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Since its migration from the Asian honey bee (Apis cerana) to the European honey bee
(Apis mellifera), the ectoparasitic mite Varroa destructor has emerged as a major issue for
beekeeping worldwide. Due to a short history of coevolution, the host–parasite relation-
ship between A. mellifera and V. destructor is unbalanced, with honey bees suffering
infestation effects at the individual, colony and population levels. Several control solutions
have been developed to tackle the colony and production losses due to Varroa, but the
burden caused by the mite in combination with other biotic and abiotic factors continues
to increase, weakening the beekeeping industry. In this synthetic review, we highlight the
main advances made between 2015 and 2020 on V. destructor biology and its impact on
the health of the honey bee, A. mellifera. We also describe the main control solutions that
are currently available to fight the mite and place a special focus on new methodological
developments, which point to integrated pest management strategies for the control of
Varroa in honey bee colonies.

Introduction
The mite, Varroa destructor, has been the subject of thorough investigations, since the 1980s after its
introduction in Europe to Apis mellifera honey bee populations [1]. V. destructor continues its world-
wide expansion and has now been reported in most countries. In the last 10 years, new invasions were
noted in Hawaii [2], Reunion Island [3], Madagascar [4], Mauritius Island [5] and also African coun-
tries such as Uganda [6] and Ethiopia [7]. In early 2020, only Australia, several countries in Africa
and a few islands have yet to report the presence of V. destructor in their A. mellifera populations
[8,9]. Despite the extensive literature on the mite (see [10–12] for reviews), its biology and impact on
its honey bee host remain partially unknown. The scientific community has also put many efforts into
the development and validation of control methods to fight the deadly mite in A. mellifera colonies.
This review highlights the main findings revealed by the rather large corpus of literature published
between 2015 and early 2020 on V. destructor biology, the mite’s pathogenic effects, and solutions
developed to fight the mite.

Biology of Varroa destructor
Between 2015 and 2020, the behaviour of V. destructor, its genetics and physiology, have become
more precisely understood. Its life cycle can be separated into two phases: the phoretic phase and the
reproductive phase. The phoretic phase only concerns the female mite which uses the adult bee as a
‘transportation vector’ and food source. During this phase, bees unintentionally take part in the
spreading of Varroa within and between honey bee colonies. The reproductive phase begins when the
mite enters into an unsealed brood cell containing a 5th stage bee larva, to lay eggs. Recently,
Häußermann et al. revealed the possibility of a virgin mite beginning the phoretic phase. In that case,
the mite invades a brood cell, lays an unfertilised egg in a new comb, and mates with its male off-
spring [13]. This finding confirms that female Varroa do not need to mate to lay eggs, and thus, have
an arrhenotokous parthenogenetic reproduction system. While it was first thought that Varroa feeds
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on honey bee haemolymph, recent research shows that the parasite also feeds on the honey bee fat body [14].
Analyses of the whole-life transcriptome and proteome of the mite have helped to understand the gene expres-
sion and protein variations during its different life stages and have provided data for further investigations of
mite physiology [15,16]. The morphology of Varroa’s heart has been described, its heartbeats have been
recorded [17] and the sensory pit organs of the male have been scanned by electron microscopy [18], comple-
menting the morphological research on female pit organs [19]. The identification of the chemosensory recep-
tors on Varroa forelegs confirms the importance of their front legs in understanding their chemical
environment [20]. Iovinella and collaborators performed the proteomic analysis of the chemosensory organs of
the mites. This study identified novel semiochemical proteins, including odorant-binding proteins which are
particularly abundant in mouths and forelegs [21]. Further chemical ecology investigations have indicated that
the male Varroa detects female pheromones with its sensory pit organs present on their front legs [18]. All
these findings are important to better understand V. destructor mating behaviour, detection and invasion of
brood cells close to be capped. We know that V. destructor has the ability to mimic the cuticular hydrocarbons
of their A. mellifera hosts at different stages [22]. It seems that this mimicry can rapidly adapt as Varroa is able
to harbour the cuticular hydrocarbon profile of a new, artificially-given host [23,24]. Furthermore, V. destructor
from A. cerana are better in mimicking new hosts than V. destructor from A. mellifera [23]. To do so, Varroa
adapts its n-alkane:alkene ratio to fit with the honey bee’s chemical profile [25]. This mimicry stands as a
passive ability, because even when dead, Varroa continues to imitate host cuticular hydrocarbons [24].
Nevertheless, the mite needs to have access to the cuticular hydrocarbon of the host in order to adapt its own
cuticular hydrocarbons [24].

Varroa destructor genetics
V. destructor infestation of A. mellifera was described as two partially-isolated clones in early 2000 [26], but it
now seems that the genetic population of Varroa is more variable than expected [27]. Different haplotypes of
V. destructor can be found within a given apiary or colony, ensuring the genetic flow in the mite population
[28,29]. V. jacobsoni and V. destructor show very different evolutionary trajectories since their divergence [30].
Despite these differences, it seems that the two subspecies have a potential to hybridise [31]. If that is the case,
hybridisation events could result in a new species of Varroa, possibly more detrimental, that would become a
greater risk for honey bees.

Varroa-virus duo
The host-parasite relationship between honey bees and Varroa should actually be considered as a three-way
relationship, as Varroa presence is closely associated with several bee viruses in colonies [32]. However, clear
vectoring by Varroa has only been described for two viral species, deformed wing virus (DWV) and acute bee
paralysis virus complex (ABPV) [33–35]. Bee viruses have several routes of vertical and horizontal transmission
within the colony, but the vectoring ability of Varroa opens up new, very effective horizontal routes of trans-
mission [36,37]. In the last 5 years, new viruses and variants linked to Varroa have been discovered in honey
bees infested by the mite [38–42], and the association between DWV and the mite has been confirmed, but
only for specific DWV variants [2,32]. New variants and viral species have also been described specifically in
the mite, as demonstrated by VDV replication in the mite [43], in which, VDV-5, VDV-3 and VDV-2 can rep-
licate in V. destuctor and not in A. mellifera, suggesting that their presence in honey bees is due to the Varroa’s
feeding behaviour [38].
It is thought that some of the viruses infesting mites can change Varroa behaviour, which presents a new

perspective for finding targets to kill the mite [43]. Similarly to its impact on the virus community infecting
bees, the mite also alters the honey bee’s bacteriome [44,45], but the impact of such an association remains
unknown.

What can it do?
Impact of the mite at the individual level
The parasitism of honey bees by V. destructor decreases the body weight and water content of young emerging
bees [46]. The lowered weight of the future adult bee increases with the number of mite foundresses [47,48]. In
honey bees, the number of spermatozoids is correlated with drone body size [49]. By decreasing the size of
drones, Varroa induce a deficit in sperm production, and thus, in reproductive fitness [50]. Varroa also alters
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flying, homing and orientation abilities in foragers [51], which in turn, limits efficiency in their ability to
collect resources needed for colony development. Non-returning to the colony can also be considered as a
mechanism of defence from parasited bees. The impact of Varroa on bee behaviour may be explained by its
ability to alter neural processes [52], disrupting the bee-host’s non-associative learning abilities. Indeed, paras-
ited bees have a lower sugar responsiveness and a faster habituation to olfactory stimulation [52]. Moreover,
Varroa provokes the down-regulation of immune gene expression in emerging infested adults [45], as well as
proteomic changes in the honey bee’s immune response [53–55]. It disrupts the bee’s immune response by
interfering in the cascade immune response [56]. For instance, Varroa reduces the number of haemocytes cir-
culating in the haemolymph, and lowers the expression of prophenol oxidase involved in the synthesis of
melanin [57,58]. Both haemocytes and melanin permit the encapsulation of pathogens during infection or
wounding, and thus play a role in insect immune response and healing mechanisms [59]. The weakening of
honey bee immunity [60,61] may be linked to the finding that mites feed on fat bodies, given that these organs
play a major role in immunity [62].

The impact of Varroa coupled with other stressors of the colony
Varroa can interact with other biotic and abiotic stressors, such as environmental factors, other parasites and
pathogens, pesticides or viruses. Climate change induces longer periods of brood rearing in honey bee colonies
and foraging because of longer warm seasons. Longer brood period means more Varroa reproduction cycles
and may lead to an increase in mite populations [63]. Nosema infection reduces the effectiveness of bee
defences against the mite. In addition, neonicotinoid pesticides and Varroa both contribute to the decrease of
winter honey bee population of the colony [64,65]. Together with another neonicotinoid, imidacloprid, Varroa
decreases the bee’s flying ability [66]. Monchanin et al. [67] demonstrate the negative impact of Varroa
coupled with the neonicotinoid insecticide thiamethoxam on honey bee homing behaviour. Also, the
Varroa-virus duo plays a key role in the weakening of the colony [68]. Emerging adult bees that were parasi-
tised during the pupal stage show a higher infection rate of DWV compared with non-parasitised individuals
[45]. DWV infection induces pathological effects such as crumpled wings and reduced body size leading to
behavioural impairment. The DWV titer in honey bees increases as the immunity of the bee decreases [69].
DWV virus can also immunocompromise bees, which may result in a beneficial effect on Varroa reproduction [70].
As colonies are constantly exposed to different stressors at the same time, further research needs to focus on

the interaction between two or more stressors at the same time to investigate their combined impact on honey
bee fitness. For example, to determine interactions between co-occurring viruses and Varroa on honey bee
health.

Honey bee colony dynamics favours Varroa population growth
The population of V. destructor in a colony is directly related to the amount of brood and, by extension, the
colony’s population size. One way for a colony to decrease the mite population is to create a broodless period.
To do so, an increase in the frequency of the reproductive behaviour of swarming can be an adaptive defence
mechanism of the honey bee colony against the overpopulation of mites. [71] (Figure 1).
Moreover, the number of colonies within an apiary can be advantageous for mite populations. Indeed, col-

onies of high-density apiaries have a greater infestation rate than that of low-density apiaries [72]. Colonies
treated for Varroa can be reinfested when foragers rob food stores from a dying colony or drift into another
colony [73], and when drones rest in foreign colonies during the mating period [74].

What can be done?
Different approaches are used by beekeepers to control Varroa infestation of their colonies. Synthetic and
organic acaricides as well as essential oils provide good results to prevent colony losses and the latter, represent
interesting tools for organic beekeeping [75]. Depending on the country, methods may differ due to variations
in the laws governing the use of chemicals.

Chemical control
Conventional control using synthetic miticides has been used for more than 40 years against V. destructor [76].
However, only a limited number of molecules are available (Figure 2). They include the pyrethroids tau-
fluvalinate (e.g. Apistan®, Klartan®, Mavrik®) and flumethrin (e.g. Bayvarol®, Polyvar yellow®), the formamidine
amitraz (e.g. Apivar®, Apitraz®) or the organophosphorus coumaphos (e.g. Checkmite®, Asuntol®, Perizin®)
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[10,77]. All miticide products kill only Varroa on adult bees, as they cannot target the reproducing mites
hidden in the capped brood. To overcome this shortcoming, products made of strips releasing the acaricide
compound over time have been successfully developed and mites are killed when they emerge from the brood
cells. These strips are easy to use and efficient but have important limitations, like the resistance developed by
the mite and the drawback of accumulating as residues in bee products [78].
Mites are becoming increasingly resistant to acaricides [79–81]. Varroa resistance to fluvalinate is now wide-

spread [82], due to DNA mutations [83,84]. Molecular tools have been developed to detect this resistance in
Varroa populations [85,86]. A provisional solution to limit and temporally bypass Varroa resistance to

Figure 1. Impact of Varroa destructor parasitism on Apis mellifera honey bees.

Varroa’s impact can be described at individual, colony and population levels. Bold terms correspond to findings published

between 2015 and 2019.

Figure 2. Methods currently used or under development to treat honey bee colonies against Varroa destructor

parasitism.

Methods can be coupled within an integrated pest management scheme (IPM). VSH: Varroa-sensitive hygiene; MNR: Mite

non-reproduction.
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miticides is to switch between molecules with different molecular targets. Synthetic acaricides could then
provide good results for preventing colony losses [75]. Growing data have been published on acaricide residues
in honey bee colony matrices, particularly in wax, which have the chemical properties to store the used lipo-
philic acaricides at concentrations that could even be toxic to the bees [78,87,88].
Because of the adverse impact that conventional synthetic acaricides have on bees and bee products world-

wide, beekeepers are increasingly using organic control methods. Organic methods are usually less efficient
compared with conventional synthetic acaricide treatment, but still effectively control mite populations [89].
The most common are essential oils such as thymol, and organic acids like oxalic acid and formic acid [77]
(Figure 2). Organic acids are naturally found in bee products and have lower risk for triggering resistance in
mites [77], but can still have some negative effects on bees, such as decreasing worker populations, increasing
capped brood removal or decreasing drone sperm quality [90].
The use of organic control mostly involves flash treatments and thus needs a broodless colony to be efficient

in killing phoretic Varroa. As such, organic product applications coupled with mechanical methods to exclude
the brood can provide a good Varroa control solution [91,92]. Queen caging or brood removal can artificially
create a broodless colony that keeps the mites on adult bees, making them accessible to acaricides [91,93]. A
recent study suggests that while brood removal may result in a decrease in honey production, this loss can be
compensated for by avoiding the use of acaricides, enabling a better price of hive products to be achieved [94].
Recently, a new formulation, to be used when brood is present and based on strips releasing oxalic acid, was
tested successfully for Varroa control, creating a real opportunity in the organic control of Varroa [95].

Need for new active compounds
Although several products that efficiently control the mite are available, there is an urgent need for new active
compounds because of the risk of Varroa resistance. A screening approach combining in silico screening
(virtual screening of a chemolibrary of homology sequence models) with in vitro experiments to search for
selectively inhibiting Varroa acetylcholinesterase was successfully developed leading to the discovery of new
compounds that have the potential to become new treatments against the mite [96]. Lithium chloride has also
been demonstrated as a potential compound against Varroa [97], as well as other essential oils and their combi-
nations [98]. Recently, Bendifallah et al. [99] demonstrated the biological activity of sage essential oil as a
Varroa control. However, currently there are no registered products available based on these new bioactive
sources. The difficult part about the search of new acaricides to control the mite is that the compounds need to
be safe for the bees. Development of in vitro rearing of Varroa under laboratory conditions will provide an effi-
cient platform for rapidly screening activity of new compounds which are potentially useful in Varroa control.

Alternative approaches to the use of chemical treatments
Different techniques have been previously described to limit Varroa infestation, such as the ‘trapping comb
technique’ or the use of screen bottom boards to trap the mites. A recent study showed that splitting colonies,
which mimic swarming events that can control Varroa growth, could be an effective method for decreasing the
mite populations [71].
Biological control methods using parasitic fungi have been developed successfully in controlled experiments

[100,101]. Hamiduzzama et al. [100] showed varying virulence of entomopathogenic fungi on V. destructor.
Unfortunately, most field experiments on honey bee colonies were not yet successful as the fungi can cause det-
rimental effects on brood development, queens and worker mortality as well as decreasing of weight in newly
emerged adult bees [100]. Another experiment using a Beauveria strain showed an effect on Varroa mortality
in the field but no visible negative effect on honey bee health [101]. To date, there is no available method on
the market for beekeeping using this technique.
The use of predators has shown mixed results and was unsuccessful when applied to honey bee colonies, as

was recently the case in an evaluation of the predatory mite Stratiolaelaps scimitus, which demonstrated inter-
esting results in vials but no effect on honey bee colonies [102].
Hyperthermia has been used since the 1970s, and is based on the better heat resistance of the bees compared

with Varroa [103]. Artificially heating the hive stops Varroa reproduction and kills the parasite, without
harming the bees, because Varroa reproduction is significantly compromised at 36.5°C and mites die at 38°C
[104,105]. Heating systems have been proposed to control the mites in different parts of the world, and there
are a few systems available on the market at the moment [103,106].
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One other option is to use RNA interference to knock down specific genes of Varroa, which has been
studied since 2012 with successful results [43,107,108]. To date, there is no product available for beekeepers
[109] (Figure 2).

We have the tools for integrated pest management (IPM)!
A variety of tools available for beekeepers make the development and use of the IPM concept in Varroa control
possible (Figure 2). IPM is partly based on limiting pesticide use to when it is only necessary. This requires
regular monitoring of the Varroa population levels, in order to detect critical infestations and decide on a treat-
ment. As critical infestation levels differ worldwide, these must be defined for specific regions and biotopes.
Efficient but time-consuming techniques exist to diagnose a Varroa infestation [110]. Mites can be counted

in the brood, on adults or on debris at the bottom of the hive. Brood examination consists of opening capped
cells to verify Varroa infestation by removing the pupae and counting mites [77,111]. Mite count on adult bees
is better documented and increasingly used. It consists of collecting 200–300 bees, separating the mites from
bees with a surfactant substance, such as chloroform, alcohol, icing sugar or acaricide treatment, and counting
the removed mites [77]. Debris examination can be operated with a sticky sheet placed on the floor of the hive
with a thin wire mesh on top of it to prevent bees from cleaning out the fallen mites. Fallen mites stick to the
board and honey bees are not able to remove the parasite from the hive [77]. As it is a time consuming and
tedious method, a stratified method has been proposed to make an accurate estimation of the mites [112].
New techniques, using technological developments such as gas sensors or computer vision systems, are being

tested to estimate Varroa infestation [113,114]. They have yet to be transferred to the field and to the bee-
keeping community.

Selective breeding of naturally resistant or tolerant honey bee populations
In parallel to the development of control solutions to fight the mite, quantitative geneticists and bee breeders
have started to search for a longer-term, sustainable solution: selecting honey bee populations that can survive
mite infestation without treatments. Several surviving honey bee populations have been identified or bred
throughout the world (for a review of these efforts, see [115–117]). Examples of large-scale use of such popula-
tions in beekeeping are scarce [118,119] and currently limited by the lack of tools that allow selection of surviv-
ing honey bee colonies in the field.
Such tool development relies on the identification of specific phenotypes that characterise these populations.

To do so, a better understanding of the mechanisms that undergird the ability to survive is necessary.
Surviving can occur through the expression of resistance or tolerance traits, with resistance involving a reduc-
tion in Varroa growth, while tolerance reduces parasitic burden despite similar levels of Varroa growth [120].
A wide range of traits involved in honey bee survival to Varroa have been identified, and mainly relate to resist-
ance mechanisms [121]. Tolerance has so far been suggested only in cases (e.g. in the Gotland population in
Sweden) where colonies are able to support Varroa burden due to mechanisms of tolerance or resistance to the
viruses that are associated with Varroa infestations [42,122].
Recent investigations highlight the importance of behavioural defences displayed by Varroa resistant honey

bee populations (Figure 3). Hygienic behaviour specifically targeting Varroa-infested capped brood cells (VSH,
Varroa-sensitive hygiene) has been confirmed as a major trait contributing to reduced mite population growth
in European and African bee populations [123–125]. Two other adult bee traits, grooming [126] and recapping
[127,128], have been confirmed as important mechanisms for Varroa resistance. At the colony level, swarming
can enhance resistance in surviving populations living in the wild [71,129]. Brood traits could also be involved
in resistance abilities, if they confer hypersensibility of the brood that leads to the accelerated death or an
increased rate of removal, thereby preventing the spread and reproduction of Varroa [110,130]. Altogether,
these traits participate in limiting mite population growth as characterised by high levels of mite non-
reproduction within the brood.
Research has mostly focused on host traits to explain the survival of untreated colonies, but the parasite itself

may play a central role too. Indeed host fitness can directly be affected by parasite fitness, as suggested by
studies showing that Varroa infesting surviving colonies are genetically distinct from Varroa infesting neigh-
bouring susceptible colonies [131,132].
Progress in understanding the mechanisms that underlie resistance abilities along with the recent boost in

genomic tool development has opened the possibility of devising a diagnostic tool of resistance based on
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phenotype, directly accessible to beekeepers. So far, available methods are very tedious and difficult to apply in
the field on large numbers of colonies. This is true for measures of mite population growth, mite non-
reproduction or hygienic behaviours. The recent identifications of molecular and protein markers of several
traits related to resistance (grooming, hygiene, VSH and mite non-reproduction), although very limited in
overlap between different studies [121], opens up the possibility for marker-assisted selection [133–140]. It
would allow beekeepers to easily select their colonies for on the basis of interesting resistance traits when the
phenotype are difficult to characterise. To date, there are no products available on the market and research is
continuing in this area.
Another perspective for the development of selection tools originates specifically from a detailed understand-

ing of the mechanisms of VSH behaviour, a trait in which honey bees are able to specifically detect
Varroa-infested brood. Strong evidence suggests that the recognition step involves the detection of Varroa
infestation-associated semiochemicals [16,141–144]. Evaluation of the bee response following application of
such candidate compounds in colonies, by acting as a reliable proxy of the VSH activity of the colony, could
result in a practical field tool to phenotype resistant colonies.

Figure 3. Main behavioural and physiological traits involved in the natural resistance of honey bees to the parasite

Varroa.

VSH (Varroa-sensitive hygiene), recapping and SMR (suppressed mite reproduction) contribute to MNR (mite

non-reproduction). Together with grooming and swarming these traits lead to colony resistant through low mite population

growth.

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology and distributed under the Creative Commons

Attribution License 4.0 (CC BY-NC-ND).

51

Emerging Topics in Life Sciences (2020) 4 45–57
https://doi.org/10.1042/ETLS20190125

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


Conclusion
Despite the amount of research done on the A. mellifera–V. destructor host-parasite model, Varroa remains a
major issue for beekeeping throughout the world. Future developments, both in fundamental and applied
research, are necessary to generate sustainable control solutions for this deadly parasite.

Summary
• The latest findings on the physiology of Varroa and its behaviour provide a better understand-

ing of its negative impact on bee health.

• IPM methods can be used to limit the use of acaricides to control Varroa. The selection of
resistant or tolerant honey bee populations could bring a sustainable mite control solution for
beekeeping and wild honey bee populations.

• Research needs to focus on the development of control methods, especially new active com-
pounds to counter the mite’s resistance against acaricides and to efficiently fight V.
destructor.
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