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Multipopulational transcriptome 
analysis of post‑weaned beef 
cattle at arrival further validates 
candidate biomarkers for predicting 
clinical bovine respiratory disease
Matthew A. Scott 1*, Amelia R. Woolums2, Cyprianna E. Swiderski2, Andy D. Perkins3, 
Bindu Nanduri4, David R. Smith2, Brandi B. Karisch5, William B. Epperson2 & 
John R. Blanton Jr.6

Bovine respiratory disease (BRD) remains the leading infectious disease in post‑weaned beef cattle. 
The objective of this investigation was to contrast the at‑arrival blood transcriptomes from cattle 
derived from two distinct populations that developed BRD in the 28 days following arrival versus 
cattle that did not. Forty‑eight blood samples from two populations were selected for mRNA 
sequencing based on even distribution of development (n = 24) or lack of (n = 24) clinical BRD within 
28 days following arrival; cattle which developed BRD were further stratified into BRD severity cohorts 
based on frequency of antimicrobial treatment: treated once (treated_1) or treated twice or more 
and/or died (treated_2+). Sequenced reads (~ 50 M/sample, 150 bp paired‑end) were aligned to the 
ARS‑UCD1.2 bovine genome assembly. One hundred and thirty‑two unique differentially expressed 
genes (DEGs) were identified between groups stratified by disease severity (healthy, n = 24; treated_1, 
n = 13; treated_2+, n = 11) with edgeR (FDR ≤ 0.05). Differentially expressed genes in treated_1 
relative to both healthy and treated_2+ were predicted to increase neutrophil activation, cellular 
cornification/keratinization, and antimicrobial peptide production. Differentially expressed genes in 
treated_2+ relative to both healthy and treated_1 were predicted to increase alternative complement 
activation, decrease leukocyte activity, and increase nitric oxide production. Receiver operating 
characteristic (ROC) curves generated from expression data for six DEGs identified in our current 
and previous studies (MARCO, CFB, MCF2L, ALOX15, LOC100335828 (aka CD200R1), and SLC18A2) 
demonstrated good‑to‑excellent (AUC: 0.800–0.899; ≥ 0.900) predictability for classifying disease 
occurrence and severity. This investigation identifies candidate biomarkers and functional mechanisms 
in at arrival blood that predicted development and severity of BRD.

Bovine respiratory disease (BRD) remains the leading cause of economic loss and antimicrobial usage in beef 
cattle production within North  America1–3. Bovine respiratory disease is a multifactorial disease complex that 
results from a combination of host–pathogen interactions, host immunological and metabolic responses, and 
environmental  conditions4,5. Diagnosis of BRD is most commonly made by visual identification of BRD-asso-
ciated clinical signs which yields a diagnostic sensitivity of 27–62%6,7. The majority of clinical BRD cases occur 
within the first 3 weeks of facility arrival and visual assessment of clinical signs cannot diagnose subclinical 
BRD nor the long-term outcome of the  disease8–11. Since the genomic mechanisms and immunologic events that 
confer resistance or susceptibility to clinical BRD remain disputed, analysis of the differences in whole blood 
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transcriptomes assessed at facility arrival between cattle that develop BRD within 28 days of arrival and those 
that do not is likely to elucidate underlying mechanisms associated with BRD susceptibility and to inform the 
need for at arrival treatment.

Analyses of RNA sequencing (RNA-Seq) data have demonstrated the ability to provide sensitive and compre-
hensive interpretation of functional genomic mechanisms and molecular events occurring at a point in  time12. 
RNA-Seq has been utilized in a number of experiments in an effort to identify host responses that are associated 
with clinical BRD. These studies have identified host immunological events following BRD-associated pathogen 
 challenge13–15 as well as candidate biomarkers and genomic mechanisms from whole blood samples of post-
weaned  cattle16–18. However, RNA-Seq studies are most often performed with a subset of a single population that 
may not account for heterogeneity in gene expression across independent populations, and such investigations 
are generally  underpowered19–22. Therefore, building upon our previous  research16,17, we aimed to contrast the 
at-arrival whole blood transcriptomes of post-weaned beef cattle that developed BRD within the first 28 days of 
arrival and cattle that failed to develop BRD in this period from two independent populations.

The objectives of this study were to classify, discover, and further validate BRD-associated genes and mecha-
nisms at facility arrival in post-weaned beef cattle in independent populations. Our approach was to profile and 
compare at-arrival whole blood transcriptomes of post-weaned beef cattle that failed to develop signs associated 
with clinical BRD and cattle that ultimately were diagnosed and treated for clinical BRD within the first 28 days 
of facility arrival. Additionally, cattle identified with clinical BRD were further stratified into BRD-associated 
severity cohorts, based on frequency of antimicrobial treatment, clinical evaluation scores, weight gain records, 
and mortality. This study identifies key differentially expressed genes and biological events which may influence 
BRD development and clinical severity. The findings from this study may serve as a foundation for advancing 
prognostic and therapeutic strategies against clinical BRD in post-weaned beef cattle.

Materials and methods
Animal use and study enrollment. All animal use and procedures were approved by the Mississippi State 
University Animal Care and Use Committee (IACUC protocol #17-120) and carried out in accordance with 
relevant IACUC and agency guidelines and regulations. This study was carried out in accordance with Animal 
Research: Reporting of In Vivo Experiments (ARRIVE) guidelines (https:// arriv eguid elines. org). This experi-
ment was performed in conjunction with two additional studies examining the effect of at-arrival vaccination 
and deworming on health and performance outcomes (2017) and the impact of the density of cattle in pens on 
health and performance outcomes (2019). The 2017 study enrolled 80 commercial crossbred bulls (n = 57) and 
steers (n = 23), which were received over a course of 2 days. The 2019 study enrolled 199 commercial crossbred 
steers (one animal that was BVDV+ on ear notch antigen ELISA was removed), which were received over a 
course of 7 days. All animals in these studies were sourced from commercial livestock auctions and housed at 
the H. H. Leveck Animal Research Center at Mississippi State University (Starkville, MS, USA). On day 0 of each 
experiment, animals in both studies had blood samples collected into Tempus tubes (Applied Biosystems) via 
jugular venipuncture, which were frozen and stored at − 80 °C until analysis. On day 0, animals were vaccinated 
and administered oral anthelminthic, selectively in 2017, and to all animals in 2019. Bull calves were surgi-
cally castrated. Vaccinated animals received commercial vaccines subcutaneously at arrival and at 4 weeks post-
arrival, per label instruction (Express 5, Boehringer Ingelheim Vetmedica; Vision 6 with SPUR, Merck Animal 
Health). Dewormed animals received oral fenbendazole and levamisole at arrival, at 5.0 mg/kg PO and 8.0 mg/
kg PO, respectively. Fecal egg counts (FEC), rectal temperatures, and body weights were recorded for all animals 
at arrival. All cattle were given identification ear tags and confirmed to be negative for persistent infection with 
bovine viral diarrhea virus (BVDV) via ear notch antigen capture ELISA. Individual body weights were collected 
every 2 weeks in each study.

All animals were visually assessed each day for signs of BRD and/or other disease by trained university 
employees. The observed signs of BRD were assigned a severity score of 0–4, adapted from the scoring system 
described by Holland and  colleagues23. Antimicrobial therapy was instituted according to severity score as 
described by Woolums and  colleagues24. Briefly, all treated cattle in 2017 were given first treatment scores of 1 
(Supplementary Table S1). Three of these cattle received two or more antimicrobial treatments for BRD (i.e., 
treated_2+). Four of the twelve cattle treated in 2019 were given first treatment scores greater than 1 (three 
received scores of 2 and one received a score of 3), and seven cattle required two or more antimicrobial treatments 
(Supplementary Table S2). Animals whose signs of BRD persisted following the final antimicrobial treatment 
were monitored daily for predetermined endpoints that are indicative of unlikely recovery. Such endpoints 
included severe dyspnea, moribund behavior, dull mentation, and/or signs of abnormal aggression. Animals 
deemed unlikely to recover were euthanized (four individuals; all from 2019) by project veterinarians via intra-
venous administration of pentobarbital followed by a gross necropsy that was performed by a board-certified 
veterinary anatomical pathologist.

RNA sequencing and data processing. Twelve animals that remained healthy and twelve animals that 
developed BRD were selected for RNA-sequencing from each of the two cattle populations (2017 and 2019), 
yielding a total of 48 samples for sequencing. From the 2017 cohort of 80 cattle, the vaccination and deworm-
ing status could be aligned for 10 of the 12 animals in the healthy and BRD groups (Supplementary Table S1). 
Of the remaining two individuals in the 2017 healthy group, one was vaccinated and not dewormed, and the 
other was dewormed but not vaccinated. By contrast, the remaining two individuals in the 2017 diseased group 
were both vaccinated and dewormed. As all animals in the 2019 population were vaccinated and dewormed at 
arrival, the twelve healthy animals were selected randomly and the twelve BRD samples were selected based on 
varying frequencies of treatments (Supplementary Table S2). Additional information regarding weight gain, at-
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arrival fecal egg counts, rectal temperatures, and time of treatments and/or euthanasia for the cattle selected for 
RNA-Seq analysis is found in Supplementary Tables S1 and S2. RNA isolation, mRNA library preparation, and 
sequencing were performed at the UCLA Technology Center for Genomics and Bioinformatics (UCLA TCGB; 
Los Angeles, CA, USA). RNA was isolated from the Tempus blood tubes using the Tempus Spin RNA Isolation 
Kit (Applied Biosystems). RNA quantity and quality were measured using Agilent 2100 Bioanalyzer (Agilent); 
all RNA samples were of high quality (RIN: 8.3–9.5; mean = 8.9, s.d. = 0.3). Library construction was performed 
with the TruSeq RNA Sample Library Kit (Illumina), followed by 150 bp paired-end sequencing performed with 
an Illumina NovaSeq 6000 (v1.7; S4 reagent kit v1.5) in one lane.

Quality assessment of raw and trimmed sequenced reads was performed with FastQC v0.11.925. Quality filter-
ing and adapter trimming of raw sequenced reads was performed with Trimmomatic v0.3926. Briefly, trimming 
was performed by scanning each read with a 4-base pair sliding window and removing read segments below a 
minimum base quality score of 20 and a read length of less than 32 bases. Trimmed reads were mapped to the 
bovine reference assembly ARS-UCD1.2 using HISAT2 v2.2.127,28. Mapping alignment statistics indicated an 
average overall alignment rate exceeding 97% (Supplementary Table S3). Transcript/gene assembly and quanti-
fication was performed with StringTie v2.1.229,30; a gene-level raw count matrix was generated for each sample 
with the program prepDE.py31.

Differential gene expression analysis. Raw gene counts generated for each sample were processed and 
analyzed in R v4.0.2 with the Bioconductor package edgeR v.3.30.332,33. Samples were placed into three different 
cohorts based on BRD status, frequency of treatments, and mortality. Briefly, cattle never diagnosed with clinical 
BRD nor treated with antimicrobials were categorized as “healthy” (n = 24), those diagnosed with clinical BRD 
and only treated with antimicrobials one time were categorized as “treated_1” (n = 13), and those diagnosed with 
BRD, treated with antimicrobials more than once, and/or euthanized due to worsening BRD state were catego-
rized as “treated_2+” (n = 11); four individuals from 2019 (IDs: 155_2019, 175_2019, 252_2019, and 274_2019) 
were those cattle which were euthanized. All animals classified with clinical BRD were diagnosed and treated 
within the first 14 days post-arrival. Raw counts were processed and filtered according to procedures described 
by Chen and  colleagues34, utilizing gene counts-per-million (CPM) of 0.5 across a minimum of three samples; 
any gene not meeting these criteria was excluded from analysis. Library normalization for edgeR analysis was 
performed with the trimmed mean of M-values method (TMM)35. Differentially expressed genes (DEGs) were 
identified through pairwise comparison of the three groups using likelihood ratio testing (glmLRT); DEGs from 
edgeR analysis were considered significant with a false discovery rate (FDR) of ≤ 0.0536. The processed and fil-
tered raw gene counts were subsequently utilized to test for further validation of DEGs, incorporating potential 
confounding variables reported from our principal component analysis (see methods below). The Bioconductor 
package DESeq2 v1.30.037 was employed to identify DEGs while accounting for castration status at arrival (Sex), 
at-arrival parasite egg counts per gram of feces (FEC), and population (Year) in a reduced formula. Specifically, 
we evaluated for differences in gene expression between the three BRD severity cohorts with negative binomial 
generalized linear model (GLM) likelihood ratio testing, implementing a multifactorial analysis of deviance 
approach (ANODEV)37,38. Model fitting, count normalization, and dispersion estimation was performed with 
default procedures as detailed by Love and  colleagues37. DEGs from DESeq2 multifactorial analysis were consid-
ered significant with an FDR ≤ 0.10.

Data characterization: heatmap, principal component, and receiver operating characteristic 
curve analyses. Visual comparisons of the differentially expressed genes between all three groups was per-
formed with the Bioconductor package VennDiagram v1.6.2039. Heatmaps of DEGs were generated with the 
Bioconductor package pheatmap v1.0.1240, utilizing Minkowski distances and Pearson correlation coefficients 
for unsupervised hierarchical clustering of samples and DEGs, respectively. Further heatmap visualization and 
clustering was performed with all filtered and normalized gene counts (16,346), empirically grouping gene 
expression into 12 distinct clusters with the k-means algorithm embedded within pheatmap; Minkowski dis-
tances and Pearson correlation coefficients were utilized for unsupervised hierarchical clustering of samples and 
gene clusters, respectively. Data exploration and dimensional reduction via principal component analysis (PCA) 
was conducted with the Bioconductor package PCAtools v2.0.0 using the correlation  matrix41. Gene counts were 
normalized through mean centering and variance scaling. Metadata components from all cattle for PCA correla-
tion analysis included at-arrival parasite egg counts per gram of feces (FEC), castration status at arrival (Sex), 
average daily weight gain in pounds (ADG), time to first treatment (Timing), population (Year), and disease 
severity (Group). The bottom 10% of genes, those with the lowest variance, were removed prior to analysis. All 
information regarding these components is available in Supplementary Tables S1 and S2.

Genes counts from this study (log2 normalized) were obtained from DEGs which overlapped, in terms of 
expression (fold change direction) and significance (FDR ≤ 0.05), in this and our previous  study16. All 132 DEGs 
were analyzed for classification capability, but six genes were given selection priority based on overlap this and 
our previous  study16: MARCO, CFB, MCF2L, ALOX15, LOC100335828 (CD200R1), and SLC18A2. To evaluate 
these DEGs as potential biomarkers that predict likelihood to develop BRD, and to differentiate BRD severity 
outcomes, multiclass receiver operating characteristic (ROC) curve analysis of DEGs was performed with the Bio-
conductor package pROC v1.16.242. Aggregate area under the curve (AUC) was calculated for each ROC curve. 
An ROC curve cross-validation analysis was performed to evaluate predictive capability across each population 
(year) independently; ROC curve analysis from one population was utilized to generate log2CPM cutoffs, which 
were applied to the other population for classificational assessment. Sensitivity, specificity, positive/negative 
predictive value, and balanced accuracy [(sensitivity + specificity)/2] was calculated for cross-validation. The 
ability to discriminate between the three groups (healthy, treated_1, and treated_2+) was evaluated as “excellent” 
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(AUC: ≥ 0.900), “good” (AUC: 0.899–0.800), “fair” (AUC: 0.799–0.700), “poor” (AUC: 0.699–0.600), or “failed” 
(AUC: < 0.600)43. Color scaling for all packages was performed with the Bioconductor package viridis v0.5.144 
to allow ease of visual interpretation for individuals with color blindness.

Enrichment, network, and regulatory analyses of DEGs. Gene Ontology (GO) enrichment analysis 
was performed with WebGestalt 2019 (WEB-based GEne SeT AnaLysis Toolkit; accessed January 26, 2021), 
utilizing human orthologs and their functional  databases45. The DEGs identified from edgeR in each differen-
tial gene expression analysis (treated_1 versus healthy, n = 64; treated_2+ versus healthy, n = 40; treated_2+ vs 
treated_1, n = 81; Supplementary Table S4) were utilized for GO terms enrichment for each comparison. Over-
representation analysis parameters within WebGestalt 2019 included between 5 and 3000 genes per category 
(Benjamini–Hochberg procedure for multiple hypothesis correction, and FDR cutoff of 0.05 for significance). 
Pathway enrichment analysis performed within WebGestalt 2019 utilized the pathway database  Reactome46. The 
DEGs found between each comparison were utilized for pathway enrichment, similar to GO term enrichment 
analysis. Enriched GO terms and pathways were evaluated for directionality (increased or decreased) based on 
log2 fold changes of associated DEGs.

Protein–protein interactions of DEGs were evaluated with the Search Tool for the Retrieval of Interacting 
Genes (STRING) database v11.047, employing human orthologs of all 132 uniquely identified DEGs. Briefly, 
interactions were considered significant with a combined interaction score of 0.400 (medium confidence) and 
network clustering was performed with the k-means algorithm within the STRING interface empirically pre-set 
to six clusters; disconnected nodes were omitted from the STRING interaction network. Directionality (increased 
or decreased) of proteins within each cluster was based on log2 fold change of associated DEGs within each 
cohort comparison. Functional association was made from the STRING cluster enrichment tables.

Ingenuity Pathways Analysis (IPA; Qiagen) was used for upstream regulator and function process analyses 
of DEGs, utilizing the Benjamini–Hochberg method for multiple hypothesis correction and calculated z-score 
cutoffs of ± 2.0.

Results
edgeR differential gene expression analysis and data visualization. Alignment of reads to the 
ARS-UCD1.2 bovine genome assembly and gene count matrix generation yielded 28,478 unique annotated 
genes. Following pre-processing of genes with low expression across samples, a total of 16,346 annotated genes 
were analyzed for differential gene expression; the 48 samples possessed a total of 209.4 million gene counts, with 
a median library size of 43.6 million gene counts (Supplementary Fig. S1). In total, edgeR analysis identified 132 
unique genes (FDR ≤ 0.05) as differentially expressed in at least one of the 3 comparisons of treated_1, treated_2+, 
and healthy groups, as indicated in Supplementary Table S4. Sixty-four DEGs were identified between treated_1 
versus healthy, 40 DEGs between treated_2+ versus healthy, and 81 DEGs between treated_2+ versus treated_1 
(Fig. 1A,B). No DEGs were common to all comparisons. Figure 2 is a heatmap of normalized expression data 
from all cattle for 105 genes that were differentially expressed across the comparisons with the most severely 
diseased cattle (treated_2+ vs healthy, treated_2+ vs treated_1). Hierarchical clustering of the gene expression 
patterns depicts healthy and treated_1 cattle as the most similar at the right of the map, while treated_2+ cattle 
and most severely diseased cattle (i.e., euthanized), tended to cluster distinctly to the left of the map (Fig. 2). 

Figure 1.  Number of DEGs (FDR ≤ 0.05) identified at arrival through pairwise comparisons of all three disease 
severity cohorts. (A) Venn diagram representing the number of DEGs shared and distinct to each comparative 
analysis. (B) Relative directionality (log2 fold change) of DEGs identified in each severity cohort.
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Similarly, this distinction of cattle which develop the most severe BRD is apparent, although less prominent, with 
hierarchical clustering of samples from normalized counts of all 16,346 genes (Supplementary Fig. S2).

Principle component analysis. Metadata from cattle for the variables at-arrival parasite egg counts per 
gram of feces (FEC), castration status at arrival (Sex), average daily weight gain in pounds (ADG), time to first 
treatment (Timing), population (Year), and disease severity (Group) can be found in Supplementary Tables S1 
and S2. Using the combination of the Elbow method and Horn’s parallel  analysis48,49, the first eight principal 
components, which accounted for 48% of the variance in the data, were chosen (Fig. 3A). The first principal com-
ponent (PC) explained 16% of the data variance and was positively correlated with Group (r = 0.30, FDR < 0.05) 
and negatively correlated with ADG (r = − 0.38, FDR < 0.01) (Fig. 3A,B). The PC3, which accounted for 6% of 
the variance, included the strongest and most significant correlation observed, which was with Year (r = 0.68, 
FDR < 0.001), and less significant correlations with Sex (r = 0.39, FDR < 0.01) and FEC (r = 0.32, FDR < 0.05). Two 
PCs, PC5 and PC7, were negatively correlated with Sex (r = − 0.31, FDR < 0.05) and Year (r = − 0.43, FDR < 0.01), 
respectively (Fig. 3B). Pair plots of the four PCs with significant correlations with metadata components (PCs 
1, 3, 5, and 7) demonstrated no discernable patterns across the 48 cattle, when accounting for Group and Sex 
(Fig. 3C).

Genes providing the greatest contributions to each PC are indicated in the loading plots (Fig. 3D). Genes 
with the greatest influence on PC1, the only PC significantly correlated to measures of disease severity, include 
PPM1G, MBTPS1, SOX12, TAGAP, and CFB. Genes with major influence on PC3, which correlated to Year, 
FEC and Sex, included TAGAP, GF11, CFB, and VPS9D1. EPN1 and TAGAP had the greatest influence on PC5, 
which was significantly correlated with Sex. PDK1, CFB, GAS2L3, DESI2 and EPN1 accounted for the greatest 
variance in PC7 which correlated with Year.

Gene selection and receiver operating characteristic (ROC) curve analyses. To evaluate DEGs 
as potential biomarkers that predict individuals that are likely to develop BRD, and to differentiate BRD sever-
ity outcomes, multiclass ROC curves were generated with expression data from the 48 individual cattle (Fig. 4); 
complete ROC curve analysis across all 132 DEGs is found in Supplementary Table S5. Based upon differen-
tial expression patterns in this investigation and in our previous  work16, six genes were of particular interest: 
ALOX15, MARCO, CFB, MCF2L, LOC100335828 (CD200R1), and SLC18A2. In discriminating cattle that would 
become severely diseased (treated_2+) from those that remain healthy, MARCO expression demonstrated excel-
lent discrimination (AUC: 0.917), followed by expression of SLC18A2 (AUC: 0.864), ALOX15 (AUC: 0.860), 
LOC100335828 (AUC: 0.860) and MCF2L (AUC: 0.822), which independently provided good discrimination. 

Figure 2.  Heatmap and hierarchical clustering analyses of gene expression profiles across all 48 sample libraries 
with 105 unique DEGs identified. Heatmapping of the DEGs was performed with the z-scores calculated 
from Trimmed Mean of M-values (TMM) normalized counts. Samples were labeled with population (year) 
and severity (including mortality) to illustrate differences in expression patterns. Yellow/white: relative high 
expression; purple/black: relative low expression. Arrows indicate genes chosen for ROC curve analysis, based 
on overlapping findings from our previous  research16.
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CFB expression provided fair discrimination for these two groups (AUC: 0.769). A combination of ALOX15, 
LOC100335828, and SLC18A2 expression (“3-marker Healthy Panel”) provided excellent discrimination of 
cattle that would become severely diseased (treated_2+) from those that would remain healthy (AUC 0.943). 
The combination of MARCO, CFB, and MCF2L (“3-marker BRD + Panel”) also provided good discrimination 
between these two groups (AUC: 0.890).

In predicting cattle that became more severely diseased (treated_2+) from those that developed less severe 
disease (treated_1), ALOX15 (AUC: 0.972) and SLC18A2 (AUC: 0.937) expression independently provided 
excellent discrimination. As independent predictors, discrimination of these two groups by LOC100335828 
(AUC: 0.867) and MARCO (AUC: 0.811) expression was good while discrimination based on CFB (AUC: 0.741) 
expression was deemed fair. The combination of ALOX15, LOC100335828, and SCL18A2 expression provided 
excellent discrimination in predicting treated_2+ versus treated_1 cattle (AUC 0.993), while the combination of 
MARCO, CFB, and MCF2L expression provided fair discrimination of these two groups (AUC: 0.741).

For differentiating cattle that would become less severely diseased (treated_1) from cattle that would remain 
healthy, MCF2L expression was the best independent discriminator (AUC: 0.792) followed by ALOX15 (AUC: 
0.728), and MARCO (AUC: 0.708). Of the two multi-gene panels, only the 3 Marker BRD + Panel of ALOX15, 
LOC100335828, and SLC18A2 demonstrated acceptable discrimination (AUC: 0.740).

Single-population ROC curve analyses of these six genes were performed to independently determine BRD 
cohort classificational ability of these six genes and generate log2CPM cutoffs for cross-validation (Supplemen-
tary Table S6). ALOX15 provided excellent discrimination of treated_2+ cattle compared to both healthy and 
treated_1 cattle in 2017 and treated_1 cattle in 2019. Independently, the combination of ALOX15, LOC100335828, 
and SCL18A2 (“Healthy” panel) provided good-to-excellent discrimination of treated_2+ cattle compared to 
both healthy and treated_1 cattle in 2017 and 2019. The three genes comparatively upregulated in diseased cattle 
(MARCO, CFB, and MCF2L) better discriminated severity cohorts in 2019 compared to 2017. Generally, the 2019 
population better discriminated severity cohorts compared to healthy cattle (AUC: ≥ 0.800), when contrasted 
to the 2017 population.

The AUC cutoffs (log2CPM) generated from the single-population ROC curve analyses was applied to the 
contrasting population for cross-validation of these six genes (Supplementary Table S7). MARCO, CFB, and 
MCF2L, DEGs comparatively increased in diseased cattle, and better classified treated_2+ cattle compared to 
healthy in the 2019 population versus the 2017 population. Additionally, these three genes often failed to classify 

Figure 3.  Principal component analysis of gene expression data generated for each sample. (A) Scree plot 
showing all components which account for the total variance within the data set. The Elbow and Horn’s parallel 
analysis methods were used to determine the optimum number of components to retain. The first eight PCs 
retained accounted for ~ 48% of the total variance in the data set, while 80% of explained variation would have 
required 29 PCs. (B) Exploration of Pearson correlation coefficients associated with metadata components 
for the first eight PCs. Each animal’s fecal egg count at arrival, castration status at-arrival, average daily gains 
for the first 14 days, population (year), and relative disease severity over the course of the study were clinical 
aspects that possessed significant association with one or more PCs. Time to first treatment was not significantly 
correlated with any of the first eight PCs. (C) Pairs plot (multi-biplot) graph of PCs possessing significant 
metadata correlations. Each dot (vector) represents the PC score of an individual sample, where the further away 
the vector is from the PC center, the more influence that vector possesses for the PC. (D) Loading plot with 
annotated variables (genes) driving variation in the first eight PCs. These plots are used to identify the top 0.5% 
of genes found to be the most responsible for driving variation within each PC.
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treated_2+ compared to treated_1 cattle in the 2017 population (sensitivity: 0.000; balanced accuracy: ≤ 0.500). 
Similar to the single-population ROC curve analyses, ALOX15 and the “Healthy” panel performed well in clas-
sifying treated_2+ cattle from both healthy and treated_1 cattle.

Gene ontology and pathway enrichment analyses. Analysis of GO terms from DEGs identified 
between treated_1 and healthy cattle identified 50 biological process terms, 25 cellular component terms, and 
4 molecular function terms that were significantly over-represented (Supplementary Table S8). Biological pro-
cesses identified from DEGs between these two groups were related to epidermal cornification and keratiniza-
tion, neutrophil activation and degranulation, humoral immune response, and host defense against microorgan-
isms (e.g., bacteria). Cellular components identified from DEGs between these two groups involved exosomes, 
secretory granules, lysosomes, and intracellular vesicles. Molecular functions identified from DEGs between 
these two groups involved glycosaminoglycan/lipopolysaccharide binding, heparin binding, and the structural 
constituent of cytoskeleton. These GO terms were enriched by DEGs comparatively increased in treated_1 cattle. 
No significantly enriched GO terms were identified from DEGs derived from the treated_2+ versus healthy com-
parison (FDR < 0.05; Supplementary Table S9). Analysis of GO terms from DEGs identified between treated_2+ 
and treated_1 cattle identified 41 biological process terms, 33 cellular component terms, and 1 molecular func-
tion term as significantly over-represented (Supplementary Table S10). Enriched biological processes identified 
from DEGs between these two groups were related to epidermal cornification and keratinization, neutrophil 
activation and degranulation, antimicrobial humoral immunity, and granulocyte activation. Cellular compo-
nents identified from DEGs between these two groups involved secretory granules, cornified envelopes, super-
molecular complexes, ficolin-1 granules, and cytoskeletal components. A single significant molecular function, 
inhibition of serine-type endopeptidases, was identified from the DEGs between these two groups. These GO 
terms were enriched by DEGs comparatively decreased in treated_2+ cattle.

Five significantly enriched pathways were identified from the DEGs between treated_1 versus healthy cattle 
(Supplementary Table S8). The enriched pathways identified from DEGs between these two groups involved the 
formation of cornified envelopes, neutrophil degranulation, keratinization, apoptotic cleavage of cell adhesion 
proteins, and innate immunity, all of which were driven by DEGs comparatively increased in treated_1. No 
pathways were significantly enriched from DEGs identified between treated_2+ and healthy cattle (Supplemen-
tary Table S9). Six significantly enriched pathways were identified from the DEGs between treated_2+ versus 
treated_1 cattle (Supplementary Table S10). The enriched pathways identified from DEGs between these two 
groups involved neutrophil degranulation, the formation of cornified envelopes, keratinization, innate immu-
nity, and apoptotic cleavage of cell adhesion proteins, all of which were comparatively decreased in treated_2+.

Figure 4.  Receiver operator characteristic (ROC) curves with calculated area under the curve (AUC) of 
selected DEGs. Hypothetical three-marker panels were generated based on expression trends across disease 
severity cohorts. MARCO, CFB, and MCF2L were DEGs relatively increased in gene expression as BRD severity 
increased. ALOX15, LOC100335828, and SLC18A2 were DEGs relatively decreased in gene expression as BRD 
severity increased.
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Protein–protein interaction network analysis. All 132 unique DEGs were included for protein–pro-
tein interaction networking. Unique DEGs mapped to 102 homologous gene products (nodes) with 130 gener-
ated associations (edges) within STRING. When disconnected nodes were removed, the interaction network 
included 62 nodes with known and predicted protein interactions. All gene product identifiers (nodes) and 
interaction scores are presented in Supplementary Table S11. The resulting matrix was clustered into six distinct 
functional groups, presented in Fig. 5. The teal cluster (#1), driven primarily by DEGs increased in treated_1 
relative to both treated_2+ and healthy cattle, is functionally associated with neutrophil enhancement and innate 
antimicrobial defense. The red cluster (#2), driven primarily by DEGs increased in treated_1 relative to both 
treated_2+ and healthy cattle, is functionally associated with cellular adhesion, cornification, and antigenic 
presentation. The purple cluster (#3) is associated with pro-inflammatory cytokine signaling and extracellular 
matrix protein production and binding (fibronectin, integrin) in lung tissue. The green cluster (#4) is function-
ally associated with B-cell activation and T-cell survivability. The blue cluster (#5), driven by DEGs increased 
in treated_2+ relative to both treated_1 and healthy cattle, is associated with increased apoptotic cell/ligand 
clearance, macrophage activity (via pathogen recognition/uptake and hemoglobin recognition), and regulation 
of TNF-alpha and nitric oxide. The yellow cluster (#6) is functionally associated with cell interphase and neu-
trophilic transmigration.

Ingenuity pathway analysis. Ingenuity Pathway Analysis (IPA) was further utilized to identify enriched 
functional classifications from DEGs identified in each disease cohort comparison, shown in Table 1. Modeling 
of DEGs derived from treated_1 versus healthy cattle indicated increased activities that would attract leukocytes, 
including the recruitment of neutrophils. Modeling of DEGs from treated_2+ versus treated_1 cattle indicated 
that leukocyte recruitment and activation, including the recruitment of neutrophils, was decreased, while nitric 
oxide production was increased. No significant functional annotations were identified from modeling the DEGs 
from treated_2+ versus healthy cattle.

Further employment of IPA classified upstream regulators based on the DEGs identified in each disease cohort 
comparison. The significant upstream regulators that may explain observed gene expression changes (Z-score > 2 
or < − 2, p-value < 0.05) are presented in Table 2. The transcription regulators MRTFB, SRF, and MRTFA were 

Figure 5.  Protein–protein interaction network generated from DEGs. K-means clustering was performed based 
on product functionality. Product function of each cluster is based on nodal (gene product) information from 
curated literature and database mining in STRING. The color and number of edges (lines) corresponds with 
the type and strength of data supporting an interaction between two nodes. Known interactions are colored 
teal (curated database) and purple (experimental evidence). Predicted interactions are colored green (gene 
neighboring), red (gene fusion), and dark blue (gene co-occurrence). All other interaction evidence is colored 
yellow/lime green (text mining), black (co-expression association), and light blue (protein homology). Filled 
nodes represents that a three-dimensional structure is known or predicted.
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predicted to be inhibited in treated_1 cattle when compared to healthy, resulting in the upregulation of genes 
associated with neutrophil activity and antimicrobial defense. IL1A and FADD were both predicted as activated 
upstream regulators in treated_2+ cattle when compared to treated_1, targeting genes primarily involved in 
inflammatory signaling and calcium binding.

DESeq2 differential expression analysis for DEG substantiation. To substantiate significant dif-
ferential expression patterns seen between these BRD cohorts, we implemented DESeq2 for multifactorial 
ANODEV testing accounting for Sex, Year, and FEC as potentially confounding variables. This analysis yielded 
93 unique genes (FDR ≤ 0.10) as differentially expressed between the three cohorts (Supplementary Table S12). 
When compared to the results from edgeR analysis, 66 genes were found to be overlapped in DESeq2 analysis 
and of equivocal expressional directionality. Notably, five of the six genes of particular interest were identified as 
differentially expressed in both edgeR and DESeq2 analyses (ALOX15, MARCO, CFB, MCF2L, and SLC18A2). 
Furthermore, genes involved in epidermal cornification and keratinization (KRT5/10/14/25, CDSN, DSG1, DSP, 
SPINK5), neutrophil activation and degranulation (AZU1, CD177, MPO, PGLYRP1, PRG3), and antimicrobial 
peptide production (CAMP, CATHL2/3) were found to be differentially expressed in both analyses.

Table 1.  Functional annotation analysis from DEGs identified between cohorts using Ingenuity Pathway 
Analysis (IPA). Annotations were considered significant with an adjusted p-value ≤ 0.05 and an activation 
z-score of ≥ 2 or ≤ − 2.

Diseases or functions annotation Cohort Predicted activation state Activation z-score p-value

Leukocyte migration Treated 1 (vs Healthy) Increased 2.780 1.74E−03

Cell movement of leukocytes Treated 1 (vs Healthy) Increased 2.774 7.78E−04

Cell movement of phagocytes Treated 1 (vs Healthy) Increased 2.433 2.70E−03

Cell movement of neutrophils Treated 1 (vs Healthy) Increased 2.417 1.05E−04

Cellular infiltration by leukocytes Treated 1 (vs Healthy) Increased 2.410 7.54E−04

Migration of cells Treated 1 (vs Healthy) Increased 2.404 2.80E−03

Cell movement of mononuclear leukocytes Treated 1 (vs Healthy) Increased 2.377 9.24E−04

Cell movement Treated 1 (vs Healthy) Increased 2.298 6.59E−03

Recruitment of neutrophils Treated 1 (vs Healthy) Increased 2.190 3.06E−05

Cell movement of T lymphocytes Treated 1 (vs Healthy) Increased 2.175 2.25E−04

Cell movement of monocytes Treated 1 (vs Healthy) Increased 2.166 1.54E−05

Chemotaxis of mononuclear leukocytes Treated 1 (vs Healthy) Increased 2.162 2.38E−05

Chemotaxis of neutrophils Treated 1 (vs Healthy) Increased 2.156 1.59E−05

Cell movement of lymphocytes Treated 1 (vs Healthy) Increased 2.156 2.83E−03

Inflammatory response Treated 1 (vs Healthy) Increased 2.073 1.93E−03

Recruitment of leukocytes Treated 2+ (vs Treated 1) Decreased − 2.395 2.32E−05

Recruitment of neutrophils Treated 2+ (vs Treated 1) Decreased − 2.392 6.59E−06

Activation of leukocytes Treated 2+ (vs Treated 1) Decreased − 2.049 1.41E−03

Synthesis of nitric oxide Treated 2+ (vs Treated 1) Increased 2.176 4.08E−04

Table 2.  Significantly enriched upstream regulators among DEGs identified in disease severity cohorts 
using Ingenuity Pathway Analysis (IPA). Upstream regulators were considered significant with an adjusted 
p-value ≤ 0.05 and an activation z-score of ≥ 2 or ≤ − 2.

Upstream regulator Cohort Molecule type Predicted activation state Activation z-score p-value of overlap Target molecules

MRTFB Treated 1 (vs Healthy) Transcription regulator Inhibited − 2 1.73E−04 CAMP, CTSG, LTF, 
PGLYRP1

SRF Treated 1 (vs Healthy) Transcription regulator Inhibited − 2 4.61E−04 CAMP, CTSG, LTF, 
PGLYRP1

MRTFA Treated 1 (vs Healthy) Transcription regulator Inhibited − 2 9.96E−05 CAMP, CTSG, LTF, 
PGLYRP1

IL1A Treated 2+ (vs Treated 1) Cytokine Activated 2 1.17E−04 CTSK, PTX3, S100A8, 
SERPINB4

FADD Treated 2+ (vs Treated 1) Other Activated 2 7.87E−04 CTSK, KRT14, PTX3, SPP1
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Discussion
In recent years, bovine RNA-Seq data have been utilized to identify biomarkers that are predictive of or associ-
ated with BRD. Previous studies have utilized tissue samples, such as lung, lymph node, and tonsil, at the time of 
peak clinical infection following challenge with individual BRD  pathogens13–15. These studies provided important 
foundational efforts for identifying regulatory networks and host–pathogen interactions related to immunological 
defense at the time of peak clinical BRD. However, pathogen challenge models are limited in the degree to which 
they represent naturally occurring BRD, because they do not recapitulate the complex multifactorial nature of 
the  disease50–52. In contrast, gene expression patterns have been analyzed in arrival blood from post-weaned beef 
cattle that later developed  BRD16–18. These investigations of naturally occurring BRD assure the biological context 
that is necessary for gene expression analyses to identify altered biological systems for clinical BRD prediction. 
By testing large populations of BRD susceptible cattle, this approach allows differentiation of pervasive changes 
in biological systems that segregate with BRD prediction and staging, from other dynamic environmental and 
host factors that also alter biological systems but do not segregate with BRD. Using this approach, altered immu-
nological and metabolic pathways, including those important to host–pathogen interactions, are recognized by 
their shared patterns in cattle that develop BRD. Patterns that influence clinical BRD outcomes and support the 
discovery of novel pathophysiology, candidate biomarkers and therapeutic modalities can also be  realized53,54.

The identification of differentially expressed genes and enriched genomic mechanisms within whole blood 
samples supports the discovery and use of candidate biomarkers and novel therapeutic modalities. Whole blood 
is an easily obtainable, non-invasive sample type that represents transient biological occurrences at distinct 
physiological  sites55,56. By analyzing transcriptomes in blood collected at arrival from two distinct populations 
of cattle, this investigation (1) corroborated our prior findings that at-arrival expression profiles of MARCO, 
CFB, MCF2L, ALOX15, LOC100335828 (CD200R1), and SLC18A2 were common to cattle from two distinct 
populations that went on to develop BRD, (2) demonstrated using ROC curves that the at-arrival expression of 
these genes have predictive potential in classifying BRD acquisition and severity, and (3) derived novel genomic 
information relevant to BRD severity, related to leukocyte activity and airway epithelium.

A limitation of this study is the many factors that varied between individual cattle and between the popula-
tions which contribute to biological variation in the transcriptomes of individual cattle. In this regard, our prin-
cipal component analysis identified population (Year) in PC3 as a significant and identifiable source of variation 
in gene expression (Fig. 3B). Our populations lacked information regarding treatment/vaccination of individual 
animals prior to arrival. Additionally, all individuals in this study were commercial cattle (e.g., unknown genetic 
characteristics), were likely to be at differing time points in the disease spectrum of BRD, and were likely to have 
a host of other factors that varied between individuals prior to their arrival. Relevant to this variation is our 
overarching objective, which is to identify arrival gene expression that predicts BRD outcome in commercial 
beef cattle within 28 days following arrival. To achieve this objective, it is essential that the very factors caus-
ing variation in the transcriptomes of beef production systems, both recognized and implicit, are included in 
the experimental model. Only within this biological context is it possible for experimental techniques, such as 
PCA that was employed within this investigation, to be used to identify correlations between gene expression, 
disease, and both known and implicit sources of variation. An additional relevant limitation of this study is that 
it is underpowered for its overarching goal of identifying genes whose differential expression can be universally 
applied to all at arrival beef cattle to predict BRD within 28 days. However, our approach is an early, founda-
tional event in support of this goal. Our demonstrated ability from ROC curves analysis, to predict calves at 
arrival that will develop BRD within 28 days, provides proof of concept for the eventual validation of predictive 
at-arrival biomarkers for clinical BRD. These findings also highlight the necessity to expand our approach to 
include cattle populations that will assure the appropriate power (i.e., number of animals and of unique herds) 
to characterize gene expression that predicts developing BRD in the face of gene expression variations that are 
characteristic of these populations.

Several studies have shown that production and economic loss increases with an increase in frequency of 
treatment and earlier timing of initial BRD  treatment11,57–59. To align to this insight, and predict differences in 
future BRD severity, we stratified the severity of the BRD phenotype in our experiment. Cattle were separated 
into BRD severity cohorts based upon frequency of antimicrobial treatment, clinical assessment scores, and 
BRD-associated mortality. We identified 132 unique DEGs between the three disease cohorts. The increased 
DEGs identified in treated_1 cattle, when compared to both healthy and treated_2+, were largely involved with 
three major innate functions: neutrophil recruitment and degranulation, antimicrobial peptide production, and 
cellular cornification/keratinization. Increases in neutrophil recruitment/degranulation and antimicrobial pep-
tide production traced primarily to increased differential expression of CATHL1/2/3, CAMP, DSP, PRG3, AZU1, 
CTSG, CD177, MPO, LTF, and NGP. These products are important for host antimicrobial defense, particularly 
involving leukocytic interactions within the  airways60–63, and several of these gene products have been directly 
identified in cattle that were experimentally infected with BRD  agents13,14,60.

Cattle produce all known mammalian classes of cathelicidins, compared to humans which only produce 
one, and research has primarily focused with their effects on bacterial  pathogens64–66. Antimicrobial peptides, 
particularly cathelicidins, as well as CD177-mediated neutrophilic response in cattle, have been shown to be 
effective at mitigating Gram-negative bacterial infections and may be associated with modulating the cytotoxic/
apoptotic host responses through the decrease of extracellular IL1A  availability61,64,67. Dysregulation of these 
cytotoxic/apoptotic pathways is linked with poor clinical  outcomes60,68,69. The increased cellular cornification/
keratinization functions in treated_1 cattle versus healthy and treated_2+, identified through GO and pathway 
enrichment analyses, were impacted by increased expression of KRT5/10/14/25, DSG1, DSP, CDSN, and SPINK5 
in this group. While keratinization is primarily considered a modification of epidermal skin cells, this process 
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has been shown to be an anti-apoptotic process of host barrier defense and structural repair in the lower airways 
related to infectious respiratory  disease70,71.

To reduce dimensionality of the data and enable correlations between known sources of variability in our 
experiment and variability in gene expression to be identified, we performed principal component analysis that 
included both gene expression data and metadata for known variables for each animal. Component loadings 
identified positive correlation to disease severity and negative correlation to average daily gain in PC1, which 
were of moderate effect and statistically significant (Fig. 3B; FDR < 0.05). Accordingly, PC1, which by definition 
captures the greatest variability in the data, primarily measures the degree of weight loss and disease severity 
in BRD-affected cattle. This aligns to the known correlation between weight loss over time and disease in beef 
 cattle57,59. In addition, CFB, a gene with the greatest positive influence on PC1 variation and a positive correla-
tion to measures of disease severity using PCA, was also identified as acceptable discriminator of cattle that 
developed more severe disease (severe_2+) from cattle that remained healthy, based upon ROC analysis (Fig. 4; 
AUC = 0.769).

CFB, which was increased in both treated_1 and treated_2+ cattle when compared to healthy (Supplemental 
Table S4), encodes for complement factor B, the major acute phase protein needed for activation of the alter-
native pathway of complement. CFB is a pro-inflammatory molecule, produced by type II alveolar epithelial 
 cells72,73. CFB can directly stimulate monocyte and B lymphocyte response to viral and bacterial respiratory 
 pathogens72–74. CFB has been consistently identified as significantly expressed in BRD-afflicted cattle, both from 
pathogen challenge models and at-arrival sampling in naturally occurring  BRD13–18. CFB is secreted by and 
activates M1  macrophages75–77. Our network analysis (Fig. 5; blue cluster) and IPA (Tables 1, 2) indicates that 
treated_2+ cattle, compared to treated_1 cattle, possess increased pro-inflammatory activity, which is driven by 
IL1A and FADD. This is made evident by the increased expression in macrophage-specific receptors MARCO 
and CD163, and decrease in the inhibitor glycoprotein CD200R1, when compared to both healthy and treated_1 
cattle. Evidence suggests that MARCO, CD163, and CD200R1 expression, induced by ligand binding to these 
receptors, causes a pro-inflammatory response by tissue macrophages, particularly in the lung, and may lead to 
an enhanced IL-1/IL-6  response78–80.

Through our previous and current research, we identified the differential expression of several genes involved 
in lipid transport and anti-inflammatory  modalities16. Several genes that correspond to multidrug resistance-
associated protein 4 (ABCC4/MRP4) were significantly decreased in treated_2+ cattle compared to both healthy 
and treated_1. MRP4 is a transporter protein found in multiple cell types and is directly involved in lipid molecule 
transport, such as prostaglandins and  eicosanoids81,82. When prostaglandin E2 (PGE2) is produced via cyclooxy-
genase-2 (COX-2), MRP4 exports PGE2 to the extracellular space for pro-inflammatory  signaling81,83,84. However, 
MRP4 also mediates the efflux of eicosanoids and its expression is coupled with an increase in ALOX15 expres-
sion. ALOX15 encodes for the lipid peroxidizing enzyme arachidonate 15-lipoxygenase, expressed by airway 
epithelium, circulating reticulocytes, macrophages, mast cells, and  eosinophils85–87. ALOX15 is required for the 
biosynthesis of specialized proresolving mediators (SPMs), such as resolvins and  lipoxins86,88. These SPMs are 
important anti-inflammatory mediators derived from arachidonic acid and polyunsaturated fatty acids, and are 
responsible for metabolizing and suppressing the effects of prolonged inflammatory mediator signaling, including 
 PGE281,86,88. ALOX15 production is implicated as a mitigating factor in a wide variety of inflammatory diseases 
in  humans89,90. Regarding BRD, ALOX15 has been found to be differentially expressed in animals challenged 
with single pathogens; importantly, those animals were all determined to exhibit mild clinical disease at time of 
 sampling13–15. Additionally, at-arrival blood transcriptomes from this and previous research have shown cattle 
that remain healthy exhibit increased expression of ALOX1516. Thus, it can be hypothesized that cattle in these 
production settings are undergoing some form of cellular stress and subsequent pro-inflammatory signaling, but 
ALOX15 upregulation and SPM production may be protective against severe clinical BRD.

We selectively evaluated the performance of six candidate mRNA biomarkers and their ability to predic-
tively classify severity-based cohorts with ROC curves and calculated AUCs (Fig. 4). The genes evaluated in 
this analysis were identified as differentially expressed in both this current and our previous studies (MARCO, 
CFB, MCF2L, ALOX15, LOC100335828 (CD200R1), and SLC18A2)16. Moreover, five of these six genes were 
identified as differentially expressed when factoring for Year, Sex, and FEC status, with LOC100335828 being the 
only gene considered non-significant in DESeq2 analysis (FDR = 0.1487). This approach demonstrated good-to-
excellent discernment, at arrival and prior to the onset of clinical signs, of cattle that would develop severe BRD 
(treated_2+) within 28 days of arrival. Accordingly, these genes have inherent prognostic value for accurately 
identifying animals that require the highest frequency of treatment, yield the lowest weight gains overtime, and/
or succumb to BRD-associated mortality. The ability to accurately predict cattle that are most likely to develop 
severe BRD could allow for precise management and antimicrobial treatment protocols, reducing the need to 
medicate beef cattle that are less likely to develop BRD during their production phases. Furthermore, predicting 
cattle that require multiple antimicrobial treatments, or eventually succumb to BRD, has significant economic 
impact. Several studies have established that beef cattle that receive multiple BRD treatments over their produc-
tion phases yield lower carcass grades and weights, increased management and treatment cost per day, and overall 
reduced economic returns  overtime91–93. Future research is necessary for evaluating these genes as prognostic 
indicators in larger and more complex beef cattle populations.

Conclusion
This study was conducted to identify and/or corroborate at-arrival genes and genomic mechanisms that predict 
BRD and its severity. First, we expanded our prior analysis of gene expression in individuals from one beef pro-
duction system to include individuals from two different beef production systems. Comparison of transcriptomes 
from these two populations with those of our previous and other researchers’ findings support a paradigm in 
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which components of alternative complement, M1 macrophage and neutrophil activity, and lipid-mediated 
anti-inflammatory mechanisms influence clinical BRD outcomes. Cattle which were treated once and recovered 
from BRD had increased neutrophil recruitment and activation, antimicrobial peptide production, and cellular 
cornification/keratinization, compared to healthy cattle and treated_2+ cattle. Compared to healthy cattle, cattle 
that required two or more antimicrobial treatments and/or were euthanized due to BRD had increased expression 
of genes associated with pro-inflammatory modulation and response to cellular stress. Six genes identified in this 
study were previously identified as differentially expressed in at-arrival whole blood transcriptomes of cattle that 
developed BRD, and are considered candidate biomarkers for predicting BRD acquisition and severity: MARCO, 
CFB, MCF2L, ALOX15, LOC100335828 (CD200R1), and SLC18A2. Collectively, these findings may indicate that 
cattle treated only once for BRD are responding to natural BRD challenges more appropriately compared to cat-
tle requiring multiple antimicrobial treatments. These findings show promise for predicting future clinical BRD 
cases in calves that lack overt signs of disease, as early as facility arrival. This would be anticipated to improve 
BRD morbidity and mortality and decrease antimicrobial use via earlier and more targeted antimicrobial admin-
istration. Attaining these outcomes necessitates investigations that improve understanding of the functional 
associations of these genes, and their validity as BRD biomarkers in larger, more complex cattle populations.

Data availability
The sequencing data produced in this study were deposited to the National Center for Biotechnology Information 
Gene Expression Omnibus (NCBI-GEO) under the accession number GSE161396.
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