GABAARs localized to hippocampal interneuron
subpopulations in WT and α4KO mice (Glykys et al., 2007). In
EtOH-treated compared to saline-treated KO mice there was a
significant increase in α1 (p = 0.01), α2 (p = 0.01), δ (p = 0.02),
and γ2 (p = 0.046) subunits, while α5 (p > 0.05) was unchanged
and α4 subunit was not detected. The intracellular pool of α2
was significantly increased in KO EtOH-treated mice compared
to WT EtOH-treated mice (p = 0.02). Consistent with our pre-
vious findings in rats (Liang et al., 2007), we also demonstrated
a lack of EtOH-induced α5 subunit internalization in WT and
KO mice (Figure 2C). These data suggested that in the absence
of the highly EtOH-sensitive α4/δ subunit-containing GABAARs,
EtOH intoxication results in the internalization of α1, α2, δ and
γ2 subunit-containing GABAARs in KO mice.

ALTERED ZOLPIDEM SENSITIVITY OF SYNAPTIC GABAARS IN α4 KO
MICE
Based on the compensatory increases in α2 and γ2 subunits in
α4 KO mice (Figure 1), we hypothesized that synaptic GABAARs
containing these subunits should also exhibit increased sensitiv-
ity to potentiation by benzodiazepine site ligands. To test this, we
compared the responsiveness of mIPSCs in WT and KO mice to
zolpidem (0.3 μM). Zolpidem exhibits highest affinity for α1βγ2
GABAARs; its affinity for α2/3βγ2 GABAARs is 2–10-fold lower;
its affinity for α4/5-containing GABAARs is >1000-fold lower

(Wafford et al., 1993; Möhler et al., 2000). In hippocampal neu-
rons of α1 KO mice, 0.3 μM zolpidem still potentiates mIPSCs by
prolonging their decay time (Goldstein et al., 2002). Thus, zolpi-
dem at 0.3 μM is expected to potentiate both α1βγ2 and α2βγ2
populations of GABAARs. We further hypothesized, based on the
observed EtOH-induced internalization of α1,α2, and γ2 subunit-
containing GABAARs in α4 KO mice, that zolpidem potentiation
of synaptic GABAARs should be selectively reduced by EtOH
treatment in KO mice.

Analysis of mIPSC kinetics revealed differences between saline-
treated WT and KO mice analogous to those reported in detail
previously (Chandra et al., 2006; Liang et al., 2008). The main dif-
ferences were decreased amplitude and frequency of mIPSCs in
KO mice (Table 1). For both phenotypes, the mIPSC kinetics did
not significantly differ between saline- and EtOH-treated mice,
except for a post-EtOH increase in mIPSC decay τ2 of WT mice.

In our recording conditions of 34.5˚C the main effect of zolpi-
dem was an increase in mIPSC decay time for both WT and KO DG
cells (Table 2). As hypothesized, we observed significantly greater
potentiation of mIPSCs by zolpidem in recordings from saline-
treated KO mice compared to saline-treated WT mice (Table 2 and
Figures 3A–C). Further analysis revealed that zolpidem potentia-
tion of mIPSCs was unchanged at 1 h post-EtOH treatment in WT
mice, but was significantly reduced at 1 h post-EtOH treatment
in KO mice (Table 2 and Figures 3A–C). These data provided
pharmacological evidence that the synaptic GABAARs in DGCs
of α4 KO mice exhibit increased benzodiazepine sensitivity and
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Table 1 | Kinetic properties of mIPSCs in DG cells from saline- and

EtOH-exposed WT and KO mice.

WT KO

Post-saline Post-EtOH Post-saline Post-EtOH

Amplitude

(pA)

20.9 ± 1.0 19.0 ± 1.6 15.0 ± 1.8† 15.8 ± 2.8

Rise time

(ms)

0.7 ± 0.1 0.6 ± 0.1 1.4 ± 0.4 0.8 ± 0.2

Decay τ1

(ms)

8.1 ± 0.4 7.7 ± 0.6 9.7 ± 2.2 8.5 ± 1.5

Decay τ2

(ms)

12.3 ± 1.4 18.1 ± 1.9∗ 16.3 ± 2.7 18.3 ± 3.0

Area (fC) 291.3 ± 24.7 269.1 ± 21.1 263.9 ± 33.4 290.9 ± 45.7

Frequency

(Hz)

12.3 ± 0.5 11.7 ± 0.5 10.2 ± 0.4† 10.2 ± 1.2

n 9 15 6 5

*p < 0.05 from post-saline.
†p < 0.05 from similarly treated WT.

All data are expressed as % ± SEM.

Table 2 | Zolpidem (0.3 μM) effects on mIPSC kinetics in DG cells from

saline- and EtOH-exposed WT and KO mice.

WT KO

Post-saline Post-EtOH Post-saline Post-EtOH

Amplitude 102.3 ± 0.8 100.8 ± 0.4 101.6 ± 7.5 106.3 ± 0.5

Rise time 126.2 ± 9.9 160.7 ± 16.4 168.6 ± 32.1 189.0 ± 41.4

Decay τ1 156.9 ± 17.5 141.1 ± 11.8 279.9 ± 49.1† 167.8 ± 10.6*

Decay τ2 224.2 ± 85.9 216.1 ± 61.2 183.5 ± 14.5 156.0 ± 11.5

Area 142.4 ± 10.9 132.3 ± 8.1 213.4 ± 2.8† 150.7 ± 4.0*

Frequency 100.7 ± 1.3 100.3 ± 2.3 99.7 ± 3.4 105.6 ± 1.1

n 6 5 3 4

*p < 0.05 from post-saline.
†p < 0.05 from WT.

All data are expressed as % ±SEM of a pre-drug parameter.

are rapidly internalized after exposure to high EtOH concentra-
tions.

DISCUSSION
Here we demonstrate that global deletion of the α4 subunit pro-
duces compensatory alterations in the subunit composition and
function of synaptic GABAARs. Specifically, loss of the α4 subunit
leads to a reduction in δ subunit levels. Normally these subunits co-
assemble into peri- and extra-synaptically located α4βδ-GABAARs
(Nusser et al., 1998; Wei et al., 2003; Liang et al., 2006) which
exhibit low conductance, high affinity for GABA (Wei et al., 2003;
Chandra et al., 2006), insensitivity to BZs, and sensitivity to low
millimolar concentrations of EtOH (Sundstrom-Poromaa et al.,
2002; Wallner et al., 2003; Wei et al., 2004; Liang et al., 2008). Con-
sistent with the extrasynaptic localization and functional proper-
ties of α4βδ-GABAARs, previous studies demonstrated that DGCs

FIGURE 3 | Altered enhancement of mIPSCs by zolpidem in DG cells

from α4 KO mice. Examples of averaged mIPSCs before and after
zolpidem (ZP, 0.3 μM) application in DG cells from saline- (upper traces) and
EtOH-treated (lower traces) WT (A) and α4 KO (B) mice. Slices were
prepared at 50–60 min after EtOH administration. Cells were
voltage-clamped at 0 mV and averaged mIPSCs were aligned at baseline.
(C): summary graph of mIPSC potentiation by zolpidem in WT and KO mice.
Note the unchanged mIPSC potentiation by zolpidem at 1 h after EtOH
administration in WT mice. Also note the increased mIPSC potentiation in
saline-treated KO mice and decreased mIPSC potentiation in EtOH-treated
KO mice. *p < 0.05 from other groups (one-way RM ANOVA).

of mice with global deletions of either δ or α4 subunits exhibit
greatly reduced tonic inhibitory currents (Chandra et al., 2006;
Liang et al., 2008) and reduced sensitivity to potentiation by acute
EtOH (Glykys et al., 2007; Liang et al., 2008). Surprisingly, the
synaptic currents in DGCs of δ KO (Liang et al., 2006), and
particularly α4 KO (Liang et al., 2008) mice exhibit enhanced
sensitivity to low concentrations of EtOH. This enhanced synap-
tic responsiveness provides a plausible physiological explanation
for the apparently normal behavioral responses to acute EtOH of
these KO mice, despite clear reductions in EtOH-enhanced tonic
inhibitory currents in hippocampal neurons (Mihalek et al., 2001;
Chandra et al., 2008). It must be noted that the normal responses
to acute EtOH do not extend to chronic EtOH consumption or
the more long-term effects of EtOH intoxication and subsequent
withdrawal symptoms which are attenuated in δ KO mice.

Global loss of the δ subunit leads to compensatory decreases
in α4 and increases in γ2 subunit protein levels (Tretter et al.,
2001; Peng et al., 2002). Increased co-immunoprecipitation of
these remaining two subunits in δ KO mice (Korpi et al., 2002)
suggests formation of functional synaptic GABAARs, which might
be the cause of an enhanced responsiveness to low concentrations
of EtOH (Liang et al., 2006). This conclusion is supported by the
finding that rats withdrawn from acute or chronic EtOH admin-
istration exhibit marked increases in α4 and γ2 subunit protein
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levels, and increased sensitivity of synaptic GABAARs to low con-
centrations of acute EtOH (Liang et al., 2007). Chronic EtOH
administration also results in large increases in α4 subunit incor-
poration within GABAergic synapses of DGCs (Liang et al., 2006).
Here we demonstrate that global deletion of the α4 subunit leads
to compensatory decreases in δ and increases in α2 and γ2 subunit
protein levels (Figure 1). These data confirm our previous findings
of selective increases in γ2 subunits in hippocampus and thalamus,
but not cortex of α4 KO mice (Liang et al., 2008). Interestingly, we
did not observe compensatory increases in the α5 subunit levels in
the hippocampus. This subunit is normally expressed at relatively
high levels in the extrasynaptic GABAARs of the CA1 region, which
contribute to tonic inhibition (Caraiscos et al., 2004). Notably, α5
subunit-containing GABAARs also contribute to tonic inhibition
in DG neurons because the reduced tonic currents in δ subunit
KO are completely eliminated in the δ/α5 double knockout mice
(Glykys et al., 2008). The previously demonstrated large decreases
in tonic currents of DG neurons from α4 KO mice (Liang et al.,
2008) are consistent with the lack of compensatory increases in α5
subunit levels observed here. It would be interesting to determine
if the magnitude of tonic currents in the CA1 region are affected
by the loss of the α4 subunit.

An obvious question is whether the compensatory alterations
in subunit composition are directly responsible for the altered
function and pharmacological properties of synaptic GABAARs
in α4 KO mice, particularly with respect to enhanced EtOH
sensitivity (Liang et al., 2008). Previously, we localized a rela-
tively small (∼25%) but significant proportion of α4 subunits
to the central portion of GABAergic synapses in DGCs of rats
(Liang et al., 2006). Loss of such synaptic α4 subunits is consis-
tent with the altered mIPSC kinetics of α4 KO mice (Chandra
et al., 2006; Liang et al., 2008). Here we hypothesized that in the
absence of α4 subunits, synaptic GABAARs with increases in rel-
ative proportions of α2/γ subunits should also exhibit greater
sensitivity to BZs. To test this, we compared synaptic respon-
siveness of WT and KO DGCs to zolpidem, a BZ site ligand
which is inactive at α4/5-containing GABAARs and preferen-
tially potentiates α1–3/γ2-containing GABAARs (Wafford et al.,
1993; Möhler et al., 2000). Our data revealed significantly greater
zolpidem potentiation of mIPSCs from KO mice compared to
WT mice (Figure 3), supporting our hypothesis. However, the
increased presence of α2 and γ2 subunits at synapses does not
explain the high EtOH sensitivity of these compensatory synap-
tic GABAARs. In addition to the multitude of novel subunit
combinations, one cannot help suggest that some unknown fac-
tor(s) might also affect synaptic EtOH sensitivity. Perhaps this
is related to GABAAR-associated proteins and/or some protein
phosphorylation event(s).

The presence of highly EtOH-sensitive synaptic receptors in
tissues which virtually lack extrasynaptic tonic currents and EtOH
responsiveness gives us the opportunity to explore several aspects
of the EtOH-induced GABAAR plasticity hypothesis (Liang et al.,
2007). Here, we focused on the early events in EtOH intoxication,
hypothesized to involve EtOH-induced overstimulation of EtOH-
sensitive GABAARs resulting in their rapid internalization. Thus,
we reasoned that if the EtOH-sensitive synaptic GABAARs of α4

KO mice were exposed to high doses of EtOH, we should be able to
detect their internalization and its functional consequences with
biochemical and electrophysiological techniques. Indeed, cross-
linking and Western blot analysis of hippocampal tissue collected
from KO mice within 1 h of EtOH exposure showed internal-
ization of α1, α2, δ, and γ2 subunits (Figure 2). By contrast,
only α1, α4, and δ subunits showed EtOH-induced internaliza-
tion in WT mice. Moreover, the zolpidem sensitivity of synap-
tic GABAARs of KO mice was significantly reduced at 1 h after
EtOH treatment, whereas zolpidem sensitivity of WT mice was
unchanged by EtOH treatment, suggesting functional decreases in
α1–3/γ-containing synaptic GABAARs only in EtOH-treated KO
mice.

Although δ subunit levels were significantly reduced in the α4
KO hippocampus, we could still detect EtOH-induced internaliza-
tion of δ subunits in KO mice. Previous studies have demonstrated
that unlike DGCs, certain hippocampal GABAergic interneurons
express α1/δ-containing GABAARs which are responsive to low
concentrations of EtOH (Glykys et al., 2007). We suspect that it
is these remaining EtOH-sensitive δ-containing GABAARs that
account for the EtOH-induced δ-subunit internalization signal in
KO mice.

Use-dependent decrease of receptor function is a common
mechanism of drug tolerance development. This process is a
complex series of events which may include receptor desensitiza-
tion, uncoupling between agonist binding and channel activation,
receptor internalization, and transcriptional down-regulation.
These separable mechanisms of drug tolerance development are
specific to the class of receptors under study. For example, the
development of acute tolerance to opioid analgesics was shown
to involve receptor desensitization via phosphorylation and func-
tional uncoupling of receptors from G proteins, while receptor
internalization was shown to counteract desensitization through
rapid recycling of opioid receptors back to the surface in a reac-
tivated state (Koch and Hollt, 2008). Pathology-induced chronic
opioid tolerance appears to involve transcriptional decreases in
receptor expression (Abdulla and Smith, 1998). Acute tolerance to
BZs is also thought to involve uncoupling between BZ and GABA
binding sites of GABAARs (Hu and Ticku,1994; Primus et al., 1996;
Ali and Olsen, 2001). By contrast, development of acute tolerance
to EtOH has been related to early internalization of extrasynap-
tic GABAARs (Liang et al., 2007), whereas protracted tolerance
following chronic EtOH administration appears to involve tran-
scriptional alterations in GABAAR subunit composition and func-
tion (Matthews et al., 1998; Cagetti et al., 2003; Liang et al., 2006),
reviewed in (Kumar et al., 2009). Fairly rapid transcriptionally
mediated increases in α4 subunit levels have also been demon-
strated following EtOH exposure (Pignataro et al., 2007). Such
increases in α4 subunit levels were recently determined to require
selective activation of the protein kinase γ isozyme (Werner et al.,
2010). Rapid decreases in inhibition and BZ tolerance during
status epilepticus have also been demonstrated to involve inter-
nalization of GABAARs (Goodkin et al., 2005, 2008; Naylor et al.,
2005) and subsequent long-term alterations in GABAAR subunit
composition were demonstrated to involve transcriptional events
(Brooks-Kayal et al., 1998; Roberts et al., 2005).
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In summary, our studies showed that global genetic deletion
of the α4 subunit leads to compensatory changes in synap-
tic GABAAR subunit composition and function. These func-
tional changes include increased zolpidem sensitivity. We also
demonstrate that EtOH intoxication in the KO mice leads
to rapid internalization of these zolpidem-sensitive synaptic

receptors. The α4 KO mice should prove useful in examining
the long-term consequences of EtOH withdrawal and depen-
dence.

ACKNOWLEDGMENTS
Supported by NIH grants AA07680, AA13004, and AA16100.

REFERENCES
Abdulla, F. A., and Smith, P. A.

(1998). Axotomy reduces the effect
of analgesic opioids yet increases the
effect of nociceptin on dorsal root
ganglion neurons. J. Neurosci. 18,
9685–9694.

Ali, N. J., and Olsen, R. W. (2001).
Chronic benzodiazepine treatment
of cells expressing recombinant
GABAA receptors uncouples
allosteric binding: studies on possi-
ble mechanisms. J. Neurochem. 79,
1100–1108.

Becker, H. C. (2008). Alcohol depen-
dence, withdrawal, and relapse.
Alcohol Res. Health 31. Available at:
http://pubs.niaaa.nih.gov/publicatio
ns/arh314/348-361.htm

Borghese, C. M., and Harris, R. A.
(2007). Studies of ethanol actions
on recombinant δ-containing γ-
aminobutyric acid type A receptors
yield contradictory results. Alcohol
41, 155–162.

Brooks-Kayal, A. R., Shumate, M. D.,
Jin, H., Rikhter, T. Y., and Coulter,
D. A. (1998). Selective changes in
single cell GABA(A) receptor sub-
unit expression and function in tem-
poral lobe epilepsy. Nat. Med. 4,
1166–1172.

Cagetti, E., Liang, J., Spigelman, I., and
Olsen, R. W. (2003). Withdrawal
from chronic intermittent ethanol
treatment changes subunit compo-
sition, reduces synaptic function,
and decreases behavioral responses
to positive allosteric modulators of
GABAA receptors. Mol. Pharmacol.
63, 53–64.

Caraiscos, V. B., Elliott, E. M., You, T.,
Cheng, V. Y., Belelli, D., Newell, J. G.,
Jackson, M. F., Lambert, J. J., Rosahl,
T. W., Wafford, K. A., MacDonald,
J. F., and Orser, B. A. (2004). Tonic
inhibition in mouse hippocampal
CA1 pyramidal neurons is medi-
ated by α5 subunit-containing γ-
aminobutyric acid type A receptors.
Proc. Natl. Acad. Sci. U.S.A. 101,
3662–3667.

Chandra, D., Jia, F., Liang, J., Peng, Z.,
Suryanarayanan, A., Werner, D. F.,
Spigelman, I., Houser, C. R., Olsen,
R. W., Harrison, N. L., and Homan-
ics, G. E. (2006). GABAA receptor
α4 subunits mediate extrasynaptic
inhibition in thalamus and dentate
gyrus and the action of gaboxadol.

Proc. Natl. Acad. Sci. U.S.A. 103,
15230–15235.

Chandra, D., Werner, D. F., Liang,
J., Suryanarayanan, A., Harrison,
N. L., Spigelman, I., Olsen, R.
W., and Homanics, G. E. (2008).
Normal acute behavioral responses
to moderate/high dose ethanol in
GABAA receptor α4 subunit knock-
out mice. Alcohol. Clin. Exp. Res. 32,
10–18.

Devaud, L. L., Fritschy, J. M., Sieghart,
W., and Morrow, A. L. (1997).
Bidirectional alterations of GABAA
receptor subunit peptide levels in rat
cortex during chronic ethanol con-
sumption and withdrawal. J. Neu-
rochem. 69, 126–130.

Glykys, J., Mann, E. O., and Mody,
I. (2008). Which GABAA receptor
subunits are necessary for tonic inhi-
bition in the hippocampus? J. Neu-
rosci. 28, 1421–1426.

Glykys, J., Peng, Z., Chandra, D.,
Homanics, G. E., Houser, C. R., and
Mody, I. (2007). A new naturally
occurring GABAA receptor subunit
partnership with high sensitivity to
ethanol. Nat. Neurosci. 10, 40–48.

Goldstein, P. A., Elsen, F. P., Ying, S.
W., Ferguson, C., Homanics, G. E.,
and Harrison, N. L. (2002). Pro-
longation of hippocampal miniature
inhibitory postsynaptic currents in
mice lacking the GABAA recep-
tor α1 subunit. J. Neurophysiol. 88,
3208–3217.

Goodkin, H. P., Joshi, S., Mtchedlishvili,
Z., Brar, J., and Kapur, J. (2008).
Subunit-specific trafficking of
GABAA receptors during sta-
tus epilepticus. J. Neurosci. 28,
2527–2538.

Goodkin, H. P., Yeh, J. L., and Kapur, J.
(2005). Status epilepticus increases
the intracellular accumulation of
GABAA receptors. J. Neurosci. 25,
5511–5520.

Grosshans, D. R., Clayton, D. A., Coul-
trap, S. J., and Browning, M. D.
(2002). Analysis of glutamate recep-
tor surface expression in acute hip-
pocampal slices. Sci. STKE 2002,
L8.

Hu, X. J., and Ticku, M. K. (1994).
Chronic benzodiazepine agonist
treatment produces functional
uncoupling of the gamma-
aminobutyric acid-benzodiazepine
receptor ionophore complex in

cortical neurons. Mol. Pharmacol.
45, 618–625.

Koch, T., and Hollt, V. (2008). Role
of receptor internalization in opioid
tolerance and dependence. Pharma-
col. Ther. 117, 199–206.

Korpi, E. R., Debus, F., Linden, A.
M., Malecot, C., Leppa, E., Vekovis-
cheva, O., Rabe, H., Bohme, I., Aller,
M. I., Wisden, W., and Luddens,
H. (2007). Does ethanol act pref-
erentially via selected brain GABAA
receptor subtypes? The current evi-
dence is ambiguous. Alcohol 41,
163–176.

Korpi, E. R., Mihalek, R. M., Sinkkonen,
S. T., Hauer, B., Hevers, W., Homan-
ics, G. E., Sieghart, W., and Luddens,
H. (2002). Altered receptor subtypes
in the forebrain of GABAA recep-
tor δ subunit-deficient mice: recruit-
ment of γ2 subunits. Neuroscience
109, 733–743.

Kumar, S., Porcu, P., Werner, D.
F., Matthews, D. B., az-Granados,
J. L., Helfand, R. S., and Mor-
row, A. L. (2009). The role of
GABAA receptors in the acute
and chronic effects of ethanol: a
decade of progress. Psychopharma-
cology (Berl.) 205, 529–564.

Liang, J., Suryanarayanan, A., Abriam,
A., Snyder, B., Olsen, R. W., and
Spigelman, I. (2007). Mechanisms
of reversible GABAA receptor plas-
ticity after ethanol intoxication. J.
Neurosci. 27, 12367–12377.

Liang, J., Suryanarayanan, A., Chandra,
D., Homanics, G. E., Olsen, R. W.,
and Spigelman, I. (2008). Functional
consequences of GABAA receptor
α4 subunit deletion on synaptic
and extrasynaptic currents in mouse
dentate granule cells. Alcohol. Clin.
Exp. Res. 32, 19–26.

Liang, J., Zhang, N., Cagetti, E.,
Houser, C. R., Olsen, R. W.,
and Spigelman, I. (2006). Chronic
intermittent ethanol-induced switch
of ethanol actions from extrasy-
naptic to synaptic hippocampal
GABAA receptors. J. Neurosci. 26,
1749–1758.

Matthews, D. B., Devaud, L. L., Fritschy,
J. M., Sieghart, W., and Morrow, A.
L. (1998). Differential regulation of
GABAA receptor gene expression by
ethanol in the rat hippocampus ver-
sus cerebral cortex. J. Neurochem. 70,
1160–1166.

Mhatre, M. C., and Ticku, M. K. (1992).
Chronic ethanol administration
alters gamma-aminobutyric acid
A receptor gene expression. Mol.
Pharmacol. 42, 415–422.

Mihalek, R. M., Bowers, B. J., Wehner,
J. M., Kralic, J. E., VanDoren, M. J.,
Morrow, A. L., and Homanics, G.
E. (2001). GABAA-receptor δ sub-
unit knockout mice have multiple
defects in behavioral responses to
ethanol. Alcohol. Clin. Exp. Res. 25,
1708–1718.

Möhler, H., Benke, D., Fritschy, J. M.,
and Benson, J. (2000). “The ben-
zodiazepine site of GABAA recep-
tors,” in GABA in the Nervous Sys-
tem: The View at Fifty Years, eds
D. L. Martin and R. W. Olsen.
(Philadelphia: Lippincott Williams
& Wilkins), 97–112.

Naylor, D. E., Liu, H., and Wasterlain,
C. G. (2005). Trafficking of GABAA
receptors, loss of inhibition, and a
mechanism for pharmacoresistance
in status epilepticus. J. Neurosci. 25,
7724–7733.

Nusser, Z., Sieghart, W., and Somogyi,
P. (1998). Segregation of different
GABAA receptors to synaptic and
extrasynaptic membranes of cere-
bellar granule cells. J. Neurosci. 18,
1693–1703.

Olsen, R. W., and Sieghart, W. (2008).
International Union of Pharmacol-
ogy. LXX. Subtypes of gamma-
aminobutyric acid(A) receptors:
classification on the basis of sub-
unit composition, pharmacology,
and function. Update. Pharmacol.
Rev. 60, 243–260.

Olsen, R. W., and Sieghart, W. (2009).
GABA A receptors: subtypes pro-
vide diversity of function and phar-
macology. Neuropharmacology 56,
141–148.

Peng, Z., Hauer, B., Mihalek, R. M.,
Homanics, G. E., Sieghart, W., Olsen,
R. W., and Houser, C. R. (2002).
GABAA receptor subunit changes
in δ subunit-deficient mice: altered
expression of α4 and γ2 subunits in
the forebrain. J. Comp. Neurol. 446,
179–197.

Pignataro, L., Miller, A. N., Ma, L.,
Midha, S., Protiva, P., Herrera, D. G.,
and Harrison, N. L. (2007). Alcohol
regulates gene expression in neurons
via activation of heat shock factor 1.
J. Neurosci. 27, 12957–12966.

www.frontiersin.org September 2011 | Volume 5 | Article 110 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Neuropharmacology/archive


Suryanarayanan et al. Ethanol and GABA receptor plasticity

Primus, R. J., Yu, J., Xu, J., Hartnett, C.,
Meyyappan, M., Kostas, C., Ramab-
hadran, T. V., and Gallager, D. W.
(1996). Allosteric uncoupling after
chronic benzodiazepine exposure of
recombinant gamma-aminobutyric
acid(A) receptors expressed in Sf9
cells: ligand efficacy and subtype
selectivity. J. Pharmacol. Exp. Ther.
276, 882–890.

Roberto, M., Treistman, S. N.,
Pietrzykowski, A. Z., Weiner, J.,
Galindo, R., Mameli, M., Valenzuela,
F., Zhu, P. J., Lovinger, D., Zhang, T.
A., Hendricson, A. H., Morrisett, R.,
and Siggins, G. R. (2006). Actions
of acute and chronic ethanol on
presynaptic terminals. Alcohol. Clin.
Exp. Res. 30, 222–232.

Roberts, D. S., Raol, Y. H., Bandy-
opadhyay, S., Lund, I. V., Budreck,
E. C., Passini, M. A., Wolfe, J. H.,
Brooks-Kayal, A. R., and Russek,
S. J. (2005). Egr3 stimulation of
GABRA4 promoter activity as a
mechanism for seizure-induced up-
regulation of GABAA receptor α4
subunit expression. Proc. Natl. Acad.
Sci. U.S.A. 102, 11894–11899.

Shen, Y., Lindemeyer, A. K., Spigel-
man, I., Sieghart, W., Olsen, R. W.,
and Liang, J. (2011). Plasticity of

GABAA receptors following ethanol
pre-exposure in cultured hippocam-
pal neurons. Mol. Pharmacol. 79,
432–442.

Spigelman, I., Li, Z., Liang, J., Cagetti,
E., Samzadeh, S., Mihalek, R. M.,
Homanics, G. E., and Olsen, R.
W. (2003). Reduced inhibition and
sensitivity to neurosteroids in hip-
pocampus of mice lacking the
GABAA receptor δ subunit. J. Neu-
rophysiol. 90, 903–910.

Sundstrom-Poromaa, I., Smith, D.
H., Gong, Q. H., Sabado, T.
N., Li, X., Light, A., Wiedmann,
M., Williams, K., and Smith, S.
S. (2002). Hormonally regulated
α4β2δ GABAA receptors are a tar-
get for alcohol. Nat. Neurosci. 5,
721–722.

Tretter, V., Hauer, B., Nusser, Z.,
Mihalek, R. M., Hoger, H., Homan-
ics, G. E., Somogyi, P., and Sieghart,
W. (2001). Targeted disruption of
the GABAA receptor δ subunit
gene leads to an upregulation of
γ2 subunit-containing receptors in
cerebellar granule cells. J. Biol.
Chem. 276, 10532–10538.

Wafford, K. A., Whiting, P. J., and Kemp,
J. A. (1993). Differences in affin-
ity and efficacy of benzodiazepine

receptor ligands at recombinant γ-
aminobutyric acidA receptor sub-
types. Mol. Pharmacol. 43, 240–244.

Wallner, M., Hanchar, H. J., and Olsen,
R. W. (2003). Ethanol enhances
α4β3δ and α6β3δ γ-aminobutyric
acid type A receptors at low con-
centrations known to affect humans.
Proc. Natl. Acad. Sci. U.S.A. 100,
15218–15223.

Wei,W.,Faria,L. C., and Mody, I. (2004).
Low ethanol concentrations selec-
tively augment the tonic inhibition
mediated by δ subunit-containing
GABAA receptors in hippocampal
neurons. J. Neurosci. 24, 8379–8382.

Wei, W., Zhang, N., Peng, Z., Houser, C.
R., and Mody, I. (2003). Perisynaptic
localization of δ subunit-containing
GABAA receptors and their acti-
vation by GABA spillover in the
mouse dentate gyrus. J. Neurosci. 23,
10650–10661.

Werner, D. F., Kumar, S., Criswell,
H. E., Suryanarayanan, A., Alex,
F. J., Comerford, C. E., and Mor-
row, A. L. (2010). PKCγ is required
for ethanol-induced increases in
GABAA receptor α4 subunit expres-
sion in cultured cerebral corti-
cal neurons. J. Neurochem. 116,
554–563.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 11 January 2011; accepted: 29
August 2011; published online: 23 Sep-
tember 2011.
Citation: Suryanarayanan A, Liang J,
Meyer EM, Lindemeyer AK, Chandra D,
Homanics GE, Sieghart W, Olsen RW
and Spigelman I (2011) Subunit compen-
sation and plasticity of synaptic GABAA

receptors induced by ethanol in α4 sub-
unit knockout mice. Front. Neurosci.
5:110. doi: 10.3389/fnins.2011.00110
This article was submitted to Frontiers
in Neuropharmacology, a specialty of
Frontiers in Neuroscience.
Copyright © 2011 Suryanarayanan,
Liang , Meyer, Lindemeyer, Chandra,
Homanics, Sieghart , Olsen and Spigel-
man. This is an open-access article sub-
ject to a non-exclusive license between the
authors and Frontiers Media SA, which
permits use, distribution and reproduc-
tion in other forums, provided the original
authors and source are credited and other
Frontiers conditions are complied with.

Frontiers in Neuroscience | Neuropharmacology September 2011 | Volume 5 | Article 110 | 8

http://dx.doi.org/10.3389/fnins.2011.00110
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuropharmacology
http://www.frontiersin.org/Neuropharmacology/archive

	Subunit compensation and plasticity of synaptic GABAA receptors induced by ethanol in 4 subunit knockout mice
	Introduction
	Materials and Methods
	Mice
	Brain slice preparation and Western blotting
	Electrophysiological recordings
	Detection and analysis of mIPSCs

	Results
	Compensatory changes in GABAAR subunit levels in KO mice
	Altered identity of GABAAR subunits internalized by EtOH treatment in 4 KO mice
	Altered zolpidem sensitivity of synaptic GABAARs in 4 KO mice

	Discussion
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


