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Abstract: Mangrove secondary metabolites have many unique biological activities. We identified
lead compounds among them that might target KRASG12C. KRAS is considered to be closely related
to various cancers. A variety of novel small molecules that directly target KRAS are being developed,
including covalent allosteric inhibitors for KRASG12C mutant, protein–protein interaction inhibitors
that bind in the switch I/II pocket or the A59 site, and GTP-competitive inhibitors targeting the
nucleotide-binding site. To identify a candidate pool of mangrove secondary metabolic natural
products, we tested various machine learning algorithms and selected random forest as a model
for predicting the targeting activity of compounds. Lead compounds were then subjected to virtual
screening and covalent docking, integrated absorption, distribution, metabolism and excretion
(ADME) testing, and structure-based pharmacophore model validation to select the most suitable
compounds. Finally, we performed molecular dynamics simulations to verify the binding mode
of the lead compound to KRASG12C. The lazypredict function package was initially used, and the
Accuracy score and F1 score of the random forest algorithm exceeded 60%, which can be considered
to carry a strong ability to distinguish the data. Four marine natural products were obtained through
machine learning identification and covalent docking screening. Compound 44 and compound 14
were selected for further validation after ADME and toxicity studies, and pharmacophore analysis
indicated that they had a favorable pharmacodynamic profile. Comparison with the positive control
showed that they stabilized switch I and switch II, and like MRTX849, retained a novel binding
mechanism at the molecular level. Molecular dynamics analysis showed that they maintained a
stable conformation with the target protein, so compound 44 and compound 14 may be effective
inhibitors of the G12C mutant. These findings reveal that the mangrove-derived secondary metabolite
compound 44 and compound 14 might be potential therapeutic agents for KRASG12C.

Keywords: mangrove natural products; KRASG12C; machine learning; molecular docking; drug
discovery; virtual screening; molecular dynamics

1. Introduction

Plants are an important source of drugs and many compounds extracted from plants
have been shown to have excellent medicinal properties [1]. In China and India, drugs
extracted from plants have been widely put into use. For example, ethyl acetate compounds
obtained from the flowers of Cassia fistula [2]. Mangroves are widely distributed in tropical
and subtropical beach areas and grow a variety of plants with rich medicinal value, such
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as Scyphiphora and Clerodendruminerme [3]. Additionally, mangroves have unique
biochemical properties that produce a large number of novel natural products and complex
skeletons, and various extracts of mangrove plants have been used to treat tumors and
bacterial infections [4]. Mangrove secondary metabolite extracts contain a large number
of medicinal compounds similar to tannins, steroids, triterpenes, saponins, etc. [5]. These
medicinal compounds play a unique role in the fight against human and animal pathogens.

KRAS targets have long been considered typically non-targetable targets in drug
discovery, circulating in active and inactive GTPase [6–8]. RAS is a GTPase that cycles
between GTP-bound (active) state and GDP-bound (inactive) forms through the actions
of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs).
In the active state, KRAS can maintain affinity with many proteins, among which RAF
and PI3K pathways may be the most typical [9–11]. Although the KRAS protein is closely
associated with cancer, recent studies have shown that the KRAS protein can cause onco-
genic mutations around activation sites (e.g., G12C, G12D, etc.), leading to downstream
RAFs and overexpression of PI3K proteins. This leads to a range of cancerous lesions
and over-proliferation of cancer cells [12]. In KRAS mutations, mutations in Cys12 cause
the KRASG12C protein to lose its inherent catalytic activity and at the same time to lose
the GTPase-activated protein (GAP). The enhanced catalytic effect leads to the activation
of its structure and disrupts the inactive state of KRAS, causing cancer cells to promote
proliferation. Lung cancer is the leading cause of cancer deaths in Western countries. In
the course of the current study, although we have made substantial progress in treating
genetic subtypes (e.g., patients with EGFR mutations or ALK-translocated lung cancer),
the most common (30% genetically defined subtypes) and effective treatment strategies
are still lacking. Cys12 mutations caused by codon 12 mutations account for nearly 50%
of patients with KRAS mutations [13–15]. Therefore, drugs that target KRASG12C may
have important therapeutic effects. Although KRAS is one of the first oncogenes to be
discovered, it has two features that make it nearly impossible to be suppressed. 1. KRAS
binds to GTP and GDP with a dermo maline affinity, which makes it difficult to develop
nucleotide-based inhibitors [16]. 2. The hydrophobic pocket of KRAS is shallow, resulting
in the insufficient affinity of the compound with the KRAS protein, resulting in off-target
effects and increasing the difficulty of finding high-affinity allosteric inhibitors [17].

In 2013, Shokat and his colleagues used a new strategy for Cys12 for KRASG12C [18].
They suggested that covalent bonds formed with Cys12 residue could interfere with the
activity of KRASG12C, thereby locking it into an inactive state bound to GTP, thereby
downregulating the downstream signaling pathway. After that, the researchers developed
a series of covalent inhibitors (ARS1620, AMG510, MRTX849) [19–22], that passed with
Cys12 and switch II (amino acids 60–68) binds and occupies an allogeneic pocket on KRAS,
and in these findings, the hydrophobic fraction of the new inhibitor penetrates switch II. In
the allogeneic pockets below the ring area (residue His95, Tyr96, Gln99), these inhibitors
are highly selective for the state in which KRASG12C binds to GTP and can maintain the
inactivity of the KRASG12C protein in the formation of its covalent complex.

To begin with, we performed preliminary virtual filtering based on ligand structures.
Then, we constructed training and test sets based on a selection of KRASG12C inhibitors from
the ChEMBL library and trained a random forest classifier to prospectively predict a library
of candidate compounds that were then predicted to be active by covalent screening. More
effective chemical structures than positive compounds were screened by comprehensive
evaluation of docking score and MM-GBSA score, and lead compounds were selected by
ADME toxicity analysis. A compound adapted to KRASG12C was selected and it can be
considered that it may be an inhibitor of KRASG12C. Under this process, we can predict the
lead components that may target KRASG12C in the mangrove natural product library under
the algorithm that is most suitable for the training set and then select the compounds with
better docking effects than the positive control for ADME property analysis to reduce false
positives in ADME screening as much as possible. Pharmacophore validation demonstrated
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that the lead compound and the positive control had more common features, and kinetics
further validated the binding activity of the selected compounds (Figure 1).
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Figure 1. A virtual screening workflow (VSW) was used to identify molecules that hit KRASG12C.
A workflow overview of machine learning, covalent screening, elimination, and toxicity (ADMET)
approaches for pharmacophore validation and MD simulations.

2. Result
2.1. Candidate Compound Library Data

The dataset for external use was from the ChEMBL database, and all data excluded
compounds that did not have semi-concentration inhibition activity. To obtain the distribu-
tion of compound species in the mangrove secondary metabolite library, we calculated the
structural similarity score (volume score) between each compound in the dataset. The vol-
ume score is between 0 and 1, and a higher value indicates higher structural similarity. The
following figure reports the volume score between the two compounds. The two-volume
score was obtained by fractional normalization based on the backbone of the first or second
compound. Additionally, the result demonstrates the cluster analysis of the corresponding
volume score sizes for different compounds in the mangrove natural product library, where
most compounds have a similarity score of less than 0.4. Figure 2A reveals three sets,
compounds 0–50, compounds 50–100, the high similarity of compounds 125–200 may be
due to the presence of co-backbone structures in the mangrove secondary metabolite pool
(Figure 2B–D).

2.2. Machine Learning Models

To screen the mangroves in the laboratory to find inhibitors that can better target
KRASG12C, we used machine learning technology to better predict the activity of these com-
pounds on the target protein. Machine learning models were developed using the random
forest model and the various algorithms included in the lazypredict package. All data were
cross-validated by 10x, and from our result, it is clear that different predictive statistics
for all machine learning algorithms were implemented using training data alone. At a
threshold of 6.5um, the random forest algorithm performed best among all candidate clas-
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sification algorithms, with the highest Accuracy and F1 score, indicating that the random
forest algorithm had the best-fit value. (Figure 3) Therefore, we chose the random forest
classification algorithm in Weka (version 3.8) to train the pubchem molecular fingerprint
and analyze its 882 features. However, in real-world analysis, many features are complex
and have noise implications for the analysis. Therefore, with the Rank and CfsSubsetEval
modules, we removed features that were not related to structure–activity effects and finally
analyzed the remaining 404 features, improving the performance of the random forest
algorithm. Consequently, from a variety of classifiers, we screened and applied the random
forest classifier that best fit the dataset, showing its good discriminative power.
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2.3. Random Forest Classification Model

After identifying the machine learning classifier likely to best fit the ChEMBL dataset,
we performed a new round of parameter tuning for the random forest algorithm, which
helped to better identify new molecules with similar properties that bind to the target
protein. The descriptor set obtained by the feature selection method was used to establish a
classification model, and the machine learning algorithm of random forest classification
was used to evaluate the molecular descriptor set to be selected in detail. Confusion
matrices are visualization tools used in machine learning to show accuracy assessments in
supervised learning. The records in the dataset were summarized in matrix form based
on the two criteria for the actual category and the classification judgments made by the
classification model. The random forest model was suitable for both true positives and true
negatives (Figure 4A,B), with a false positive number of 9 and a false negative number of
24 in the training set. The number of false positives in the test set is 3 and the number of
false negatives is 8. Compared with true positives and true negatives in the matrix, good
classification effects can be shown. A good binary classification model usually has good
sensitivity and resolution, accuracy, and a larger area under ROC. If both sensitivity and
resolution are high, the accuracy will be biased towards the highest value. Figure 4D shows
the area under the ROC curve of the machine learning algorithm. It can be seen that it
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has a high ROC value (ROC = 0.965), which partly indicates that it has a strong ability
to distinguish between molecular descriptors. Additionally, it is sufficient for the activity
differentiation of mangrove natural product libraries. In Tables 1 and 2, the predicted values,
recall values, F-scores, and MCC scores of the active and inactive compound classifiers
are given, and the values of the average model after the mixture of the two are given. The
predicted, recall values, and F-scores of the active and inactive compounds in the training
set were all close to 1, showing excellent sensitivity, with an average model MCC value of
0.825. While the average model in the test set has better overall statistics, a better balance is
achieved between recall and specificity.
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Table 1. Prediction values for the training set for the random forest classifier.

Class Precision Recall F-Measure MCC

Active 0.946 0.993 0.969 0.825
Inactive 0.962 0.758 0.847 0.825

Weighted Avg 0.949 0.949 0.946 0.825

Table 2. Predicted values for the test set of a random forest classifier.

Class Precision Recall F-Measure MCC

Active 0.795 0.939 0.861 0.289
Inactive 0.600 0.273 0.375 0.289

Weighted Avg 0.746 0.773 0.740 0.289

2.4. Chemical Space

The chemical space of the mangrove secondary metabolite library is highly diverse,
consisting of aldehydes, alcohols, and esters. The data set for this study was established
using compounds extracted from secondary metabolites of mangroves collected in pub-
lished papers. The data set was constructed with Schrodinger software, and a total of 281
molecules from different bacterial groups were collected. Principal component analysis
was performed on secondary metabolic natural products in mangrove forests (Figure 4C).
When analyzed using molecular fingerprint descriptors, it can be seen that KRASG12C is
spatially well-arranged, active and inactive molecules are well-arranged and are located
in large clusters with wider distributions. Splitting the test data in the compound library
into the 80% training dataset and 20% test dataset shows the considerable overlap between
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the two sets (Figure 4C), which shows that the classifier is validated based on COM with
similar intervals.
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2.5. Prediction of Prospects

Candidate compounds were scored by a random forest model and compounds labeled
as active were selected for subsequent docking experiments. From this point of view,
compounds are docked based on reliability, which may provide a degree of confidence for
these predictions.

2.6. Docking

Molecular docking can better reveal how compounds bind to targets. The selected
lead compounds were covalently docked in the Schrödinger Suite 18.4. After the ligand
minimization step, the interaction energy of each compound at each docking position was
calculated. The compounds with better performance than the positive control MRTX849
score were selected to show the most favorable conformation. It can be seen that the final
selected compound is better combined in the preset binding pocket and wrapped tightly, so
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it is judged that its off-target possibility is not high. Figure 5 shows 2D and 3D interaction
patterns of compounds 44 and 14 docking. Among them, the 2D interaction diagram of
compound 44 can be seen in Figure 5A and the 3D docking mode diagram in Figure 5C.
For compound 14, its two-dimensional interaction diagram and three-dimensional docking
model diagram are shown in Figure 5B,D. It can be seen that both compounds are linked
to the H95 cryptocodon of KRASG12C and form an irreversible covalent bond with Cys12.
Both compounds are connected to the switch II region, where the KRASG12C protein can be
inactivated by regulation. Compound 14 had a solid docking conformation by interacting
with Gly60 to form a hydrogen bond, forming a hydrogen bond with Gly10. Compound
44 is firmly present by forming the ΠΠ interaction with Arg68 and a hydrogen bond
interaction and forming hydrogen bonds with Peo34, surrounded by hydrophobic bonds
in the pocket. The results of validation and docking are consistent, which is qualitatively
expected for an inhibitor of KRASG12C. The RMSD values of compound 44 and compound
14 with the best docking effect are 7.9196 and 9.1083, respectively, which are in line with
the docking agreement among all the compounds with better docking effects, showing that
the overlap with MRTX849 fluctuates less (Table 3).
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docking structure diagram. (A) Two-dimensional binding mode of compound 44 and protein complex;
(B) two-dimensional binding mode of compound 14 and protein complex; (C) three-dimensional
binding mode of compound 44 and protein complex; (D) three-dimensional binding modes of
compound and protein complexes. The purple sticks are hydrogen bonds and the red sticks are ΠΠ
cation interactions.
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Table 3. Docking RMSD between ligand pose and crystal coordinates for compounds with better
docking results than positive controls.

Name 2D Structure RMSD Docking Score

8
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2.7. MM-GBSA

Binding free energies calculated by molecular mechanics generalized born surface area
(MM-GBSA) indicate that the compensation between binding enthalpy and entropy plays
a crucial role in drug–protein binding. For the alternative lead compound, calculations
were also performed in the MM-GBSA module in the Schrödinger Suite 18.4. The values of
MM-GBSA for each compound were obtained, and the compound superior to the positive
control MRTX849 was selected (Figure 6). We describe the surrounding kinetic environment
by analyzing the conformation of protein ligands, but the calculations are too complex to
be easily controlled. We selected conformation by analyzing intermolecular MM-GBSA
scores and binding fractions, which not only focus on binding but also visualize it by a
fraction. The MRTX849 compound has an MM-GBSA score of −3.58, and compound 127
(score = −55.97), compound 44 (score = −6.35), compound 14 (score = −32.68), compound
31 (score = −25.13), and compound 15 (score = −4.43) are higher than the MRTX849,
indicating that these compounds may have a better conformation than the positive control.
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2.8. ADME

ADME (Absorption, Distribution, Metabolism, and Excretion) is a key aspect for
predicting the pharmacodynamics of the molecule under study which could be used
as a future lead molecule for drug development. Swiss-ADME is a website (https://
www.swissadme.ch, accessed on 17 December 2021) that allows users to draw individual
ligands or drug molecules or contains molecules from pubchem smiles data and provides
information such as fat solubility (iLOGP, XLOGP3, WLOGP, MLOGP, SILICOS-IT, Log
Po/w), Water Soluble Log S (ESOL, ALI, SILICOS-IT), drug-like rules (Lipinski, Ghose,
Veber), and other parameters. ADME prediction studies for design compounds are shown
in Table 4. Swiss-ADME is based in part on Lipinski, Ghose, Veber, Egan, and the five
different rules identified by Muegge give the physicochemical properties of a possible
oral drug candidate [23–26]. The logarithmic S reference values for medium soluble and
highly soluble molecules are −4 to −6 and −2~−4, respectively. Based on the results, all
molecules are classified as medium soluble and highly soluble. ADME drug capability
assessment was performed on four selected compounds, where compounds 127 and 31
violated Lipinsky’s rule of five, but compound 44 and compound 14 exhibited good ADME
properties (Figure 7) and were reserved for the next evaluation and submitted for bone

https://www.swissadme.ch
https://www.swissadme.ch
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toxicity analysis, where the benzene backbone of compound 31 showed stronger toxicity
(Figure 8) (https://mcule.com/apps/toxicity-checker/, accessed on 19 January 2022). The
next evaluation was skipped. All of these parameters infer that compounds 44 and 14 are
close to a drug-like molecule.

Table 4. ADME properties of ligands selected from the Marine Natural Products Library.

Molecule MW Rotatable
Bonds

H-Bond
Acceptors

H-Bond
Donors

ESOL
Log S TPSA WLOGP GI Ab-

sorption
log Kp
(cm/s)

14 241.28 5 5 2 −1.93 71.7 0.95 High −7.02
31 323.35 2 4 3 −2.69 85.16 −0.38 High −7.58
44 437.53 4 5 4 −4.66 99.02 3.01 High −6.6

127 315.25 3 7 2 −3.04 120.03 1.54 High −7.11
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2.9. Pharmacophore Analysis

During the process of virtual screening, the pharmacophore model can be used to
characterize the active conformation of the ligand molecule by conformational search and
molecular superposition, and the possible mode of action between the receptor and the
ligand molecule can be deduced and explained accordingly. Based on the ranking and
scoring results of the pharmacophores given by the platform (Table 5), the best pharma-
cophores we selected (rank score = 52.937) have four hydrophobic characteristics and three
hydrogen bond receptors. The results confirm that both drug candidates match the selected
model, with compound 44 being the best match to the pharmacophore, matching the three
hydrophobic interaction features and one hydrogen bond acceptor feature (green) of the
model (Figure 9). It can be assumed that both compounds are more similar to the known
inhibitors in terms of distribution of spatial pharmacodynamic curves.

https://mcule.com/apps/toxicity-checker/
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Table 5. Feature composition and ranking score of 10 pharmacophore hypothesis models generated
based on common features of positive compounds.

ID Features Rank Direct Hit Partial Hit Max Fit

1 HHHHAAA 52.937 111 000 7
2 HHHHAAA 52.338 111 000 7
3 HHHHAAA 51.858 111 000 7
4 HHHHHAA 51.669 111 000 7
5 HHHHHAA 51.530 111 000 7
6 HHHHAAA 51.409 111 000 7
7 HHHHHAA 51.359 111 000 7
8 HHHHHAA 51.352 111 000 7
9 HHHHAAA 51.242 111 000 7
10 HHHHAAA 51.236 111 000 7
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2.10. Root Mean Square Deviation (RMSD) Analysis

To obtain the equilibration time for each simulated protein–ligand complex during the
MD simulation, the RMSD of the skeleton was calculated. RMSD plots are typically used
to evaluate the time it takes for a system to reach structural balance and to estimate the
duration of running a simulation. RMSD is an important parameter for estimating changes
or changes in molecular conformation. Due to sudden changes in structural conditions,
the RMSD value of analog complexes, including references, increases suddenly, which is
related to protein crystallization. The latter effect is to be expected since, in the crystal
structure, the protein is rigid, and when it dissolves in the tank it resumes its dynamic
movement.

A complex system with a time frame x should have an RMSD that can be calculated
from the following equation [27,28].

RMSDx =

√
1
N ∑N

i=1(r
′
i(tx))− ri

(
tre f

)
)2 (1)

Here, the RMSDx is the calculation of RMSD for the specific number of frames, N is
the number of selected atoms; tre f is the reference or mentioned time, r′ is the selected atom
in the frame x after super imposing on the reference frame, and tx is the recording intervals.

2.11. Root Mean Square Volatility (RMSF) Analysis

As shown in Figure 10A, the entire KRASG12C system is in equilibrium in the first
62 ns of the simulated 100 ns (RMSD value is 0.52 nm), and then fluctuates to the RMSD
of 0.50 nm after 62 ns and in equilibrium in the remaining 38 ns; the entire system can
eventually be in equilibrium in this 100 ns without much fluctuation in the process. For the
system of compound 14, the RMSD of the system is finally stable at 0.23 nm and the RMSD
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of its ligand is stable at around 0.16 nm. However, in the 100 ns simulation process, it can
be seen that there are four relatively long-term fluctuations. Interestingly, the system finally
stabilizes and is 0.27 nm lower than the RMSD value of compound 44 (Figure 11A). To
determine the deviation of the ligand from the initial posture and the degree of movement
of the protein residues, the RMSF values of all sampled conformations during the 30 ns
simulation were also calculated. RMSF fluctuates greatly, indicating that the residue is
unstable; otherwise, the residue is stable. The RMSF of the residue is i ccalculated from the
following equation [29].
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As shown in Figure 10B, the RMSF range of the entire system is between 0.05 and
0.3 nm. From this numerical range, the flexibility of the entire complex system is relatively
low, and each residue does not fluctuate too much. The RMSF value of the residue ranged
from 0.05 to 0.15 nm, indicating that the binding site of compound 44 with the target
fluctuated significantly and the binding was stable. The RMSF of another system is basically
consistent with the overall surface line of RMSF of compound 44. After visualization, the
RMSF of compound 14 is significantly larger on the key residues Cys12, Arg68, and Tyr96.
The flexibility of these residues shows that compound 14 is not as effective as compound
44 (Figure 11B).
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2.12. MM/PBSA Analysis

For molecular mechanics, Poisson–Boltzmann surface area (MM/PBSA) is an efficient
and reliable method for calculating the free energy of small inhibitors bound to their pro-
tein targets. In general, low binding energy values indicate that the binding between the
ligand and the target is good, and the results of the g_mmpbsa are shown in Figure 10C,D.
In Figure 10C we can see that for the key residues Cys12, Arg68, and Tyr96, the energy
contribution of Cys12, Arg68, and Tyr96 is −15.05, −15.21, and −18.02 kj/mol, which also
corresponds to the interaction forces shown in the molecular docking section results. It is
shown that the interaction force acts in this system. In terms of the specific energy contri-
bution of key residues Cys12, Arg68, and Tyr96, the energy value of compound 14 is not
very good. These values are −10.03, −11.21, and −12.02 kj/mol, respectively (Figure 11C).
In addition, in the energy decomposition of compound 44 and the target (Figure 10B), the
total binding energy is −181.601 kj/mol, the energy of van der Waals is −290.5 kj/mol, the
energy of electrostatic energy is 12.155 kj/mol, the energy of polarization is 115.96 kj/mol,
and the final energy of SASA is −19.209 kj/mol. Overall, compound 44 binds very well
to KRASG12C. The total combined energy of compound 14 is −162.601 kj/mol, van der
Waals energy is −290.5 kj/mol, electrostatic energy is 22.155 kj/mol, polarization energy is
105.96kj/mol, and the final energy of Sasa is −19.209 kj/mol (Figure 11D).

3. Discussion

KRAS is the cancer gene with the most mutations in a single place and is the first to be
identified to have a causal relationship with human cancer [30]. Mutations in KRAS are
common among the three deadliest cancers: pancreatic, colorectal, and lung cancers [31].
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Frequent mutations in the KRAS gene lead to increased demand for drug development, but
due to its strong affinity with GTP and lack of deep hydrophobic pockets, the hydrogen
bond formed by molecular docking has difficultly accurately anchoring its active pocket,
which makes the development of corresponding small molecule inhibitors very difficult.
However, recently, after the single mutation KRASG12C was identified as an inhibitor
that could be used in clinical trials. There have been an increasing number of studies on
KRASG12C, the most common KRAS mutation in lung cancer individuals.

In recent years, due to the low affinity of the binding form formed by the hydrogen
bond and the limited binding efficiency of the active pocket, people have gradually begun
to focus on covalent docking. Covalent bonds are directly connected to the target residues;
thus, providing a more stable and higher affinity than hydrogen bonds. Therefore, in this
paper, due to the special form of KRASG12C protein, we chose covalent screening as a way
to find lead compounds, hoping to find new inhibitors from the mangrove natural product
library through machine learning high-throughput screening.

In this study, 281 published small molecules targeting KRASG12C were selected from
the ChEMBL database and all of them were converted into pubchem molecular fingerprints.
Molecular descriptors were evaluated with the lazypredict package in Python. The random
forest classifier had higher AUC values among all the classifiers used. This means that
compared to other machine learning methods, random forest outperforms all methods on
the KRASG12C dataset, so the random forest classifier chosen in this study seems suitable
for prospective prediction. Therefore, we characterized the data in Weka (version 3.8) to
make the algorithm fit the data better, the AUC area under the ROC curve of the random
forest classifier indicates that the model has a good degree of discrimination, and the
real number of filters in the confusion matrix with positive numbers for the training and
test sets also indicate that the model has moderate to high reliability for forward-looking
predictions. The mangrove secondary metabolite library in the laboratory contained a
large number of molecules with different frames, which showed the diversity of candidate
compounds. PCA results showed that the mangrove natural product library had a broader
space of chemical properties. After the compounds screened by the random forest classifier
were introduced into the covalent screening module of Schrödinger Suite 18.4, the control
compounds with higher scores were selected for further analysis by comparison with the
positive control MRTX849. From the docking results, it seems that the carbon–carbon
double bond and the imine group can form a covalent bond with the Csy12 group of
KRASG12C through Michael addition reaction, and these warheads were proved to be
feasible in this study. Binding modes and molecular interactions reveal the mode of action
of the selected ligands for KRASG12C. The comparison with the positive control showed
that the warhead of compound 14 covalently bound to the receptor was similar, which
may instruct us to modify it for better effect in the following experiments. Interestingly,
the skeleton of compound 44 is similar to that of the positive control MRTX849, which
allows compound 44 to have more favorable interactions and better probe itself into the
shallow hydrophobic pocket of KRASG12C to interact with the better receptor combination.
Toxicity testing shows that the structure of compound 14 has no components that are toxic
to humans, but compound 44 has groups that may be harmful to humans, which is very
important for future research. We may be able to optimize the functional groups of the
lead compounds to provide them with better performance when targeting KRASG12C. In
addition, quantum/molecular mechanics (QM/MM) calculations can be performed on the
complexes, and finally, the conformation is selected from the docking simulations [32].

After years of development and calibration, the QM/MM hybrid method has be-
come an indispensable tool for studying the kinetics of various chemical and biochemical
processes. QM/MM is mainly used to characterize and study the transition states and
activation energies of enzymatic reactions. Conformations computed in this way describe
the surrounding environment in more detail. However, the calculations become more
complex and not easy to control. We chose the conformation by analyzing the interaction
between the molecule and the binding moiety, which focuses not only on the binding
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mode but also the moiety to be referenced. However, some compounds change mating
conformations due to changes in the environment, regardless of environmental influences.
Machine learning to resolve inhibitors is an emerging technology that is an important
branch of artificial intelligence to extract useful and thematically relevant data when ana-
lyzing large samples. In this study, we focused on the classification analysis and principal
component analysis of machine learning, allowing the compounds in the data set to pass
activity prediction, so that the virtual screening can obtain more drug-like results. At
the same time, in the machine learning analysis, if the docking score is more balanced by
improving the docking score, it can also accurately filter out potential lead compounds
from the virtual screening [33]. Compared with the QSAR analysis under the traditional
algorithm [34], the active structure–activity relationship model constructed by machine
learning can better fit the data and can have better performance in terms of robustness and
prediction accuracy [35]. We, therefore, identified compounds in the mangrove secondary
metabolite pool that might target KRASG12C, which exhibited favorable pharmacokinetic
properties and docking effects and also received high scores in machine learning models.
In the following research, its inhibitory activity can be verified experimentally to better
obtain its inhibitory effect in animals and humans.

All in all, in terms of statistical machine learning methods, docking scores, and in silico
ADMET studies, the results are satisfactory, indicating that virtual screening strategies
combined with machine learning as well as structure-based molecular docking can improve
the efficiency and accuracy of screening of target compounds.

4. Materials and Methods
4.1. Protein Pretreatment

We used the PDB website (https://www.rcsb.org/, accessed on 1 May 2021) to select
and download KRASG12C’s structure (PDB id:5F2E) [36], and then imported it into the
Schrödinger Suite 18.4 to perform protein processing preparation. Pre-processing took
place in the prepwizard module (Schrödinger Inc., New York, NY, USA), flipping pairs of
Asn, Gln, and His by 180◦. The terminal X angle of the residue was sampled to optimize
the hydrogen bond network, and the hydrogen on the hydroxyl and thiols was sampled
to optimize the hydrogen bond network. After hydrogen bond optimization, we used
impact’s imperf module and OPLS-2005. It also minimizes the structure of the protein; thus
allowing the entire structural system to relax. In a protein minimization protocol, including
all atoms and pure hydrogen atoms, the conditional criterion for termination was based on
the root mean square deviation of the heavy atoms from their initial positions. At the same
time, all water molecules were removed under the premise of optimizing hydrogen bonds
and retaining the necessary water molecules at the minimum stage.

4.2. Machine Learning
4.2.1. Data

The dataset constructed to train the machine learning classifier was extracted and
queried separately in the ChEMBL database, and the reference protein we chose was
ChEMBL2189121. The activity set was defined as compounds with a molecular weight < 1000,
and the activity type (Standard type = “IC50”) that detected inhibition had a STAN-
DARD_UNITS value of “NM”. After removal of duplicate structures and no experimentally
determined definitive IC50 values, the active set included 98 structures. Standard Relation
=“>” for the inactive compound set, which means that the construct did not show any
activity at the concentrations used for screening. The inhibitory activity type of the resulting
structure was also IC50, and its STANDARD_UNITS was also “NM”. After deduplication,
the inactive set contained 72 structures. The electrical properties of the compounds were
restored to electrical neutrality for both test and training sets. All machine learning classi-
fiers use L1 regularization to weed out unimportant descriptors. The area under the curve
(AUC) of the receiver operator characteristic (ROC) and the number of true positives (TP),

https://www.rcsb.org/
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true negatives (TN), false positives (FP), and false negatives (FN) were used as metrics for
the classification model.

4.2.2. Machine Learning Models

Some of the molecular descriptors in the sample were noisy and irrelevant. We
needed to remove them without missing too much information to reduce the likelihood
of overfitting. From here, a condition was introduced to remove the unwanted descriptor,
which measures the correlation between the descriptor and the sample output by the
classifier [37]. For this purpose, we used a feature selection project, which selected the
appropriate descriptor in a sample that contains a small amount of information without
losing a lot of information. This study used the Rank method in the Select Attributes
module in Weka [38] to rank each feature in descending order and then delete the lower-
ranked feature. At the same time, the CfsSubsetEval method was used to predict the degree
of complexity between each feature and the predicted feature for classification.

4.2.3. QSAR Modeling

The QSAR classification model can reflect the molecular descriptor as a correspondence
between the independent and dependent variables, each representing the category of
the corresponding sample (KRASG12C inhibitory activity). Machine learning algorithms
can group observations or instances into classes. In structure–activity relationships, it
tended to be complex and nonlinear, in which case QSAR modeling had shown excellent
performance [39]. Lazypredict Pack (https://github.com/shankarpandala/lazypredict/
tree/master, accessed on 12 January 2022) uses a variety of machine learning algorithms
to verify which algorithm is better suited for a dataset in Python. The machine learning
software Weka (Waikato Knowledge Analysis Environment) [38] version 3.8 was used to
perform a random forest algorithm selected by lazy prediction. Weka implemented 10
cross-validations to get the best fit on the training set.

4.2.4. Principal Component Analysis

Principal component analysis (PCA) was performed on the mangrove secondary
metabolite library data set to assess its chemical space. We used the Scikit-Learn 40
(0.22.2) for the PCA algorithm. The pubchem fingerprint reduces the feature dimension to
3. Molecular descriptors and fingerprints were from the Cheminformatics Library Rdkit (1
March 2020).

4.3. Covalent Docking

To further screen candidate compounds, the resulting candidate compounds were
subjected to covalent docking virtual screening (CovDock-VS) based on the KRASG12C

structure (PDB ID:5F2E). Molecular docking studies were conducted using the Maestro
program. The ray structure of the KRASG12C protein (PDB ID:5F2E) with a resolution of
1.40 Å was selected for covalent docking. The ligands were prepared in Schrödinger’s
LigPrep module (Schrödinger Inc., New York, NY, USA). Protonation and ionization
states of various stereoisomers, tautomers, and ligands were generated at pH 7.4 using
an ionizer. Finally, the energy of the ligand was minimized using the OPLS2005 force
field. The LigPrep-generated ligands were docked into the receptor grid in a covalent
docking manner and the Michael addition reaction was selected as the reaction equation.
The active functional group of the ligand was limited to 5 Å of the active amino acid
residue, according to the previously obtained binding sites. A receptor grid with X = 14.9,
Y = 10.5, and Z = 14.3 was prepared. The energy was minimized after docking, and each
ligand outputs up to three optimal poses. Unless otherwise noted, all docking results were
visually screened and conformations with the best docking scores were retained. CovDock
used Cys12 as a covalently mated nucleophilic residue that conjugates to CovDock’s preset
alkyne hydrocarbons (carbonyl activation). Ligands with reactive functional groups in the
range of 5 Å form covalent bonds specified by the reaction. Ligands were selected and

https://github.com/shankarpandala/lazypredict/tree/master
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ranked based on the Glide score of the reaction complex binding pattern [40]. To ensure
the accuracy of the docking protocol, we chose the superposition module in maestro to
calculate the docking RMSD between the ligand’s pose and crystal coordinates, while using
MRTX849 as a control.

4.4. ADME

ADME’s analysis of the pharmacodynamics of this pharmaceutically acceptable small
molecule was of great significance. The Swiss ADME Server (http://www.swissadme.ch/,
accessed on 17 December 2021) evaluates lead compounds retained after machine learning
and covalent docking screening. This was described based on the specification SMILES [41].
The ADME properties of the selected compound were calculated by the website. The main
relevant parameters such as pharmacokinetic properties and drug solubility were taken
into account. The observed attribute values are shown in Table 3.

4.5. Pharmacophore Modeling and Matching Validation

By using the Discovery Studio platform (Discovery Studio 4.5, Accelrys, Co., Ltd., 175
Wyman Street, 02451 WALTHAM, MA, USA), we spatially aligned three known positive
compounds and generated 10 hypothetical pharmacophore models based on molecular
common characteristics. We selected hydrogen bond receptors, hydrogen bond donors,
and hydrophobicity features as model pharmacodynamic features. The minimum distance
was set between pharmacodynamic features within the model to 2.97 Å and the best
conformation method was applied to generate the potential conformation of the positive
compound. According to the pharmacophore ranking score given by the platform, the
optimal pharmacophore was selected to match the two candidate molecules to assess
whether the candidate molecules were consistent with the common pharmacodynamic
characteristics of known inhibitor molecules.

4.6. Molecular Dynamics (MD) Simulation

After docking, an MD simulation of the compounds 14 and 44 with KRASG12C was
used to check the stability of the compound in the binding bag. Then, the GROMACS 2019.1
package [42], amber 99sb-ildn force field (https://www.gromcs.org/About_Gromacs, ac-
cessed on 26 December 2021), and single point charge (SPC216) model were used for
molecular dynamics simulations of 100 ns. To guarantee the total charge neutrality of
the simulated system, a corresponding number of sodium ions are added to replace the
water molecules in the system to produce a solvent cartridge of appropriate size. Then, the
periodic boundary condition (PBC) was applied in the three directions of the system [43].
Using the amber99sb-ildn force field, the force field parameters obtained for the entire atom
can be found on the Acpype website [44] (https://www.bio2byte.be/acpype/, accessed
on 29 December 2021). The first pass (EM) minimizes the energy of the entire system
at 50,000 steps below 300 K. Then, through MD simulations with position constraints,
collected by NVT (constant particle count, volume, and temperature), and finally by NPT
(constant particle number, pressure, and temperature) [45]. In addition, we balanced en-
zymes, ligand molecules, and solvents. Among them, we carried out non-standardized
residual treatment of covalent bonds in the system.

4.7. MM-PBSA

Poisson Boltzmann Surface Area is open-source software, and g_mmpbsa was primar-
ily used to calculate the free energy of binding between the receptor and the inhibitor after
MD [46]. As a scoring function, MM-PBSA has been used in computational methods for
drug design. In this study, MM-PBSA was used to determine the binding free energy of
KRASG12C with molecules 44 and 14, respectively.

The following Equation (2) describes the binding free energy:

Gbinding = Gcomplex −
(

Gprotein + Gligand

)
(2)

http://www.swissadme.ch/
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The free energy of the protein–inhibitor complex was represented by the G_complex, the
free energy of the protein in the solvent is represented by the G_protein, and the free energy
of the inhibitor in the solvent is represented by the G_ligand.

5. Conclusions

In summary, marine natural products are an important source of lead compounds,
especially mangroves and their secondary metabolites have many potential antitumor lead
compounds. In the present study, we constructed a random forest classifier with excellent
discriminatory power and sensitivity and used it to predict mangrove-derived compounds
with potential KRASG12C inhibitory activity. Subsequently, further covalent docking and
MM-GBSA analysis results confirmed the stable binding ability of two mangrove-derived
compounds 14 and 44. To investigate the commonalities in the potency of our two selected
mangrove compounds and previously reported KRASG12C inhibitors, a pharmacophore
model based on molecular common features was also used to further extend our study
and corroborate the potential of both compounds to inhibit KRASG12C. Next, our work is
focused on improving the biochemical and pharmacological profiles of mangrove secondary
metabolite compounds 14 and 44 through further medicinal chemistry work and structural
studies. Although the development of KRASG12C inhibitors is still considered a challenging
task in the field of drug discovery and development, our work expands new horizons for
this field.
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