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Extracellular matrix (ECM) components form a dynamic network of key importance for cell
function and properties. Key macromolecules in this interplay are syndecans (SDCs), a fam-
ily of transmembrane heparan sulfate proteoglycans (HSPGs). Specifically, heparan sulfate
(HS) chains with their different sulfation pattern have the ability to interact with growth fac-
tors and their receptors in tumor microenvironment, promoting the activation of different
signaling cascades that regulate tumor cell behavior.The affinity of HS chains with ligands is
altered during malignant conditions because of the modification of chain sequence/sulfation
pattern. Furthermore, matrix degradation enzymes derived from the tumor itself or the
tumor microenvironment, like heparanase and matrix metalloproteinases, ADAM as well
as ADAMTS are involved in the cleavage of SDCs ectodomain at the HS and protein core
level, respectively. Such released soluble SDCs “shed SDCs” in the ECM interact in an
autocrine or paracrine manner with the tumor or/and stromal cells. Shed SDCs, upon bind-
ing to several matrix effectors, such as growth factors, chemokines, and cytokines, have
the ability to act as competitive inhibitors for membrane proteoglycans, and modulate the
inflammatory microenvironment of cancer cells. It is notable that SDCs and their soluble
counterparts may affect either the behavior of cancer cells and/or their microenvironment
during cancer progression.The importance of these molecules has been highlighted since
HSPGs have been proposed as prognostic markers of solid tumors and hematopoietic
malignancies. Going a step further down the line, the multi-actions of SDCs in many levels
make them appealing as potential pharmacological targets, either by targeting directly the
tumor or indirectly the adjacent stroma.

Keywords: proteoglycans, syndecans, shed syndecans, heparan sulfate, cancer, tumor microenvironment,
pharmacological targeting

TUMOR MICROENVIRONMENT AND HSPGs
Extracellular matrix (ECM) is a dynamic non-cellular network of
macromolecules present within all tissues and organs. It is com-
posed of a large collection of biochemically distinct components
including collagens, elastin, fibronectin (FN), laminins, tenascin,
vitronectin, thrombospondin, secreted protein acidic and rich in
cysteine (SPARC), various proteoglycans (PGs), and hyaluronan
(HA). These molecules of unique properties are able to provide
the necessary mechanical structure for the cellular components
but also contribute in several processes that are crucial for tissue
morphogenesis, differentiation, and homeostasis (1, 2).

Cancer research has expanded and increasingly evolved over
the years but there are still many unanswered questions due to
the biological complexity of this pathological condition. One
aspect of this complexity is attributed to the essential role of the
stromal tissue in cancer progression. The tumor microenviron-
ment is supported by a vascular network and contains several
ECM molecules, fibroblasts, migratory immune cells, and neural
elements, all within a milieu of cytokines and growth factors (3–
5). The crosstalk between the cancer and the host stroma cells,
via autocrine and paracrine complex mechanisms, recruits and

activates the neighboring normal cells. This results in the re-
organization of the stroma and it is often referred to as “reactive
stroma” (6, 7). Both activated stromal and cancer cells exhibit a
significant role in the re-organization of ECM in order to facilitate
tumor cell growth, migration, and invasion (8, 9). PGs are among
the key player components of stroma- and cancer-derived ECM.
They interact with several structural components and matrix-
associated proteins [growth factors, cytokines, and growth factor
receptor (GF-R)] and during cancer progression their expression
in tumor microenvironment is markedly modified (10). Heparan
sulfate proteoglycans (HSPGs) can be found both at the cellu-
lar and extracellular matrices. The principal representatives of
HSPGs are syndecans (SDCs), which have a single transmem-
brane domain; glypicans, which are linked to the outer plasma
membrane by a glycosylphosphatidylinositol (GPI) anchor; and a
group of secreted PGs, including perlecan, agrin, collagen XVIII,
and the testican family (11, 12). They are present almost in all cell
types and tissues and they act as regulators not only in normal
but also in pathological conditions (13). Their regulatory role is
attributed to their ability to collaborate with other matrix com-
ponents contributing to basement membrane structural integrity
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and cell–cell as well as cell–matrix interactions. HSPGs, via their
covalently bound heparan sulfate (HS) chains bind cytokines,
chemokines, morphogens, and growth factors, serving also as
signaling co-receptors (11, 14).

In the present review, we have addressed our attention to SDCs.
There are four types of SDCs in mammals and probably in all
vertebrates, whereas all the invertebrates and primitive chordates
possess only one (15, 16). SDCs possess three distinct struc-
tural domains: the ectodomain with an N-terminal signal peptide
and several sites for glycosaminoglycan attachment, which have a
low sequence homology among the different types of SDCs, the
highly conserved single transmembrane domain, and the short C-
terminal cytoplasmic domain. Apart from HS chains, chondroitin
sulfate (CS) GAG-attachment in SDC-1 and -3 is also reported (17,
18). The majority of cell types with the exception of the erythro-
cytes express at least one type of SDC and in several cases all four.
Specifically, SDC-1, mainly expressed in epithelia as well as in some
leukocytes, is responsible for mesenchyme condensation during
development. On the other hand, its structural counterpart, SDC-
3 is present in neural tissue and the developing musculoskeletal
system. SDC-2 is distributed in mesenchymal tissues, fibroblasts,
liver, and developing neural tissue, whereas SDC-4 is ubiquitously
distributed (16, 19).

Syndecans are involved in a variety of complex signaling events
through which they play regulatory roles for cell proliferation,
differentiation, adhesion, and migration (8). Using mutated mice
with altered HSPG core proteins expression as a tool, some impor-
tant functions for SDCs have been identified. Results highlighted
that the mice in which SDCs-1, -3, or -4 have been depleted,
develop normally, are fertile, and have no obvious pathologies.
Based on these observations, it is stated that the redundancy of an
individual SDC has no critical role during development (20–23).
Notably, SDC-1 null mice had epithelial cell migration defects,
whereas SDC-3 null mice exhibited impaired radial migration and
neural migration in development as well as partial resistance to
obesity. A possible implication of SDC-3 has occurred in satellite
cell maintenance, proliferation, and differentiation (24). On the
other hand, SDC-4 is implicated in processes involving vascular
defects in fetal placental labyrinth and poor angiogenic response in
postnatal wound healing (14, 24). We should note at this point that
SDC-2 mutants have not been reported so far, but it has been estab-
lished that SDC-2 plays an important function in the angiogenic
process (25). Moreover, Noguer et al. showed that SDC-2 impairs
angiogenesis in human microvascular endothelial cells (26).

SYNDECANS AS CELL SURFACE MEDIATORS IN CANCER
BIOLOGY
FUNCTIONS MEDIATED BY SYNDECANS–ECM INTERACTIONS
Syndecans exhibit a great variety in their localization and function
and as a result, they are considered as key regulators of tumorige-
nesis and tumor progression (27). It is well established that SDCs
may serve as biomarkers for early detection or severity of cancer.
As presented in Table 1, they are expressed in a variety of cancer
types, apart from SDC-3 that is not implicated in cancerous con-
ditions. To note, SDCs possess diverse roles each time based on the
type and stage of cancer, acting either as inhibitors or promoters
of tumor progression (28, 29).

Several ECM macromolecules, such as FN, tenascin-C, collagen,
thrombospondin, laminin, glycoproteins, etc., are documented to
interact with SDCs. These specific interactions depend on the
length diversity and extent of GAGs chains sulfation, which is actu-
ally different among cell types. On the other hand, the heparin-
binding motifs of ECM macromolecules are responsible for SDCs–
matrix interactions (19). Such close dynamic relations initiate
signaling cascades, that in turn result in altered functional cellu-
lar properties. In highly metastatic colorectal cancer cells, SDC-2
is enhanced by stromal secreted FN promoting cell adhesion via
simultaneous up-regulation of α2,β1-integrin, and FAK phospho-
rylation (87). Accordingly, high expression levels of SDC-4 and FN
may be the underlying molecular alteration occurred in osteosar-
coma, that lead to an aggressive phenotype (81). Furthermore,
tenascin-C impairs the adhesive properties of FN by blocking
SDC-4 co-receptor function in integrin signaling, thereby trig-
gering tumor cell proliferation (88). Moreover, a peptide derived
from tenascin-C, strongly activates β1-integrin functional activity
through binding with SDC-4. These interactions lead to induced
apoptosis selectively in hematopoietic tumor cells, which express
adequate amounts of both integrin α4β1 (very late antigen-4,
VLA-4) and SDC-4, driving FN-mediated effects (83). SDC-1
and -4 in collagen microenvironment create a complex interplay
between integrin α2β1 and membrane type 1 metalloproteinase
[MT1-matrix metalloproteinases (MMP)] in K-Ras mutated cells,
promoting cell invasion and metastasis (89). Moreover, SDC-1 is
essential for cell motility and invasion in collagen substrate via the
modulation of RhoA and Rac activity in squamous cell carcinoma
(90). Thrombospondin-1, a homotrimeric protein, is implicated
in cancer cell adhesion, migration, and invasion as it activates the
transforming growth factor beta (TGF-β) (91). On the top of that
glioma cells secrete high levels of thrombospondin-1, which bind
to ανβ3,α3β1 integrins,and SDC-1,participating in carcinoma cell
motility and migration (92). Notably, SDC-1 expression in associ-
ation with the high expression of thrombospondin-1 is mediated
through NF-kB signaling effector (93).

SYNDECANS AS CO-RECEPTORS FOR GROWTH FACTORS SIGNALING
Syndecans are associated with several cell surface receptors and
therefore regulate dynamically the binding of their adjacent lig-
ands, forming active complexes. Some of the most common regu-
latory interactions of SDCs involve growth factors, integrins, and
other signaling molecules (Figure 1). Fibroblast growth factors
(FGFs)-mediated signaling via FGFRs regulate development and
homeostasis. Characteristically, in breast carcinoma cells SDC-1
and SDC-4 regulate the formation of FGF-2/HSPG/FGFR-1 com-
plex, indicating the importance of altered HS chains sulfation
pattern during malignant conditions (94). Further investigation
of the underlying mechanism indicated that SDC-1 and FGF-2,
but not FGFR-1, share a common transport route and co-localize
with heparanase in the nucleus at mesenchymal tumor cells (95).
However, the effect of SDC-1 translocation on malignant cells, it
has not yet clarified. On the other hand, it is clearly stated in the
literature that HS chains of SDC-1 in premalignant epithelial cells
interact with both FGFR-1 and -2 signaling complexes and this
interaction is directly associated with the progression of malig-
nancy (96). Moreover, in melanoma cell lines the expression of
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Table 1 | Overview of syndecans expression involving their origin, state, and processing enzymes.

Syndecan

member

Origin Origin of shed syndecans Origin of tumor microenvironment

derived shed syndecans

Shedding

enzymes

Syndecan-1 Epithelial cancers such as oral mucosa

(30), uterine cervix (31, 32)

Cervical cancer (33)

Myeloma cells (37–41)

Pancreatic carcinoma (47)

Hodgkin’s lymphoma (49)

Breast cancer (33, 52, 53)

Lymphoblastoid cells (57)

Lung cancer (59)

Bladder epithelial carcinoma

cells (54)

Epithelial cells (34)

Fibroblasts and endothelial cells

(42–44)

MMP-9 (33)

MMP-7 (45)

MMP-2 (33)

MT1-MMP and

MT3-MMP (50)

ADAM17 (54)

Squamous cell carcinoma of neck, head,

and lung (35, 36)

Laryngeal cancer (46)

Malignant mesothelioma (48)

Multiple myeloma (51)

Hepatocellular and colorectal carcinoma

(55, 56)

Murine mammary carcinoma (58)

Ovarian cancer (60)

Breast cancer (61–63)

Pancreatic cancer (64)

Gastric cancer (65)

Hematological malignancies (66, 67)

Myeloma (66)

Gallbladder cancer (68)

Syndecan-2 Melanoma (69) Colon cancer (70) Microvascular endothelial cells (71) MMP-7 (70)

Colon cancer (72) Epithelial cells (73) MMP-2

Prostate cancer (74) MMP-9 (71)

Lung Lewis carcinoma (75)

Microvessels of mouse glioma cancer (71)

Esophageal squamous carcinoma (76)

Syndecan-4 Breast cancer (63, 77) Cervical cancer (33) Stromal cells (10) MMP-9 (33)

Melanoma (78) Lung epithelial carcinoma (54) Lung epithelial cells (54) ADAMTS-1 (79)

Urinary bladder carcinoma (80) Bladder epithelial carcinoma

(54)

ADAMTS-4 (79)
Osteosarcoma (81) ADAM17 (54)

Hematopoietic malignancy (83) Plasmin and

thrombin (82)Colon carcinoma (84, 85)

Testicular germ cell tumors (86)

SDCs CS/HS chains appears to be modulated by FGF-2, that in
turn facilitates signaling (97).

Vascular endothelial growth factor (VEGF) and insulin growth
factor (IGF) are key regulators of vascular, organ, and neural devel-
opment, but are also related to angiogenesis and cancer progres-
sion (98). In multiple myeloma, SDC-1 promotes endothelial cells
proliferation and survival by modulating VEGF–VEGFR-2 signal-
ing pathway (99). In addition, VEGF expression is significantly
upregulated in cells expressing high levels of heparanase, leading
to decreased nuclear SDC-1 and an aggressive tumor phenotype
(100). In another line of studies on human breast carcinoma,
SDC-1 ectodomain, but not SDC-4, regulates ανβ3 integrin–SDC
signaling complex (77, 101). Although the engagement between
SDC-1 and ανβ3 integrin occurs through the SDC-1 ectodomain,
the activation is correlated with the cytoplasmic domain. On top
of that, the extracellular interaction of SDC-1 with ανβ3 inte-
grin promotes the docking of IGFR with SDC-1 ectodomain. The
formation of IGFR/SDC-1/integrin complex seems to be a cru-
cial regulator for integrin-mediated effect in tumor cell metastasis

and tumor-induced angiogenesis (102). On the other hand, in
mouse fibroblasts, constitutive association of SDC-1 with β5 inte-
grin appears to be important for ανβ5-dependent signaling (103).
According to the above data, a recent study presented that vascular
endothelial-cadherin induces SDC-1 complex with IGFR and the
subsequent crosstalk between ανβ3 and VEGFR-2 on endothelial
cells during angiogenesis (104).

Epidermal growth factor (EGF), IGF, and platelet-derived
growth factor-BB (PDGF-BB) are key players in several malig-
nancies. In human mesothelioma, the presence of EGF, IGF, and
PDGF-BB seems to regulate the levels of SDCs and these variations
in the expression of SDCs are correlated with the growth factor
signaling activation by an auto-regulatory loop mechanism (105).
Histological immunostaining in patients with non-small cell lung
carcinoma demonstrated that the expression of SDC-1 and EGFR
is associated with patient survival (106). On the other hand, the
low expression of SDC-1 stimulates the ovarian cancer cells inva-
sion, mediated by heparin-binding EGF (HB-EGF) through a
urokinase-independent mechanism (60). Moreover, EGF-family
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FIGURE 1 | An overview of the functional properties of syndecans in
cancer cells and the adjacent tumor microenvironment. (A) Cancer cells:
(i) syndecans interact with various ECM macromolecules derived either from
stromal cells or tumor cells. Such interactions lead to integrin-mediated
altered functional properties such as cell proliferation, adhesion, migration,
and invasion. On the other hand, transmembrane syndecans interact with
growth factors (GFs) via their HS chains and subsequently act as co-receptors
for the respective growth factor receptor (GF-R). In both cases, integrins can
co-interact with these complexes and as a consequence to mediate different
signaling pathways. (ii) Syndecan shedding is a process that involves the
proteolytic cleavage of their ectodomain near the plasma membrane by

sheddases. It is also reported that the shed syndecans compete with their
transmembrane counterparts for soluble GFs. Shedding of syndecans
contributes to cancer progression and especially to the crosstalk between the
tumor cells and their host microenvironment. Exosomes, extracellular
vesicles that are secreted in high amounts in tumors, retain both heparanase
and syndecan-1 as cargo within exosomes and subsequently influence not
only the behavior of the tumor microenvironment within the tumor niche and
distant sites, but also the growth of the metastasizing cells. (B) Tumor
microenvironment. Heparanase plays a distinct role in the shedding of
syndecans by cleaving HS chains promoting the shedding via sheddases. This
action results in induced tumor growth, angiogenesis and metastasis.

ligands are essential for multiple myeloma cell growth via bind-
ing with HSPGs and especially with SDC-1, which is abundantly
expressed in this malignancy (107). It is also of great impor-
tance to point out the role of EGFR/IGFR signaling pathways in
the expression of SDCs-2 and -4 in hormone-dependent breast
cancer. The variations in the expression levels of SDCs, medi-
ated through EGFR/IGFR signaling pathways, are correlated also
with the migratory potential of breast cancer cells (108). Further-
more, the abundant PDGF-BB in cell microenvironment stim-
ulates fibroblasts migration, inducing the level of SDC-4 (109).
On the contrary, PDGF-mediated signaling in glioma cells initi-
ates an induction of migration via a SDC-4-independent action
(110). Reduced levels of SDC-4 in non-seminomatous germ cell
tumors are related to their metastatic potential, whereas stromal
staining of SDC-4 in testicular germ cell tumors is correlated with
angiogenesis (86). SDC-2 binds to TGF-β via HS chains and pro-
motes TGF-β signaling (111). In fibrosarcoma cells, TGF-β2 via
Smad2 promotes cell adhesion and this function is directly mod-
ulated through SDC-2 (112). SDC-1 expression in breast cancer
stroma fibroblasts regulates cell proliferation, angiogenesis, and
cell motility. On the other hand, SDC-2 seems to exert antifibrotic

effect by promoting caveolin-1-mediated TGF-βRI internalization
and inhibiting TGF-β1 signaling (44, 61, 113).

SHED SYNDECANS IN CANCER BIOLOGY
As part of the normal turnover, SDCs undergo regulated pro-
teolytic cleavage of their extracellular domain near the plasma
membrane into the extracellular milieu. There it can be diffused
away from the cell, be part of the ECM or remain soluble. In
the soluble state, it can influence the surrounding or distal cells
(37). This process is known as “shedding” and it happens under
physiological conditions. However, shedding may be increased in
response to stimuli (37, 114). The shed SDC not only downregu-
lates signal transduction, but also converts the membrane-bound
receptors into soluble effectors and/or antagonists. The remnant
core protein at the cell surface loses its ability to bind ligands
and can be further processed via intramembrane cleavage by the
presenilin/γ-secretase complex (37).

SYNDECAN SHEDDASES
All mammalian SDC family members can be cleaved by extracel-
lular proteases. The MMPs are zinc-dependent endopeptidases
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that play an important role at different stages of cancer. Sev-
eral studies have shown that the expression of MMPs is upreg-
ulated during cancer progression, and it is directly associated
with poor clinical prognosis (115). MMPs have been incrimi-
nated to shed the extracellular domain at membrane-proximal
sites. For example, MMP-9 has been implicated in the stromal
cell derived factor-1 (SDF-1)-mediated shedding of SDC-1 and
SDC-4 in HeLa cells (33). It has been reported that matrilysin
(MMP-7) as well as the membrane-associated metalloproteinases
MT1-MMP and MT3-MMP are responsible for SDC-1 cleavage,
whereas the gelatinases MMP-2 and -9 cleave SDCs-1 and -2
(50). The ADAMTS (disintegrin-like and metalloproteinase with
thrombospondin motifs) family is also implicated in SDC shed-
ding. It has been reported that both ADAMTS-1 and -4 cleave
SDC-4 near the first GAG-attachment site that eventually results
in decreased cell adhesion and promotion of cell migration (37,
79). In addition, ADAM17 has been reported to shed SDC-1 and
-4, effect that is diminished following ADAM17 knockdown (54).
It is also worth noticing that human SDC-4 is cleaved by the serine
proteases plasmin and thrombin (82). Shedding can occur at dif-
ferent cases and different sites at the core protein of SDCs. Focused
studies on the shedding mechanism will improve our knowledge
regarding their potential implication in cell function. An overview
of the documented shed SDCs and the respective sheddases in
various cancer types is presented in Table 1.

REGULATORY MECHANISMS OF SYNDECAN SHEDDING
Syndecan shedding is regulated by a variety of extracellular stim-
uli including growth factors (116), inflammatory chemokines (33,
45), bacterial virulence factors (117, 118), heparanase (39), insulin
(119), oxidative stress (120), and others (37). In all cases, the cleav-
age occurs through direct action of the extracellular proteases,
sheddases. The exact mechanism on the extracellular stimuli that
influence them to mediate shedding is still unknown.

Several growth factors like EGF, TGF-α, HB-EGF, and
amphiregulin induce the release of SDCs-1 and -4 in a con-
centration dependent manner (116). A step further, thrombin
receptor and EGF-mediated shedding is associated with the acti-
vation of the ERK/MAPK pathway (116, 120). Although, it is
reported that protein kinase C (PKC) activation by the phorbol 12-
myristate 13-acetate (PMA) induces SDC-1 shedding in myeloma
cells and that its inhibition reverts this effect, PKC signaling cas-
cade is not involved in EGF- and thrombin-mediated shedding
(37, 121). Furthermore, FGF-2 is reported to enhance the shed-
ding of SDC-1 in pancreatic carcinoma cells. The overexpression
and activation of matrilysin MMP-7 in these cells has been related
with the FGF-2 stimulatory effect on MMP-7 along with SDC-1
shedding (47, 122).

Another aspect of shedding regulation involves the heparanase,
an endoglycosidase that degrades HS chains. Increased expression
of heparanase is highlighted throughout the literature in a great
number of tumor types, associated with angiogenic and metasta-
tic potential of tumor cells (123). Upregulation of heparanase
expression or exogenous addition of recombinant heparanase to
myeloma cells stimulates SDC-1 expression and shedding (39,
124). Interestingly, it is reported that the HS chains of SDCs are
able to coordinate the ectodomain cleavage. According to Ramani

et al., the attached HS chains of SDCs may suppress the activity of
heparanase and subsequent its shedding (125).

Intracellular regulatory mechanisms play also important roles
in an agonist-induced shedding. Notably, SDC-1 cytoplasmic
domain interacts with the inactive GDP-bound form of Rab5, a
small GTPase that regulates intracellular trafficking. Rab5 triggers
the conversion from the inactive GDP-bound to active GTP-bound
state in response to shedding promoters. According to Hayashida
et al., a dominant negative form of Rab5, without the ability to
switch between active and inactive state, inhibited the SDC-1 pro-
teolytic cleavage, stating that Rab5 is a critical regulator of SDC-1
shedding acting as an on–off molecular switch (126). It has been
also reported that intracellular trafficking is actually a key regulator
of SDC-1 shedding (126). Many growth factors are also involved
in SDC-2 shedding, since treatment of microvascular epithelial
cells with EGF, FGF-2, or VEGF induced this processing (71). It is
also likely that SDC-1 shedding upregulates the SDC-2 synthesis
affecting positively the proliferation of the cancer cells (127).

FUNCTIONAL INSIGHTS OF SYNDECAN SHEDDING
The effects of SDCs shed ectodomain have been incriminated in
several steps of cancer progression. Studies have pinpointed solu-
ble SDC-1 ectodomain in the serum of lung cancer patients (59),
Hodgkin’s lymphoma patients (49), and myeloma patients as well
as within the ECM of the myeloma microenvironment (40, 41).
In breast cancer, it is stated that the shed SDC-1 is derived largely
from the host fibroblasts of the tumor microenvironment. To con-
tinue, based on studies in ARH-77 human lymphoblastoid cells,
shed SDC-1 is established to promote tumor growth and progres-
sion in vivo,mediated by the crosstalk between tumor and host cells
(57). Moreover, MT1-MMP-induced SDC-1 shedding inhibits cell
migration in HEK293T cells (50) and cell proliferation in T47D
breast carcinoma cells (52).

The significance of SDC shedding in malignancies is well docu-
mented in myeloma cells. As stated above, soluble SDC-1 is present
at high levels in the serum of myeloma patients, promoting the
growth of myeloma tumors in vivo. This observation renders shed
SDC-1 as an indicator of poor prognosis in myeloma (38, 66, 123,
128). In addition, heparanase seems to play a distinct role in the
shedding of SDCs in myeloma. It mediates shedding by cleaving
the less sulfated regions along the HS chains creating fragments
of 10–20 residues, promoting tumor growth, angiogenesis, and
metastasis (129, 130). It is also documented that heparanase ini-
tiates the growth of myeloma cells and promotes bone metastasis
by increasing the size of blood vessels within the tumor (37, 131–
133). The basic idea is that the shed SDC-1 binds to growth factors
derived from the tumor and concentrates them in the tumor
microenvironment, promoting their signaling activity (Figure 1).
On the other hand, upregulation of heparanase in the tumor
microenvironment leads to elevated active levels of the intracel-
lular effector ERK (p-ERK), and in turn increased expression of
VEGF and MMP-9 (123). These effects are mediated not only from
the high phosphorylation of ERK, but also due to the diminished
levels of SDC-1 in the nucleus, leading to increased levels of acety-
lated histone H3 and eventually facilitating the transcription of
VEGF and MMP-9 (100). As a result, MMP-9 cleaves SDC-1 from
the cell surface and therefore interacts with growth factors like
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hepatocyte growth factor (HGF) and VEGF, whose expression is
already stimulated by heparanase (134). Then, the “loaded” with
growth factors shed SDC-1 binds to ECM macromolecules, such
as FN and collagen, rendering these growth factors available in the
tumor microenvironment even in distal sites. As a consequence,
shed SDC-1 mediates the signaling of bound growth factors lead-
ing to a strong downstream signaling to host cells, triggering the
microenvironment to support aggressive tumor growth (57).

Another aspect of heparanase action involves its cooperation
with SDC-1 that regulates the biogenesis and function of the exo-
somes. These lipid bilayer bound extracellular vesicles are very
aggressive especially when they are secreted in high amounts in
tumors. Their cargo including proteins, mRNA, and miRNA, are
of outmost importance for intracellular communication within
tumor and host cells (135, 136). In many cases, exosomes derived
from tumor cells are reported to promote angiogenesis (137),
metastasis (138, 139), and immune evasion (140). In addition,
both heparanase and SDC-1 are retained as cargo within exosomes
and subsequently influence not only the behavior of the tumor
microenvironment within the tumor niche and distant sites, but
also the growth of the metastasizing cells (Figure 1) (57).

Similar to SDC-1, there is evidence indicating that the shed
ectodomains of SDC-2 and -4 increase angiogenesis. Studies have
shown that recombinant shed SDC-2 is cleaved by the MMP-
7 in colon cancer but the consequences of this effect are not
yet determined (141). Moreover, secreted ADAMTS-1 cleaves the
ectodomain of SDC-4, affecting cytoskeleton organization and
adhesion, enhancing angiogenesis and migration (79).

Shed SDCs are also in position to eliminate the inhibitory sol-
uble factors. Shed SDC-1 facilitates the resolution of neutrophilic
inflammation by inducing the clearance of proinflammatory CXC
cytokines. In other words, shed SDCs may promote cancer also by
sequestrating inhibitory signals (142).

Importantly, the soluble SDC ectodomain may serve as new
soluble effectors and even compete with intact cell membrane
SDCs for extracellular ligands in the host microenvironment
(37, 143). In addition, there are several studies indicating that
shed SDCs might act as ligands to induce gene expression. In
particular, shed SDC-1 expression is reported to regulate the
expression of TIMP metallopeptidase inhibitor 1 (TIMP-1), uroki-
nase plasminogen activator receptor (uPAR), and E-cadherin in
breast cancer cells coordinating their invasiveness (53). Finally
there are emerging evidence indicating that HSPG shedding
can down-regulate HSPG-dependent functions by binding the
appropriate HS ligands and making them accessible for inter-
nalization. Based on this observation, shed SDCs may actually
have a role as extracellular chaperones that transfer ligands to
cell surface HSPGs on neighboring cells based on the paracrine
stimulation (144).

Finally, it is worth noticing that shed SDCs have also been
reported to have anti-tumorigenic effects in several cases. To state,
the membrane-bound SDC-1 promotes proliferation and inhibits
invasiveness of MCF-7 breast cancer cells, whereas the soluble
form has the exact opposite effect (53). Moreover shed SDC-1
inhibits alveolar epithelial wound healing, promotes fibrogenesis
(145), and decreases invasion of TIMP-1-sensitive breast cancer
cell invasion (53, 121).

POTENTIAL SYNDECAN-BASED PHARMACOLOGICAL
APPROACHES IN CANCER TREATMENT
As the knowledge of HSPGs role on cancer progression and devel-
opment is accumulating, the perspective to use SDCs in thera-
peutics is becoming more and more appealing. An overview of
SDCs-based therapeutic targeting is summarized in Table 2. The
treatment with already existed pharmaceutical formulations in
several in vitro and in vivo biological systems, suggests that they can
regulate the expression levels of SDCs, thus inhibiting their car-
cinogenic potential. According to that notion, the third generation
bisphosphonate, zoledronate (zoledronic acid, Zometa®) is shown
to down-regulate the expression levels of SDC-1 and -2, in con-
trast with the upregulation of SDC-4 in human breast cancer cells
with different metastatic potentials (63). This effect is associated
with the inhibition of cell growth, migration, adhesion, and inva-
sion in correlation with the diminished levels of ανβ3, ανβ5, and
α5β1 integrins (63). Similar mode of action has the specific tyro-
sine kinase inhibitor imatinib (Glivec®), which targets PDGFRs,
c-Kit and Bcr-Abl. It exerts a significant inhibitory effect on the
expression of SDCs-2 and -4 on PDGF-BB-treated breast cancer
cells, leading to suppressed cell growth ability, migration, and inva-
sion (146). Also, Nimesulide a worldwide known non-steroidal
anti-inflammatory drug, with specific action on cyclooxygenase
(COX-2) inhibits the expression of SDC-1 in primary effusion
lymphoma and blocks its anti-tumorigenic action (147).

Recent studies focus on exploring therapeutically approaches
that are associated with SDCs ectodomain. As a result mono-
clonal antibodies or peptides,which target specifically extracellular
domain of SDCs, have been evaluated. OC-46F2, a fully human
anti-SDC-1 recombinant antibody, reduces SDC-1/VEGFR-2 dis-
tribution in tumor microenvironment, resulting in suppressed
vascular maturation and tumor growth in melanoma and ovar-
ian experimental model (151). It has also been suggested that
antibodies against SDCs, especially SDC-1 and -4, are able to
inhibit the dynamic relations between SDCs and cytokines lead-
ing to potential treatment of hepatocellular carcinoma (155, 156).
To continue, a murine/human chimeric anti-SDC-1 monoclonal
antibody, nBT062, conjugated with highly cytotoxic maytansinoid
derivatives was introduced. The nBT062-maytansinoid conjuga-
tion was reported to drive targeted maytansinoid-induced cyto-
toxicity in multiple myeloma, blocking cell adhesion to bone
marrow stromal cells. Moreover, these conjugations inhibit mul-
tiple myeloma tumor growth in vivo and prolong host survival
in both xenograft mouse models of human multiple myeloma
and SCID-hu mouse model (148). In addition, B-B4 (iodine-
131-labeled anti-SDC-1 antibody) was administrated to myeloma
patients with success, promoting the notion of targeted radioim-
munotherapy (RIT) (149). Interestingly, recent studies indicate
the importance of B-B4 antibody not only in multiple myeloma
but also in triple-negative breast cancer in combination with
immune-PET imaging and RIT (150). Another approach in SDC
targeting involves the use of small peptides. For example, Syn-
statin was developed to the sequence between 82 and 130 amino
acids of SDC-1 ectodomain. In detail, this peptide antagonizes
SDC-1 domain, responsible for capturing and activating ανβ3
or ανβ5 integrins and IGF-IR. To note, Synstatin’s action pre-
vents the formation of the receptor complex, and in turn blocks
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Table 2 | Overview of syndecans (SDCs)-based therapeutic targeting.

Syndecan targeting

therapies

Name Biological effect

Antibodies Anti-syndecan-1 monoclonal antibody, nBT062 (148) Inhibition of multiple myeloma cell adhesion

Iodine-131-labeled anti-syndecan-1 antibody, B-B4 (149, 150) Radioimmunotherapy in multiple myeloma and

triple-negative breast cancer

Anti-syndecan-1 antibody, OC-46F2 (151) Reduction of syndecan-1/VEGFR-2 binding

Enzymes inhibitors MMPs inhibitors (152, 153) Inhibition of syndecans shedding in multiple myeloma

and pancreatic cancerSST0001 heparanase inhibitors (154)

Biomolecules as

inhibitors

Synstatin (152) Inhibition of the formation of syndecan-1/ανβ3, ανβ5

integrins/IGFR complex

All-trans retinoic acids (153) Inhibition of syndecans shedding in lung cancer

Synthetic inhibitors STI571, specific tyrosine kinase inhibitor, imatinib (Glivec®) (146) Inhibition of cell growth and migration by regulating

syndecans expression levelsThird generation bisphosphonate, zoledronate (zoledronic acid,

Zometa®) (63)

tumor-induced angiogenesis and metastasis mediated by the initial
complex (152).

Considering the significant role of shed SDCs, their pharma-
cological potential was investigated in several studies targeting
indirectly their actions. It is noted that myeloma and pancre-
atic chemotherapeutic drugs tend to induce accumulation of shed
SDC-1 exactly as benzo(α)pyrene does in lung cancer. To avoid
such tumor initiating effect, the use of metalloproteinase inhibitors
in combination with chemotherapy and all-trans retinoic acid
was suggested (153, 157). Another strategy to accomplish shed-
ding inhibition involves the use of SST0001, a non-anticoagulant
heparin with anti-heparanase activity, whose use diminishes the
heparanase-induced SDC-1 shedding. In addition, the combina-
tion of SST0001 with dexamethasone, blocks tumor growth in vivo
presumably through dual targeting of the tumor itself as well as
its microenvironment (154). A recent study in multiple myeloma
highlighted that targeting HS expression, through knockdown
of EXT1, in combination with exposure to lenalidomide or
bortezomib results in inhibition of cell growth (158).

Based on the ability of SDCs to act as endocytosis receptors,
SDCs have been used for viral and non-viral scaffolds that deliver
nucleic acids for gene therapy. Specifically, lipoplexes and nucleic
acid polyplexes before entering into the cell bind on SDCs clusters
in actin-rich plasma membrane extensions,and therefore are inter-
nalized driven by the action of the cytoskeleton retrograde flow
(159). Polyethyleneimine (PEI)–DNA conjugates represent a drug
delivery mechanism according to which SDC-1 is required for the
successful gene transfer whereas SDC-2 inhibits this process (160).

CONCLUDING REMARKS
Syndecans represent an ongoing field of investigation, attempt-
ing to elucidate their regulatory roles in normal and pathological
conditions. Multiple roles of SDCs in cancer progression are doc-
umented, implicating them in diagnosis, progression, and even
the treatment of different types of cancer. The dynamic poten-
tial of these HSPGs is vast, considering their transmembrane
localization, their ability to promote signal transduction through
interactions with a plethora of ligands, the interplay between

tumor and stroma cells and last but certainly not least their abil-
ity to be cleaved upon different stimulations. An overview of the
major reported mediated effects of SDCs (transmembrane and
shed) are depicted in Figure 1. These molecules have strong impli-
cations in cancer biology in membrane-bound state and also in
their soluble state, it is a fact that SDCs can function in different
ways, different stages of cancer, and to regulate tumorigenic mech-
anisms. The promising in vitro and in vivo results indicate the
feasibility of targeting SDCs as a potential cancer treatment strat-
egy. However, in order this concept to be shaped, further preclinical
studies and well-designed clinical trials are necessary. Anticancer
drugs will be probably produced through pharmacological tar-
geting of shed SDCs in combination with agents responsible for
inhibition of signal transduction and epigenetics. Taking into con-
sideration the SDCs-mediated biological actions during early stage
and progression of cancer, it is plausible to suggest that members
of the SDCs family may be a potential tool for disease diagnosis
and prognosis as well as candidates for designing novel therapeutic
approaches against cancer progression.
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