
RESEARCH Open Access

Epistasis analysis of microRNAs on
pathological stages in colon cancer based
on an Empirical Bayesian Elastic Net method
Jia Wen, Andrew Quitadamo, Benika Hall and Xinghua Shi*

From 12th International Symposium on Bioinformatics Research and Applications (ISBRA 2016)
Minsk, Belarus. 5-8 June 2016

Abstract

Background: Colon cancer is a leading cause of worldwide cancer death. It has become clear that microRNAs (miRNAs)
play a role in the progress of colon cancer and understanding the effect of miRNAs on tumorigenesis could lead to
better prognosis and improved treatment. However, most studies have focused on studying differentially expressed
miRNAs between tumor and non-tumor samples or between stages in tumor tissue. Limited work has conducted to
study the interactions or epistasis between miRNAs and how the epistasis brings about effect on tumor progression.
In this study, we investigate the main and pair-wise epistatic effects of miRNAs on the pathological stages of colon
cancer using datasets from The Cancer Genome Atlas.

Results: We develop a workflow composed of multiple steps for feature selection based on the Empirical Bayesian
Elastic Net (EBEN) method. First, we identify the main effects using a model with only main effect on the phenotype.
Second, a corrected phenotype is calculated by removing the significant main effect from the original phenotype.
Third, we select features with epistatic effect on the corrected phenotype. Finally, we run the full model with main and
epistatic effects on the previously selected main and epistatic features. Using the multi-step workflow, we identify a set
of miRNAs with main and epistatic effect on the pathological stages of colon cancer. Many of miRNAs with main effect
on colon cancer have been previously reported to be associated with colon cancer, and the majority of the epistatic
miRNAs share common target genes that could explain their epistasis effect on the pathological stages of colon
cancer. We also find many of the target genes of detected miRNAs are associated with colon cancer. Go Ontology
Enrichment Analysis of the experimentally validates targets of main and epistatic miRNAs, shows that these target
genes are enriched for biological processes associated with cancer progression.

Conclusion: Our results provide a set of candidate miRNAs associated with colon cancer progression that could have
potential translational and therapeutic utility. Our analysis workflow offers a new opportunity to efficiently
explore epistatic interactions among genetic and epigenetic factors that could be associated with human
diseases. Furthermore, our workflow is flexible and can be applied to analyze the main and epistatic effect
of various genetic and epigenetic factors on a wide range of phenotypes.
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Background
Colon cancer is the third most common cancer world-
wide, and is the second leading cause of cancer deaths in
Europe and the United States [1–3]. Both genetic and
epigenetic alterations have been implicated in the devel-
opment of colon cancer [4]. microRNAs (miRNAs) are
small (18–24 nucleotides) noncoding RNAs, that act as
epigenetic regulation of gene expression. miRNAs act on
genes post-translationally and have been implicated in
cancer development, progression, and both response and
resistance to chemotherapy [5]. Alterations of miRNA
expression have been detected in the broad spectrum of
hematological malignancies and solid tumors, including
colon cancer [6–10]. Previous studies have established
that miRNAs are differentially expressed in tumor and
normal tissue [5], and altered miRNA expression is in-
volved in colon cancer development [6, 11, 12, 13, 14,
37]. For example, miR-144 is significantly associated
with colon tumor stages [15]. Therefore, the expression
changes of microRNAs may regulate important genes in
tumor pathogenesis and can be useful for classifying
tumors and predicting their outcomes.
However, most studies focus on the identifying dif-

ferentially expressed miRNAs between tumor and
non-tumor samples or between stages in tumor tissue.
Limited work has conducted to study the interactions
or epistasis between miRNAs and how the epistasis
brings about effect on tumor progression. Here, we
define epistasis as the situations that the phenotype
variance could be explained by the interactions or
combinations of (epi-)genetic variants, instead of indi-
vidual (epi-)genetic variants alone. Epistasis of miR-
NAs have been reported as an important component
in cancer research and drug resistance research. For
example, a previous study has reported an epistasis
between miR-155 and miR-146a related to tumor
growth [16]. Specifically, this study identifies that
miR-155 deficiency is epistatic to a loss of miR-146a
during antitumor immune responses and thus results
in varied tumor growth [16].
However, genomic data is usually high dimensional,

making it difficult to analyze epistatic interactions using
general parameter estimate methods, such as variations
of LASSO [17–24] or the empirical Bayesian method
[25]. Many other methods developed to analyze epistasis
on quantitative phenotypes, including a statistical
selection method [26] and a combinatorial partitioning
method (CPM) for multi-locus-epistasis [27]. A multi-
factor-dimensionality reduction method (MDR) [28] is
developed based on CPM, and a GEM model is de-
veloped to detect the functional epistasis and infer
the hierarchical relationships of genes [29]. Neither
CPM or MDR scales up well, so it is impractical to
use them on large datasets [27, 28].

Additionally, methods have been proposed to iden-
tify epistasis on dichotomous phenotypes as in case-
control studies. These methods include an Epistasis
Detector based on the Clustering of relatively Fre-
quent items (EDCF) [30], a Bayesian inference
method called Detecting genome-wide Association on
Multiple diseases (DAM) [31], a Multi-SNP Combin-
ation Set Detector (MSCD) based on a combinatorial
optimization model [32].
Recently, an Empirical Bayesian Elastic Net (EBEN)

method was proposed to study epistasis [33]. EBEN is ef-
ficient to estimate unknown parameters in an over- satu-
rated statistical model as in mining high dimensional
genomic data. Therefore, in this study, we use the EBEN
method thanks to three of its advantages for epistasis
analysis: 1) EBEN is scalable on high dimensional data,
2) EBEN can perform a statistical test on the features se-
lected, and 3) EBEN shows lower FDR than LASSO [33].
In order to efficiently identify epistasis that might be

masked by strong main effects, we develop a multi-step
workflow to find both main and epistatic effect in a uni-
fied model. First, we identify the main effect of miRNAs
on pathological stages of colon cancer, ignoring epistasis.
Second, we generate a corrected phenotype by removing
the main effect. Third, we use an epistasis model on the
corrected phenotype to solely identify epistatic effect.
Finally, we run a full model including both main and
epistatic effects, on the significant features previously se-
lected as main and epistatic effects. We apply EBEN as
the parameter estimation method in all steps.
Using the multi-step workflow on data from the The

Cancer Genome Atlas (TCGA) [34], we identify a set of
miRNAs with main and epistatic effect on the patho-
logical stages of colon cancer. Many of miRNAs with
main effect we detected have been reported to be associ-
ated with colon cancer from previous experimental
studies, and the majority of epistatic miRNAs share
common target genes and thus could bring about
epistatic effect on the resulted pathological stages. We
also find some of the target genes of detected miRNAs
are associated with colon cancer. Gene Ontology En-
richment Analysis of the experimentally validates
targets of main and epistatic miRNAs, shows that
these target genes are enriched for biological pro-
cesses associated with cancer progression.

Methods
In order to efficiently identify the main and epistatic ef-
fect of miRNAs on pathological stages, we develop a
multi-step workflow based on the Empirical Bayesian
Elastic Net method for modeling. We use the miRNA
profiles and pathological stages of colon cancer as an ex-
ample to demonstrate our analysis workflow. The data
used in this study, R script pipeline on analyzing the
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dataset, and the EBEN package can be accessed from
github (https://github.com/shilab/EBEN-epistasis) and R
CRAN (https://cran.r-project.org/web/packages/EBEN/
index.html).

Data collection and preprocessing
TCGA [34] provides a dataset that fits well to evalu-
ate the proposed method, since it offers comprehen-
sive measurements at different layers on the same
individuals for a cancer type for integrative analysis.
The miRNA expression profiles from miRNA sequen-
cing (miRNASeq) and clinical data for colon cancer
were downloaded from TCGA data portal. Specific-
ally, we extracted miRNA expression data and patho-
logical stages of 233 samples from the TCGA colon
cancer datasets. We then filter out those miRNAs
with more than 20% missing data and finally collected
the expression profiles of 376 miRNAs in 233
samples. We then organize the miRNA expression
data into a matrix, with each row representing a
sample and each column representing a miRNA. We
use inverse quantile normalization on the miRNA ex-
pression matrix, map the values for each miRNA onto
a standard normal distribution, and transpose our
miRNA expression matrix for analysis.
In this study, we focus on analyzing the impact of indi-

vidual miRNAs, and the epistasis between two miRNAs
on the pathological stage of colon cancer. Here, we use
the pathological stages, i.e., tumor stages, as a proxy to
study cancer progression. According to TCGA, the
pathological stage refers the “classification assigned to a
malignancy which allows for the grouping of similar can-
cer types based on the extent of disease in the primary
tumor (T), regional lymph nodes (N), and metastatic
sites (M), using criteria from the American Joint
Committee on Cancer staging criteria” [34]. We ex-
tracted the pathological stages of these 233 samples from
TCGA. The pathological stages are then transformed
into natural log values to scale the ordinary value of dif-
ferent pathological stages in order to make the variation
more similar across different ordinary values.

Introduction of empirical bayesian elastic net
In our workflow, we use an Empirical Bayesian Elastic Net
(EBEN) to model the data. We choose EBEN because it
scales well on high-dimensional data since it uses feature
filtering to remove unimportant features and the coordin-
ate ascent method to estimate the unknown parameters.
The unknown parameters in the EBEN algorithms are
μ , β and α in the linear model in Eq. (5). μ denotes the
mean of phenotype that is assigned to a uniform prior
distribution. β is the coefficient matrix in the model of Eq.
(5), and is what we aim to estimate for feature selections.

β is assigned to have two-level prior distributions, with
the first level as an independent normal distribution and
the second level as a generalized Gamma distribution.
EBEN algorithm introduces two hyper-parameters, λ1 and
λ2, and then uses cross-validation to determine the opti-
mal values of these two hyper-parameters. α is defined as
1=σe2 , and αek denotes the element of α . In each cycle of
the coordinate ascent method, EBEN adds or deletes
features according to the variable of αek between two itera-
tions in the algorithm. If αk is finite, feature k is kept in
the model, otherwise it is deleted from the model. We can
see that if the dataset is high dimensional, lots of αk might
be infinite using a coordinate ascent method, hence their
corresponding β is zero and EBEN can drop them from
model quickly. Therefore, EBEN is efficient to estimate
unknown parameters in an over-saturated statistical
model [33], makes it scalable to handle high dimensional
datasets. Another reason that we prefer EBEN over other
Elastic Net or LASSO methods because other methods
usually give non-zero coefficients for feature selection,
without estimating the covariance or performing a
statistical test. Instead, EBEN performs a t-test using the
coefficient and the covariance matrix to obtain p-values
for selected features from point estimates [33].
As illustrated in Fig. 1, the EBEN algorithm [33] can

be summarized as the following four steps.

1. Initialize model parameters and the statistical model.
The parameter sets need to be initialized are μ; σ20
and ~y. μ denotes the mean of phenotype and is

initialized as
μ¼
P

in
yi

n . ~y denotes the initial dependent

variable and is initialized as ~y ¼ y−μ. σ20 denotes the
variance of the model and can be initialized as a very

small number such as σ20¼0:1�~yT~y
n . After initializing

these parameters, we need to initialize the statistical
model with an initial set of features. The initial feature

set satisfies k ¼ argi xTi ye�� ��;∀i� �
, because EBEN starts

with features that have the highest correlations with
the dependent variable. Here, n is the number of
samples, k denotes the subscripts of features,
xidenotes the vector of feature i, and αk is a variable
calculated from σ2k .

2. For the posterior estimate, the posterior distribution
of parameter set θ can be given as in Eq. (1) and the
log posterior distribution of αek in Eq. (2) according
to the prior distributions [33]. The αk is the element
of αe, and sk and qk in Eq. (2) can be derived from C
which is the covariance matrix of y calculated by the
given αe in Eq. (2) [33]:

p θjyð Þ∝p yjμ; β; σ20
� �

p μð Þp σ20
� �

pðβjσe2Þpðσe2jλ1; λ2Þ
ð1Þ
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LðαekÞ ¼ 1
2

log
αek

αek þ 1þ sk
þ qe2

k

αek þ 1þ sk

" #
−
λ2
αek ð2Þ

Let the L αekð Þ to be maximized, we can derive the opti-
mal estimate of αek as in Eq. (3) [33]:

αe�k ¼ r; if q2k−sk > λ1 þ 2λ2
∞; otherwise

�
ð3Þ

r can be calculated according to the sk, qk, λ1 and λ2.
From Eq. (3), the βk will be zero if the αe�k is infinite.
During iterations, the algorithm finds a new αk accord-
ing to Eq. (4) [35]:

j ¼ argk ΔL α�k
� � ¼ L α�k

� �
−L α nð Þ

k

� 	n o
ð4Þ

The parameters in the model are updated through iter-
ations until three convergence criteria are met. These
three criteria are i) no finite αk is output, ii) the change
between two iterations of αk is smaller than a pre-speci-
fied value and iii) the Euclidean norm of the change be-
tween two iterations is smaller than a pre-specified
value. There are two hyper-parameters in the algorithm,
and EBEN uses cross-validation to determine the opti-
mal value of hyper-parameters [33, 35].

3. Use the non-zero coefficients β and covariance
matrix to conduct t-test to perform hypothesis test
on the estimated value.

4. Output final β′ that denotes the significant results
and the covariance matrix.

Our analysis workflow based on EBEN
In this study, we use a linear regression model to model
the natural log value of pathological stages versus the
main and pair-wise epistasis of miRNAs, and used the
following formula as our full model (5):

y ¼ μþ Xβm þ XiXjβe þ e ð5Þ

where y denotes the dependent variable, (i.e., the trans-
formed value using natural log on pathological stage in
this study), (5) denotes the mean of miRNA expression
level, X is the miRNA expression matrix with the dimen-
sion n × k, n is the sample size, k is the number of miR-
NAs, βm is the coefficient that represents the main effect
of miRNA, Xi and Xj denote two different miRNAs
expression vectors, βe is the coefficient that represents
the epistasis between miRNA i and j, and e is the re-
sidual error that follows a normal distribution with zero
mean and variance of σ2, e ~N(0, σ2). Because EBEN
could give the estimates of posterior variances, t-test
was used to determine whether the non-zero coefficients
of select features were significant.
In order to avoid the situations that main effects dom-

inate and mask out epistatic effects, we develop an
analysis workflow composed of multiple steps of feature
se- lection and modeling using BEN. The overall analysis
workflow is illustrated in Fig. 2, and can be divided into
the following four steps.

Fig. 1 An overview of the EBEN algorithm. 1) Initialize model parameters and the statistical model. The unknown parameters μ denotes the mean
of phenotype, y denotes the initial dependent variable and σ20 denotes the variance of the model, obtain the initial features satisfying k ¼ argi xTi y

�� ��;∀i� �
.

Here, k denotes the subscripts of features, xi denotes the vector of feature i, y denotes the dependent variable in the statistical model, and αk is a variable
calculated from σ2k , 2) Update the parameters in the model during iterations, 3) Use t-test to perform hypothesis test on the estimated value, and 4)
Output β′ that denotes the significant results and the covariance matrix
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Step 1: Select features with solely main effect Xβm on
the phenotype y. EBEN was used to screen all the main
features that have p values smaller than 0.05. Only
these significant features with main effect would be
included in the model of Step 4.
Step 2: Derive a corrected phenotype with main effects
removed. We eliminated those main effects from the
original phenotype ( y!) using the significant features
with main effect from Step 1, to generate corrected y′,
y′ ¼ y!−X′

mβ
′
m. X

′
m represents the significant features

selected in Step 1 and β′m is the vector effects for the
significant features X′

m.
Step 3: Select features with epistatic effect on the
phenotype. The corrected y′ was used as the new
dependent variable to detect epistasis using EBEN.
The significance epistatic effects were still selected
at p level of 0.05.
Step 4: A unified model of estimating both main and
epistatic effect. All the features with main effect from
the step 1 and epistatic features identified in Step 3
were included in Eq. 5 and estimated by EBEN. In this

step, since the covariance matrix only included the
significant main and epistasis effects from Steps 1 and
3, the new p values, βm and βe are different from the
results in Steps 1 and 3. In order to obtain these values
from the same model, we should use the new covariance
matrix to re-estimate all the features to see whether each
of them was significantly associated with phenotype.
Here, the threshold value was also set at the level of
P < 0.05.

Results
Using our multi-step analysis workflow, we identify a set
of miRNAs with main effect and epistatic effect, as
summarized in Table 1. Many of miRNAs with main ef-
fect are verified to be up or down regulated in colon
cancer by previous experimental studies (Table 2), and
the majority pairs of epistatic miRNAs have common
target genes that are associated with colon cancer. The

Fig. 2 The overall workflow of our epistasis analysis based on EBEN.
Step 1: Run the simplified model including solely main effect, which
means only the significant features from this step are included in the
main effect part of the model at the final step, Step 2: Obtain the
corrected phenotype y ′ through removing main effect of significant
features from the original phenotype y, Step 3: The newly corrected y ′ is
used to infer epistasis. Only the features with significant epistatic effect
can be included in the model in the next step. Step 4: Run the full
model that includes all the features with significant features with main
effects from the first step and significant features with epistatic effect
identified in third step. EBEN is used as the parameter estimation
method in Steps 1, 3 and 4. Here, y denotes the trait phenotype, X
represents the miRNA expression, βm and βe represents for the
main effect and epistatic effect separately, μ represents for the
phenotype mean and e represents for the standard error

Table 1 The main and epistatic effect miRNAs identified to be
associated with pathological stages of colon cancer in our study

Effect-type miRNAs β

Main Effect hsa-let-7c −0.0321

hsa-mir-1249 −0.0668

hsa-mir-31 0.0466

hsa-mir-3189 −0.0475

hsa-mir-320c-1 −0.0535

hsa-mir-337 −0.0633

hsa-mir-34a −0.0382

hsa-mir-3662 −0.0630

hsa-mir-548e −0.0404

hsa-mir-580 0.0400

hsa-mir-3065 0.0512

Epistatic Effect hsa-let-7d, hsa-mir-548v −0.0077

hsa-mir-1254, hsa-mir-3615 0.0559

hsa-mir-223, hsa-mir-3913-1 −0.0126

hsa-mir-296, hsa-mir-432 0.0073

hsa-mir-3131, hsa-mir-874 0.0078

hsa-mir-3150b, hsa-mir-3610 0.0512

hsa-mir-363, hsa-mir-937 0.0090

hsa-mir-3682, hsa-mir-483 0.0020

hsa-mir-3917, hsa-mir-3928 −0.0462

hsa-mir-433, hsa-mir-616 −0.0383

hsa-mir-496, hsa-mir-937 0.0143

hsa-mir-511-1, hsa-mir-7-2 0.0069

hsa-mir-3065, hsa-mir-656 0.0284

hsa-mir-577, hsa-mir-92b −0.0189

The effect-type describes either main or epistatic effect. miRNAs denote either
individual miRNAs with main effect or miRNA pairs with epistatic effect. β
values describe the effect sizes of selected miRNAs or miRNA pairs, learned
from the model
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target genes of these miRNAs related to pathological
stages of colon cancer are previously reported to be
associated with colon cancer. Further, we use the ex-
perimentally validated target genes of these identified
miRNAs to conduct GO Enrichment Analysis, and
find that these genes are enriched for biological pro-
cesses related with cancer.
Regarding the computational cost, the analysis takes

approximately 20 h on a computing node with 2GB
memory per process for the dataset consisting 376 fea-
tures and 233 samples in this study. Most of the com-
puting time is spent in training the model using cross-
validation to choose the optimal hyperparameters. Once
a model is learned and these hyperparameters are deter-
mined, it takes only tens of minutes to run the model on
a dataset at this scale.

Main effect
We identify 11 miRNAs with main effect on pathological
stages of colon cancer, with 6 miRNAs being verified to be
associated with colon cancer in previous experimental
studies (Table 2). Table 2 summarizes the main effect miR-
NAs identified in our study that have been previously re-
ported to be associated with colon cancer. For example,
hsa-let-7c has been found to have an effect on regulating
RAS oncogene expression in human colon cancer and
hsa-let-7c could be involved in the growth of colon cancer
cells [36]. In addition, miR-31 has the positive correlation
with tumor stage in colon cancer [37]. Quantitative real-
time PCR experiments find that miR-31 has the most not-
able oncogenic targets AXIN1, which is involved in Wnt
signaling pathway and forkhead family transcription fac-
tors FOXC2 and FOXP3, and this target gene and the two
transcription factors are correlated with tumor stages
[6]. Another example is that hsa-mir-1249 is found in
our study, and TP53 is one of hsa-mir-1249 target
genes which is tumor protein gene. Mutations in TP53

are one of the frequent alterations in human cancers.
TP53 is associated with poor prognosis in colon cancer
and usually mutated in stage IV. TP53 mutations have
also be used as biomarkers in clinical settings [38].

Epistatic effect
For the epistasis analysis, we identify 14 pairs of epistatic
miRNAs associated with pathological stage in colon can-
cer. 13 pairs among them have more than one common
target genes according to three databases that are miR2Di-
sease [39], TargetScan [40] and miRDB [41]. Figure 3 pre-
sents a network view among the epistatic miRNAs and
their target genes. In Fig. 3, solid bold blue lines denote
the epistasis between miRNAs, yellow triangles denote the
miRNAs, their corresponding target genes are denoted as
the blue dots, and the links between miRNAs and target
genes are denoted by solid black lines. From this network,
we can see that many epistatic miRNAs share the same
target genes, which implies that the epistatic effect among
miRNAs can be reflected by their joint effect on these
common genes and potentially on the same pathways.
For instance, we find that hsa-mir-497 and hsa-mir-7-

2 have an epistatic interaction and they share two com-
mon target genes, namely APC and KRAS. These two
target genes belong to the Wnt signaling pathway and
EGFR signaling pathway separately, which are involved
in the development of colon cancer [42, 43]. Particularly,
hsa-mir-7-2 is verified to negatively regulate the target
KLF4 and promotes the progress of colon cancer since
KLF4 is a tumor suppressor gene [44]. Recently, hsa-
mir497 has been reported to have lower expression
levels and be associated with progression in colorectal
cancer [45]. Furthermore, KLF4 is common target gene
of both hsa-mir-497 and hsa-mir-7-2. Hence, we infer
that hsa-mir-497 and hsa-mir-7-2 can affect the progres-
sion of colon cancer jointly in addition to their inde-
pendent effect on colon cancer.

Disease associations
In order to understand the associations between our tar-
get genes and colon cancer, we query our target genes of
all miRNAs with both main and epistatic effect with On-
line Mendelian Inheritance in Man (OMIM) Disease
database [46]. There are 26 genes associated with colon
cancer reported in OMIM phenotype-gene relationships.
Out of these 26 colon cancer related genes, we find that
15 genes are the target genes of the identified miRNAs
associated with the pathological stages of colon cancer
(Table 3). For example, PIK3CA is the target gene of
hsa-mir-363, and a previous study [47] reports high fre-
quency mutations of PIK3CA in colon cancer. NRAS is a
target gene of six miNRAs that hsa-let-7c, hsa-let-7d,
hsa-mir-363, hsa-mir-3913, hsa-mir-483 and hsa-mir-
874 identified in our study. Another study [48] finds that

Table 2 Our identified miRNAs with main effect that are
previously reported to be associated with colon cancer

miRNA up/down
regulated

Verification Reference

hsa-let-7c down qPCR [43]

hsa-mir-1249 up Microarray [58]

hsa-mir-31 up Northern Blot, qPCR [37]

hsa-mir-31 up Northern Blot, qPCR [6, 43]

hsa-mir-31 up Microarray [59, 60]

hsa-mir-320c-1 down qPCR [43]

hsa-mir-337 up Elastic-net regression,
Microarray

[61, 62]

hsa-mir-34a down Microarray, Northern
Blot

[59]

hsa-mir-34a up Northern Blot, qPCR [13, 63]
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the mutation of NRAS is related to the suppression of
apoptosis in tumor development. APC is a target gene of
four miRNAs that hsa-mir-22, hsa-mir-3065, hsa-mir-
497 and hsa-mir-7-2 identified in our study, the muta-
tion of APC can induce inherited syndromes familiar
adenomatous polyposis which leads to a greater poten-
tial of colon cancer [49]. Additionally, PIK3CA, NRAS
and APC are included in the most frequently mutated
genes in colon cancer according to [50]. Hence, we
propose that the main and epistatic relationship between
miRNAs and colon cancer can be used as an evidence
that these miRNAs might affect the prognosis and pa-
tient’s survival and can be used as biomarker future re-
search of colon cancer.

Gene ontology enrichment analysis
For the miRNAs identified as with main and epistatic ef-
fect on the pathological stages of colon cancer, we obtain
all their experimentally verified target genes from miR2-
Disease. We then use these target genes from mir2Di-
sease to conduct gene ontology (GO) enrichment
analysis [51–53] to find out their enriched molecular
functions and biological processes.
As shown in Fig. 4, these target genes are enriched in

biological processes including cell proliferation, cell
death and cell division (see Additional file 1). Cell prolif-
eration and cell death are related with tumors, and cell
division is proved to be related with colon cancer [54].
Because the growth of tumor depends on the combined

Fig. 3 Common target genes shared by epistatic miRNAs. The target genes in this network are from TargetScan, miR2DB and miRDisease. The
miRNAs are denoted by yellow triangles. Identified epistatic interactions between miRNAs are showed by solid bold blue lines. Common target
genes of these epistatic miRNAs are denoted by blue circles. The common target genes with corresponding miRNAs are linked by solid black lines
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regulation of cell proliferation, cell death and cell div-
ision, cancer progression is possible if cell death is
suppressed, and cell division and proliferation is pro-
moted [54, 55]. These target genes are also enriched
in molecular function including protein binding and
regulatory region DNA binding. Studies have shown
that protein binding and regulatory region DNA bind-
ing processes are associated with colon cancer [56,
57]. Thus, these target genes may serve as drug tar-
gets as they could block the progression of colon can-
cer by interfering with protein binding or regulation
of DNA binding.

Discussion
For the optimization problem in EBEN, we can im-
prove its performance by setting initial random seed
or increasing the fold number in cross validation of
EBEN. We will further incorporate covariates, such as
known and unknown confounders to EBEN method.
Comparing with the nature log value to transform an
ordinary phenotype, we will extend EBEN to directly
take ordinary phenotypes. We can also make minor
adjustments for different datasets, such as adjust the
p value threshold in the step 1 and 3, in our pipleine
used in this study.

Table 3 Summary of target genes associated with colon cancer according to OMIM database

Location Phenotype miRNA ID Target genes

1p13.2 Colon cancer, somatic hsa-let-7c, hsa-let-7d, hsa-mir-363, NRAS

hsa-mir-3913, hsa-mir-483, hsa-mir-874

3q26.32 Colon cancer, somatic hsa-mir-363 PIK3CA

4p16.3 Colon cancer, somatic hsa-mir-296, hsa-mir-337, hsa-mir-874 FGFR3

5q22.2 Colon cancer, somatic hsa-mir-22, hsa-mir-3065, hsa-mir-497, hsa-mir-7-2 APC

5q22.2 Colon cancer, somatic hsa-mir-1249, hsa-mir-3662, hsa-mir-548e MCC

hsa-mir-548v, hsa-mir-7-2

7q11.23 Colon cancer, somatic hsa-mir-874 PTPN12

11p11.2 Colon cancer, somatic hsa-mir-363, hsa-mir-497 PTPRJ

11q13.3 Colon cancer, susceptibility to hsa-mir-432, hsa-mir-497, hsa-mir-511 CCND1

14q24.3 Colorectal cancer, somatic hsa-mir-432 MLH3

14q32.33 Colorectal cancer, somatic hsa-mir-1249, hsa-mir-548e, hsa-mir-656 AKT1

17p13.1 Colon cancer hsa-mir-1249 TP53

17q24.1 Colorectal cancer, somatic hsa-mir-1249, hsa-mir-497, hsa-mir-616 AXIN2

18q21.2 Colorectal cancer, somatic hsa-mir-363, hsa-mir-3662, hsa-mir-3913, hsa-mir-548e DCC

20q13.2 Colon cancer, susceptibility to hsa-mir-363 AURKA

22q13.2 Colorectal cancer, somatic hsa-let-7c, hsa-mir-497 EP300

Fig. 4 Gene Ontology Enrichment Analysis. X-axis represents each category of molecular functions and biological processes. Y-axis on the left denotes
the target gene counts for each category and y-axis on the right denotes –log (p-value) values
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While we use miRNAs in this analysis, we acknow-
ledge that gene expression also plays an important role
in colon cancer and leading to changes of tumor patho-
logical stages. We plan to incorporate gene expression
into the model that would allow us to study interactions
between miRNAs and genes in a unified statistical
model. We believe this strategy can help develop a better
understanding of the molecular mechanisms of colon
cancer. In addition, germline genetic variation and som-
atic genetic aberrations contribute significantly to
tumorigenesis. Therefore, we plan to include these gen-
etic factors into our model as well.

Conclusion
Changes in miRNA expression are known to be involved
in colon cancer development and progression. miRNAs
have a critical impact on etiology of cancer and cancer
progression. Clarifying the changes and the epistatic
effect among miRNAs could be helpful to advance can-
cer research and treatment.
In this study, we apply a multi-step workflow that en-

ables us to identify both main and pair-wise epistatic ef-
fects of miRNAs on pathological stages of colon cancer.
In each learning step of the workflow, an Empirical
Bayesian Elastic Net method is used to solve the model.
It has been demonstrated that EBEN efficiently selects
significant features in high dimensional (epi-)genomic
datasets. While we use miRNA expression data and
pathological stages in our study, this workflow can
be used to identify epistasis and main effect in many
diseases.

In summary, our study provides a flexible workflow
for an integrative analysis of the contribution of genetic
and epigenetic factors to phenotypes. Such analysis has
potentials for biomarker and drug discovery, as well as
for the improvement in prognosis prediction. Our study
thus provides a reference pipeline for epistasis and main
effect analysis in future research that can be extended to
various applications.

Additional file

Additional file 1: Table S1. Gene Ontology Enrichment Analysis.
(PDF 69 kb)
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