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Summary
Background The developmental and epileptic encephalopathies (DEEs) are the most severe group of epilepsies
which co-present with developmental delay and intellectual disability (ID). DEEs usually occur in people without a
family history of epilepsy and have emerged as primarily monogenic, with damaging rare mutations found in 50%
of patients. Little is known about the genetic architecture of patients with DEEs in whom no pathogenic variant is
identified. Polygenic risk scoring (PRS) is a method that measures a person’s common genetic burden for a trait or
condition. Here, we used PRS to test whether genetic burden for epilepsy is relevant in individuals with DEEs, and
other forms of epilepsy with ID.

Methods Genetic data on 2,759 cases with DEEs, or epilepsy with ID presumed to have a monogenic basis, and
447,760 population-matched controls were analysed. We compared PRS for ‘all epilepsy’, ‘focal epilepsy’, and
‘genetic generalised epilepsy’ (GGE) between cases and controls. We performed pairwise comparisons between cases
stratified for identifiable rare deleterious genetic variants and controls.
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Findings Cases of presumed monogenic severe epilepsy had an increased PRS for ‘all epilepsy’ (p<0.0001), ‘focal
epilepsy’ (p<0.0001), and ‘GGE’ (p=0.0002) relative to controls, which explain between 0.08% and 3.3% of pheno-
typic variance. PRS was increased in cases both with and without an identified deleterious variant of major effect,
and there was no significant difference in PRS between the two groups.

Interpretation We provide evidence that common genetic variation contributes to the aetiology of DEEs and other
forms of epilepsy with ID, even when there is a known pathogenic variant of major effect. These results provide
insight into the genetic underpinnings of the severe epilepsies and warrant a shift in our understanding of the aetiol-
ogy of the DEEs as complex, rather than monogenic, disorders.

Funding Science foundation Ireland, Human Genome Research Institute; National Heart, Lung, and Blood Insti-
tute; German Research Foundation.

Copyright � 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)
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Research in context

Evidence before this study

We searched the pubmed database from inception until
August 30th 2021 for studies related to this research.
Search strategies combined the terms ‘epileptic encepha-
lopathies’, OR ‘developmental and epileptic encephalop-
athies’, ‘epilepsy’, ‘monogenic disease’, and ‘polygenic
risk scoring’. No language restrictions were applied. We
found high quality studies examining the role of poly-
genic risk in the complex epilepsies, and in broad devel-
opmental disorder phenotypes. Research into the
genetics of developmental and epileptic encephalopa-
thies exclusively examined rare genetic variation, from
either sequence or CNV data. No studies had examined
the role of common genetic variation in the develop-
mental and epileptic encephalopathies (DEEs).

Added value of this study

To our knowledge this is the first study of polygenic
burden in the DEEs. Using data from six cohorts of
severe epilepsies we show that DEEs and similar forms
of epilepsy which present with intellectual disability
have an increased burden of polygenic risk associated
with complex forms of epilepsy. We co-analyse poly-
genic burden with rare variant data and observe no dif-
ference in polygenic burden between cases with and
without deleterious rare variants.

Implications of all the available evidence

We provide evidence of a polygenic contribution to the
DEEs. This study motivates future research of the DEEs
as more complex, rather than purely monogenic, disor-
ders. To fully understand the genetic aetiology of the
DEEs, studies should incorporate data from microarrays
in addition to exome sequencing, or move towards
whole-genome sequencing.
Introduction
Developmental and epileptic encephalopathies (DEEs)
are a devastating group of epilepsies, characterised by
severe epilepsy and developmental slowing or regres-
sion associated with epileptiform activity on electroen-
cephalography (EEG).1 Individuals with DEEs have
intellectual disability (ID), and tend not to have a family
history of epilepsy.2 DEEs without an obvious acquired
cause are now known to be often due de novo dominant
genetic variants of large effect, although autosomal
recessive and X-linked forms are also recognised.3,4

With current technology, genomic testing of people
with DEEs, or other forms of epilepsy with ID, can pro-
vide a genetic diagnosis in up to 50% of cases.5�10

The additive effects of common and rare genetic vari-
ation have been examined in several neurological disor-
ders. The Deciphering Developmental Disorders (DDD)
study used a method known as linkage disequilibrium
score regression (LDSC11) to estimate that 7.7% of the
phenotypic variance of a broad, presumed monogenic,
developmental disorder phenotype is attributable to
common variants (SNP-based heritability h2 = 7.7%).
Polygenic risk score (PRS) analysis is a method that
quantifies an individual’s burden of common genetic
risk variants.12,13 A separate DDD study used PRS to
show that a common genetic burden for a broad neuro-
developmental phenotype was present in children with
and without identifiable deleterious rare genetic var-
iants.14 It has been hypothesised that a neurodevelop-
mental genetic risk burden could modulate the clinical
presentation of neurodevelopmental phenotypes,
explaining why disease-causing genetic variants have
variable penetrance in different patients.15 The interplay
between common and rare genetic variation is under
increasing focus in other complex neurological condi-
tions. For example, polygenic burden for schizophrenia
has been shown to be elevated in people with
www.thelancet.com Vol 81 Month July, 2022
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schizophrenia both with and without deleterious copy
number variants (CNVs16). However, this polygenic
burden appears to be higher in schizophrenia patients
without identifiable deleterious CNVs.17 In autism, PRS
have been shown to confer additive risk to individuals
with damaging rare variants.18

The common epilepsies have a complex aetiology.
Genetic variation, both common,19,20 and rare,21,22 as
well as environmental impact23 are known contribut-
ing factors to epilepsy development. PRS have previ-
ously been shown to distinguish individuals with
complex epilepsies, both focal and generalised, from
controls.20 Research into the genetic bases of DEEs
has focused on rare-variant data, generated from
exome sequences.21,22 Currently, the contribution of
common genetic variation to the DEEs remains
unclear.

Here we aimed to examine the role of polygenic bur-
den in the DEEs and epilepsies with ID. Using PRS
derived from the largest GWAS to date of the common
epilepsies,19 we compared individuals with 1) DEEs, and
2) epilepsies with ID, to population controls. We then
combined our results with rare variant data from avail-
able exome and whole-genome sequences to determine
whether PRS differed among cases with and without
identifiable likely deleterious or pathogenic rare genetic
variants.
Methods
All research participants or their legal guardians pro-
vided written, informed consent using protocols
approved by ethics committees at each study site.
Cohort and data descriptions
Genetic and phenotype information were obtained from
the following six studies on epilepsy and related neuro-
developmental disorders. Three of the resulting cohorts
were DEE (Epi25, Epi4K and CENet) and three were epi-
lepsy with ID (DDD, Irish Lighthouse and GEL). We
included ‘epilepsy with ID’ in addition to DEE as, from
the clinical perspective, they are considered very similar,
there is a high degree of overlap in the causative genes24

and the diagnostic yield from genomic testing is
comparable.5,25

Epi25: Singleton-based microarray, exome, and phe-
notype data on DEE patients were acquired from the
Epi25 collaborative (http://epi-25.org/), an international
project aiming to generate sequence data on 25,000
people with various forms of epilepsy. Details on pheno-
type and exome sequence generation are described else-
where,21 as are details of microarray analysis.20 These
data were used in combination with control data from
the Mass General Brigham (MGB) Biobank (previously
the Partner’s Healthcare Biobank26) following previ-
ously described methodology.20
www.thelancet.com Vol 81 Month July, 2022
Epi4K project: Focused on the genetics of epilepsy,
the Epi4K collaboration has generated exome data on
over 4,000 people with various types of epilepsy.27 Pre-
viously published microarray data on affected probands,
and exome data on DEE trios were obtained from the
Epi4K collaborative.3 These were analysed with control
data from the Australian QSkin study.28 Samples in
Epi4K which were also in the Epi25 dataset were
removed prior to analysis.

Canadian CENet cohort: The Canadian Epilepsy Net-
work (CENet) is a Canadian, trio-based study into the
genetics of severe epilepsies. Whole genome sequence
(WGS), microarray, and phenotype data of DEE patients
and their parents were obtained from CENet. WGS data
was also available on both of each proband’s parents
and used to identify likely pathogenic variants, and also
allowed for polygenic transmission disequilibrium test-
ing (pTDT). Full details on WGS generation and analy-
sis for this cohort have been described previously,29 as
have details on microarray genotyping and analysis.30

Deciphering Developmental Disorders study (DDD):
The DDD project is an exome and microarray-based
study into the genetic bases of presumed monogenic
developmental disorders.14 We identified and included
the subset of samples in the DDD study with seizure
disorders, using the HPO anthology term for ‘Seizures’
and all downstream HPO terms (HP:0001250). Data
from the UKBiobank were used as controls after screen-
ing for European ancestry (UKBiobank data field
22006) and removing any samples with epilepsy, using
available ICD coding.31

Irish Epilepsy Lighthouse: The Irish Epilepsy Light-
house is an Irish research project investigating aiming
to provide genetic diagnostics for children and adults
with epilepsy and ID. Trio-based microarray, exome and
phenotype data on children and adults with epilepsy
and ID were acquired from the Irish Epilepsy Light-
house study. Details of phenotype and of exome data
generation have been published elsewhere.5 We supple-
mented this data with microarray data generated of the
probands using the Illumina Global Screening Array
chip. The Irish Epilepsy Lighthouse genotype data were
analysed alongside genotype data from the Irish DNA
Atlas32 and the Trinity Student Dataset,33 which were
used as controls in the PRS case-control analysis.

Genomics England (GEL): WGS data were accessed
on the Genomics England research environment, contain-
ing genetic data from the UK National Genomics Research
Library.34 The epilepsy with ID cohort comprised cases
with an established diagnosis of epilepsy, confirmed by a
neurologist and with at least one additional phenotype
from intellectual disability, autism spectrum disorder,
structural abnormality (e.g. dysmorphism, cerebral or
somatic malformation) and/or unexplained cognitive/
memory decline. Controls were taken from the Genomics
England renal and urinary tract disorders disease group,
3
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using the Genomics England research environment graph-
ical user interface (GUI) to exclude any patients with syn-
dromes with prominent renal abnormalities.

Imputation and quality control
All data generated frommicroarrays underwent the follow-
ing imputation and quality control (QC) process. Datasets
which were genotyped on different microarrays were proc-
essed separately prior to imputation. QC was conducted
using PLINK 1.9, unless otherwise specified.35 Pre-imputa-
tion, SNPs were removed if present in <98% of samples,
if minor allele frequencies (MAFs) were <1%, or Hardy-
Weinberg equilibrium (HWE) deviation P-values were
<10�5. Samples were removed if SNP coverage was
<98%. For each cohort, samples were screened for Euro-
pean ancestry by merging with data from the Human
Genetic Diversity Project,36 or 1000 Genomes Project V3,37

thinning for linkage-disequilibrium (plink �indep-pair-
wise 1000,100,0.1), and calculating the top two genetic
principal components based on a variance-standardised
relationship matrix as implemented in PLINK. The PCs
were then plotted using the ggplot2 program in R v3.5,38

and the resultant PCA plots were visually inspected to
ensure all samples were of European ancestry. Per-sample
genotype heterozygosity was plotted and any samples with
high levels of genomic heterozygosity were removed. Gen-
otypes were pre-phased using EAGLE v2.4.1.39 Imputation
to the HRC1.1 imputation panel40 was performed for data
hosted in Europe (Irish Lighthouse, DDD) using PBWT 41

as implemented on the Sanger Imputation Server, or Mini-
mac4 as implemented on the University of Michigan
Imputation Server,42 for data hosted in outside Europe
(Epi25, Epi4K, CENet). Post-imputation, SNPs with impu-
tation INFO scores >=0.9 (or rsq scores >0.3 if imputed
using the Michigan server) were kept, and case and control
cohorts were then merged.

To ensure genetic homogeneity within each analyti-
cal grouping, the top two genetic PCs were calculated
using PLINK and plotted, and any outlying samples on
the PCA graph were removed from further analysis
(Supplemental Figure S1). SNPs with >98% coverage,
MAFs>1%, and HWE deviations P>10�5 were kept.

Genotype data from GEL were generated from WGS
rather than microarrays, and as such, no imputation
was required.
Qualifying rare variant analysis
Samples from each epilepsy cohort were divided into
those that contained an identifiable predicted damaging
variant (‘screen-positive’), and those that did not
(‘screen-negative’).

The criteria for ‘screen positive’ differed among
cohorts, depending on data availability.

CENet: Variant pathogenicity was assigned based on
analysis of trio WGS data, with input from the patient’s
clinical team as previously described.29
Irish Epilepsy Lighthouse: Variant pathogenicity
assigned based on trio analysis of exome sequence and
array-CGH data, using interpretation guidelines set out
by the American College of Medical Genetics and
Genomics.43

Epi4K: The screen-positive group was composed of
carriers of a de-novo protein-altering (missense or null)
variant in an established or candidate epilepsy-associ-
ated gene or a de novo pathogenic copy number variant
as previously described.44

GEL: The Genomics England Rare Disease tiering pro-
cess was used to annotate variants that are plausibly patho-
genic, based on their effect on protein coding, segregation
in the family (where possible), frequency in control popu-
lations, mode of inheritance, and whether they are in a
gene in the virtual gene panels applied to the family.45

The phenotypes of »320 patients with pre-selected Tier1/
2 variants were discussed at multi-disciplinary meetings
with epileptologists, clinical geneticists and laboratory sci-
entists, with a consensus agreement on the pathogenicity
of the tiered variants using ACMG criteria.43

Epi25 and DDD: We bioinformatically inferred likely
damaging variants in the Epi25 and DDD cohorts. Delete-
rious CNVs were those which were >2Mb in length, over-
lapped with known epilepsy genes or hotspots, or
overlapped with a gene with a protein loss-of-function
intolerance score (pLI) >0.9.46,47 Variant annotation was
performed in ANNOVAR. Deleterious variants were
restricted to known, dominant acting epilepsy and ID
genes.48,49 Adapting variant classification protocol previ-
ously used by Epi25,21 deleterious variants were required
to be either loss-of-function or missense variants with
MPC (Missense badness, PolyPhen-2, and Constraint)
scores >2.46 Variants were excluded if they appeared in a
given dataset >3 times. Likely damaging variants were
required to be absent from population databases.50
PRS calculation and statistical analysis
PRS were calculated using the summary statistics of the
ILAE 2018 genome-wide association study (GWAS) in
complex forms of epilepsy.19 Three epilepsy subtypes
were used for PRS calculation; ‘genetic generalised epi-
lepsy’ (GGE), ‘focal epilepsy’, and ‘all epilepsy’. ‘All epi-
lepsy’ refers to all cases of epilepsy considered in the
ILAE 2018 GWAS paper, which included the focal and
GGE cohorts, with a small number of unclassified
cases.19 PRS for an unrelated ‘control’ phenotype were
also calculated in each cohort (Supplemental Table S1).
SNPs with P-values �0.5 from these GWASs were
included in the PRS calculation. Statistical analyses of
the data were carried out in R v3.5.38 To avoid sample
overlap, PRS for the Irish Epilepsy Lighthouse study
were derived from the ILAE epilepsy GWAS,19 recalcu-
lated after removing the Irish case and control cohorts
(ILAE cohort names: ‘Dublin’, ‘TCD controls’). PRS in
the GEL dataset were generated from the ILAE epilepsy
www.thelancet.com Vol 81 Month July, 2022
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GWAS19 recalculated after removing the cases from
University College London (ILAE cohort name: ‘UCL’).
In each analysis cohort, PRS were normalised across all
samples to mean 0 and standard deviation 1 and
regressed onto phenotypes. The glm() function in R was
used to generate a binomial linear regression model,
and estimate b-coefficents and standard errors of PRS
each model. Each samples’ sex and the top four PCs
were included as covariates in each analysis.
Nagelkerke’s pseudo-R2 was calculated in each cohort as
a measure of variance explained by PRS. Each of the
three epilepsy PRS models were then meta-analysed
across cohorts using a fixed-effects weighted estimate
model, as implemented in the rma.uni() function from
the ‘metafor’ R package,51 which also produced hetero-
geneity measures (I2) for each model. As a control, PRS
for an unrelated trait were calculated and compared
between cases and controls in each analysis cohort (Sup-
plemental Table S1). As a comparison, metafor’s rma.
uni() function was also used to estimate random-effects
meta-analysis models for each PRS.

We then split out cases in each cohort into those with
and without an identifiable, likely damaging genetic var-
iant (‘screen-positive’ and ‘screen-negative’, respectively,
see above) and performed a multinomial pairwise com-
parison of each epilepsy PRS between controls, ‘screen-
positive’ cases, and ‘screen-negative’ cases, using the
multcomp R package.52 These comparisons were then
meta-analysed across cohorts. Data visualisation was
done using ggplot2 v 3.3.353 in R.
pTDT testing
The CENet cohort contained GWAS genotype data
from each individual’s parents. Polygenic transmis-
sion disequilibrium testing (pTDT18) is a method
that performs PRS analysis in trios to show an
Cohort Epilepsy Screen-positive Screen-negative

Epi25 1,094 163 931

Partner’s Biobank 0 0 0

Epi4K 266 44 77

QSkin 0 0 0

CENet 171 40 86

Canadian Controls 0 0 0

DDD 897 152 745

UK Biobank 0 0 0

Irish Lighthouse 82 29 53

Irish Controls 0 0 0

Genomics England 249 32 217

Total 2,759 460 2,109

Table 1: Case and controls numbers per cohort of all samples included
subset of cases in each cohort that did or did not contain an identifiabl
qualifying rare variant analysis). Cohorts which were paired for analysi

www.thelancet.com Vol 81 Month July, 2022
eventual over-transmission of risk alleles. pTDT was
analysed following the approach by Weiner et al.
based on individual PRS of parents and offspring for
all three epilepsy subtypes. pTDT was calculated for
the entire cohort, and split into ‘screen-positive’ and
‘screen-negative’ cases.
Role of the funding source
The funders had no role in study design, data collec-
tion, data analyses, interpretation, or writing of this
report
Results

Case and control descriptions
In total, we analysed 2,759 cases and 477,760 controls,
split across 11 cohorts. 460 people carried a variant of
likely large effect (‘screen-positive’), and 2,109 did not
(‘screen-negative’). A small portion of cases (n=190) in
the CENet and Epi4K datasets lacked rare variant data,
and as such could not be assigned as either screen-posi-
tive or screen-negative. A full breakdown of case and
control numbers is shown in Table 1. Samples in the
Epi25, Epi4K and CENet cohorts had a neurologist-con-
firmed diagnosis of a DEE. The Irish Lighthouse, DDD,
and GEL cohorts had ‘epilepsy with ID’, although many
cases in these cohorts would have also had true DEEs,
and would have a phenotype which warranted exome
sequencing or WGS to investigate a potential mono-
genic cause.
Elevated epilepsy PRS in severe epilepsy cases relative
to controls

Additional genetic contributions to apparently mono-
genic epilepsies. To determine whether epilepsy PRS
Controls Phenotype Data types

210 DEE Microarray + exome

19,762 Controls only Microarray

0 DEEs Microarray + exome

15,717 Controls only Microarray

0 DEE WGS + microarray

6,901 Controls only Microarray

0 Seizures + ID Microarray + exome

400,835 Controls only Microarray

0 Epilepsy + ID Exome (trios) + microarray

(probands)

2,404 Controls only Microarray

1,931 Epilepsy + ID and controls WGS

447,760

in analysis. ‘Screen-positive’ and ‘screen-negative’ indicate the
e likely damaging genetic variant, respectively (see Methods:
s are grouped by colour.
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are increased in severe epilepsies relative to the general
population, we calculated PRS in each analytical cohort
and incorporated them into a fixed-effects meta-analysis
model. Meta-analysis of all analytical groups showed a
significant increase in PRS for ‘all epilepsy’
(p<0.0001), ‘focal epilepsy’ (p<0.0001), and ‘GGE’
(p=0.0002) in epilepsy cases relative to controls
Figure 1.Meta-analysis of PRS of a) ‘all epilepsy’, b) ‘Focal epilepsy’,
odds ratios and standard errors.
(Figure 1). Results remained significant when run using
a random effects model (see Supplemental Figure S2).
Differences in the strength of PRS association were
observed between cohorts. PRS for ‘all epilepsy’ and
‘focal epilepsy’ did not significantly distinguish cases
from controls in the Epi4k or Canadian CENet cohorts.
Contrastingly, PRS analysis for ‘GGE’ did not reach
and c) GGE. ‘FE Model’ = Fixed-effects model. Box plots show log

www.thelancet.com Vol 81 Month July, 2022



Cohort All Epi r2 Focal Epi r2 GGE r2

Epi25 1.6% 1.2% 1.5%

Epi4K - - 0.35%

CENet - - 1.2%

DDD 0.08% 0.1% -

Lighthouse 2.6% 3.3% -

Genomics England 2.8% 2.6% -

Table 2: Variance explained by each epilepsy PRS in each group
of cases. Grey cells indicate analyses that were not statistically
significant (see methods: PRS calculation and analysis).

Articles
statistical significance in the DDD, Irish Lighthouse, or
Genomics England cohorts, all of which had a broader
‘epilepsy with ID’ phenotype, rather than exclusively
DEE (Figure 1). The variance explained by each of the
PRS can be found in Table 2, and heterogeneity scores
in Supplemental Figures S3 and S4.

Given the high levels of heterogeneity observed,
we re-ran the meta analysis separately for the DEE
and the epilepsy plus ID cohorts. Results from DEE-
only cohorts (i.e. Epi25, EPI4k and CENet) showed
that all PRS remain statistically significant (‘all epi-
lepsy’ PRS p<0.0001, ‘focal epilepsy’ PRS p=0.0016,
and ‘GGE’ PRS p<0.0001, with low heterogeneity
(I2 = 0, see Supplemental Figure S3). Results from
Epilepsy Plus ID-only cohorts (i.e. DDD, Irish Light-
house and GEL) showed significance for ‘all epilepsy’
PRS (p<0.001), and ‘focal epilepsy’ PRS (p<0.001),
but not GGE (p=0.51), with considerable heterogene-
ity (I2 ranges: 36-93%) see Supplemental Figures S3
and S4.
Elevated PRS in the presence of highly deleterious rare
genetic variants. We next aimed to delineate epilepsy
PRS between cases based on the presence of a rare
damaging variant by splitting our cases in each
cohort into screen-positive’ and ‘screen-negative’ and
comparing each of the three epilepsy PRS between
screen-positive cases, screen-negative cases, and con-
trols. Meta-analysis of these PRS across all study
cohorts showed that both screen-positive and screen-
negative cases had an elevated PRS for ‘all epilepsy’
and ‘focal epilepsy’ relative to controls (Figure 2).
For GGE PRS we observe an increased PRS in
screen-negative cases relative to controls, but no sig-
nificant difference between screen-positive cases and
controls. We did not find any significant differences
in epilepsy PRS between screen-positive and screen-
negative cases (Figure 2, Table S2).

pTDT: The presence of parental genotype data in the
CENet cohort allowed for pTDT analysis, which has the
advantage of removing any genetic population structure
as a potential confounder.18 Significant enrichment was
seen for ‘GGE’ PRS in affected offspring relative to
www.thelancet.com Vol 81 Month July, 2022
parents (P= 4.46£10�9). This signal maintained signifi-
cance when cases were split into ‘screen-positive’ and
‘screen-negative’ (P=2.57£10�2, P=7.10£10�4, respec-
tively). PRS analyses for ‘all epilepsy’ and ‘focal epilepsy’
did not meet the threshold for statistical significance.
These results support our previous results from the
case/control analysis in CENet, which found a signifi-
cant elevation for GGE PRS in cases relative to a differ-
ent group of normal controls.
Discussion
We calculated epilepsy PRS in a cohort of 2,759 patients
with DEEs or severe epilepsies and analysed them
together with 447,760 population controls. We
observed an enrichment of epilepsy PRS in patients
with DEEs and ‘epilepsy with ID’. In the CENet dataset
we also observe an over-transmission of GGE PRS from
parents to DEE affected offspring in pTDT analysis.
Thus, we present evidence that common genetic varia-
tion plays a role in the aetiology of the DEEs and other
forms of ‘epilepsy with ID’.

We found that PRS for ‘all epilepsy’ and ‘focal epi-
lepsy’ were increased in both patients with a known
pathogenic variant of major effect (screen-positive) and
those without (screen-negative), while GGE PRS was
only increased in screen-negative cases. We did not
observe a significant difference in any PRS between
screen-positive and screen-negative patients. Our results
complement those of a recent study of DEE that demon-
strated an enrichment of damaging ultra-rare variants
in non-EE/DEE genes, even in the subset of cases where
a diagnostic variant had previously been identified.54 In
combination, these results suggest the DEEs as a group
of disorders with key diagnostic mutations acting on a
background of complex genetic architecture. Larger
samples sizes and improved diagnostic yield are needed
to further explore differences in PRS between screen-
positive and -negative patients. These results extend to
the epilepsies what has previously been shown in other
conditions, such as autism, that polygenic burden is ele-
vated in cases relative to controls, even in those which
carry damaging rare variants.55

We note that GGE PRS was not significantly
increased relative to controls in any of our ‘epilepsy
with ID’ cohorts, unlike the ‘DEE only’ cohorts where
such an enrichment was consistently observed. A poten-
tial explanation for this difference is that a proportion of
the cases which are non-DEE in the ‘epilepsy with ID’
cohort have a differing polygenic aetiology to the DEE
samples in the same cohorts. This would also help
explain the contrasting heterogeneity values between
the the epilepsy with ID and DEE only analysis (Supple-
mental Figures S3 and S4). However, given we lack the
phenotypic resolution to identify the DEE cases in the
‘epilepsy with ID’ cohorts, the exact cause of the differ-
ing PRS patterns remains unclear. Sample size should
7



Figure 2. Fixed-effects meta-analyses comparing cases with or without likely deleterious genetic variants to each other and popula-
tion controls for a) ‘All epilepsy’ PRS, b) Focal PRS, and c) GGE epilepsy PRS. Log odds ratios and 95% confidence intervals are dis-
played in the error bars. P-values for each model are shown as numbers.
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also be considered as a limitation in ruling out FE or
GGE PRS risk factors in the corresponding DEE and
‘epilepsy with ID’ cohorts

Although the DEEs are primarily monogenic disor-
ders, based on the results presented here we know that,
while PRS only explain a small amount of phenotypic
variance in each of the cohorts analysed (R2 levels vary-
ing from 0.08% to 3.3%), DEEs display a clear signal of
polygenicity. This could explain why pathogenic de novo
genetic variants in DEEs can occasionally display incom-
plete penetrance or show marked differences in pheno-
typic severity.14,56�58 We hypothesise that genetic
www.thelancet.com Vol 81 Month July, 2022
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variants could act as modulators of the pathogenicity of
highly damaging rare genetic variants or additional
environmental factors, and are likely to partially explain
phenotypic variation in individuals sharing a specific
pathogenic variant, as has been shown for a range of
other conditions.59 Followup work is required to deter-
mine to what extent the observed PRS signal represents
a small effect in most cases of DEEs and ‘epilepsy with
ID’, or rather a larger effect in particular cases, perhaps
dictated by specific genes of variant type.

Our results raise further important questions, such
as the role of PRS in DEE cases with pathogenic variants
in the same gene. For example, do individuals with loss-
of-function variants in SCN1A have an increased PRS
for epilepsy relative to controls? Or, do PRS vary
depending on the gene affected by a pathogenic variant
(i.e., comparisons between carriers of variants in
SCN1A, STXBP1, and other such genes). Do comorbid
disorders or the severity of epilepsy vary according to
PRS for specific traits? Larger and well-phenotyped
genomic cohorts for epilepsy and other neurological dis-
ease are required to answer these questions.

At this point in time, the effect size of epilepsy-
related PRS in DEEs are currently too small to be con-
sidered of value for diagnostic, treatment or prognostic
purposes. This contrasts with conditions such as breast
cancer, where trials are underway using PRS to identify
those most at risk who are then selected for earlier
mammographic screening.60 However, with analysis of
larger datasets, PRS (and/or pTDT analysis) may add
value to genetic diagnostics, when combined with rare
variant analysis, potentially allowing for clinically rele-
vant effect sizes to emerge in the context of gene-spe-
cific analyses. However, analysis of larger cohorts may
show larger effect sizes, perhaps in particular genes or
with certain mutation types. With larger effect sizes,
PRS could potentially impact the clinic, perhaps as a
prognostic guide.61 Most genetic research into the DEEs
is currently conducted using data from exome analy-
ses,62 which are not suitable for PRS calculation.
Results presented here motivate the supplementation of
large exome research studies with data from microar-
rays, as done in the Epi25 consortium.20,21 The move
from exome to whole-genome sequencing would allow
for the analysis of both common and rare genetic var-
iants, among other benefits (such as more even
sequence coverage).63 This research would provide
value for our biological understanding of the aetiology
of the DEEs, in addition to potentially explaining some
of the variable presentation of DEE phenotypes.

This study has a number of weaknesses. Firstly, dif-
ferences in data availability across cohorts meant that
rare-variant annotation differed across all samples. The
current ‘gold-standard’ approach to genetic diagnostics
requires variant interpretation according to standards
from the ACMG, including diagnostic deliberation with
input from clinical genetics and the wider clinical
www.thelancet.com Vol 81 Month July, 2022
team.43 Where possible, we applied these criteria (e.g.,
for the Irish Epilepsy Lighthouse and Genomics Eng-
land datasets), but for most cohorts, we were limited to
an in silico analysis. This discrepancy in pathogenicity
assignment may explain the differences in the propor-
tion of cases which screen-positive between cohorts.
Additionally, although we had data from a range of proj-
ects which would be broadly representative of DEEs, or
cases of ‘epilepsy with ID’, our study focused solely on
individuals of European ancestry. Further work is
required to verify these results in other ethnic back-
grounds.

In summary, we provide evidence that DEEs harbour
a polygenic component. Future studies of DEEs should
look beyond monogenicity and focus on DEEs as a
group of complex disorders. Large international collabo-
rative efforts will further elucidate the complex genetic
aetiology of the severe early-onset epilepsies.
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