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Abstract: Release of nanoceria (nCeO2) into the environment has caused much concern about its
potential toxicity, which still remains poorly understood for soil microorganisms. In this study,
nanoceria and cerium (III) nitrate at different doses (10, 100 and 500 mg/kg) were applied to bok choy
(Brassica rapa subsp. chinensis), grown in potting soil, to investigate the responses of soil bacterial
communities to nanoceria (NC) and ionic cerium (IC) applications. The results showed that bacterial
richness was slightly increased in all cerium treatments relative to the negative control without
cerium amendment (CK), but a significant increase was only found in IC500. The patterns of bacterial
community composition, predicted functions and phenotypes of all NC treatments were significantly
differentiated from IC and CK treatments, which was correlated with the contents of cerium, available
potassium and phosphorus in soil. The co-occurrence network of bacterial taxa was more complex
after exposure to ionic cerium than to nanoceria. The keystone taxa of the two networks were
entirely different. Predicted functions analysis found that anaerobic and Gram-negative bacteria were
enriched under nanoceria exposure. Our study implies that Proteobacteria and nitrifying bacteria
were significantly enriched after exposure to nanoceria and could be potential biomarkers of soil
environmental perturbation from nanoceria exposure.

Keywords: nanoceria; ionic cerium; bacterial diversity; co-occurrence pattern; potting soil

1. Introduction

Nanoceria (nCeO2) has broad and increasing applications in different fields, for exam-
ple, as a diesel fuel additive and an industrial catalyst [1,2]. It can also be used in gas sensors
in electronics [3], for corrosion protection [4] and environmental applications and as an
anti-inflammatory in the biomedical area [5]. The global market volume of nanoceria was
estimated to be 9100 tons in 2016 and is expected to continue to increase over time [6]. Due
to its production, nanoceria has been released into the natural environment and presents
potential hazards and risks [7,8].

Nanoceria as well as other engineered nanomaterials have been directly or indirectly
released from the technosphere to the ecosphere and transported within environmental
compartments [9]. Gottschalk et al. [10] predicted with a flow model that soils were the
sink of 86.9% of the nanoceria released into the environment because of the application
of sludge in the Danish environment, and the main source is direct release from produc-
tion/manufacturing/use [10]. This makes it more urgent to elucidate the environmental
effects of these released nanoceria in soil, which is one of the most complex niches for
diverse biological communities on earth. Among the soil biota, microflora play a key role
in biogeochemical processes and nutrients’ cycling [11] and are a sensitive indicator of soil
quality and perturbations such as released engineered nanomaterials [12]. Previous studies
have made efforts to investigate the biocompatibility and microbial toxicity of nanoceria in
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soils. It was found that nanoceria could alter the bacterial community structure, increase the
soil microbial metabolic quotient and inhibit the microbial denitrification process [13–16].
However, knowledge on the effects of nanoceria on soil microorganisms is still limited and
ambiguous, as promotive and adverse effects were both reported previously [13,16,17],
and similar ambiguities exist for effects on different plant species [18,19]. Therefore, more
investigation is needed to understand the effects of nanoceria on soil microorganisms.

The present study aimed to reveal the novel environmental effects of nanoceria and
ionic cerium on soil bacterial diversity, community structure and co-occurrence patterns,
namely: (1) the changes in soil bacterial community diversity, predicted functions and
phenotypes; (2) the variations in bacterial community composition and structure as well as
correlated environmental factors; (3) the differences in bacterial co-occurrence patterns after
exposure and (4) the bacterial biomarkers that are significantly enriched after exposure. Our
study hopes to provide a basis for better understanding the ecological effects of nanoceria
and ionic cerium.

2. Materials and Methods
2.1. Experimental Design

The original soil used as the potting medium was collected from a local topsoil without
any known cerium pollution (GPS coordinates: 112◦34′52.83” E, 37◦25′46.82” N). It is a
calcareous cinnamon soil (Calciustepts) characterized by a moisture of 15.07%, pH of 7.6,
soil organic carbon (SOC) of 4.98 g/kg, total nitrogen (TN) of 0.63 g/kg, total phosphorus
(TP) of 0.68 g/kg, total potassium (TK) of 44.60 g/kg, alkali-hydrolysable nitrogen (AN)
of 34.80 mg/kg, available phosphorus (AP) of 30.90 mg/kg and available potassium (AK)
288.80 mg/kg. Urea, monopotassium phosphate, potassium sulfate and composted chicken
manure were added and homogenized into the original soil with a final ratio of 4.15, 2.44,
2.00 and 44.44 g/kg, respectively. Then, the soil was divided into three parts for further
amendment. The nanoceria (NC) treatment group and the ionic cerium (IC) treatment group
were amended with aqueous nanoceria (Suzhou Ugao Nanomaterials Co., China) or cerium
(III) nitrate solution, respectively. The primary nanoceria dispersed in ultrapure water
(0.2mg/L) was characterized using a multi-method approach [20,21]. The NPs’ physico-
chemical characteristics were as follows: the mean particle size was 25 ± 15 nm (Figure S1;
SEM), the zeta potential was +14.6 mV (pH 5), the isoelectric point was
7.4 ± 2.2 and the specific surface area was 68 m2/g. Both groups had three treatments and
the soils were amended with a gradient final cerium concentration of 10 (NC10 and IC10),
100 (NC100 and IC100) and 500 (NC500 and IC500) mg/kg. The soil in each pot was mixed
throughout during the cerium amendment. A negative control group (CK) was also set
with no cerium amendment. Then, three pots were filled with the soil for each treatment as
replicates with 3 kg soil per pot. In total, 21 pots of seven treatments were prepared for bok
choy planting.

2.2. Planting, Sampling and Soil Analyses

Bok choy (Brassica rapa subsp. chinensis) seedlings were purchased from a local seedling
company. Seedlings with the same growth status were selected and transplanted into the
prepared pots in a greenhouse. The potting bok choy was watered regularly (same amount
and frequency among treatments) and harvested after 40 days. The soil in each pot was
mixed after removing the bok choy, and soil samples were then collected and transported
to the lab in an icebox. In total, 21 soil samples were obtained. Part of the fresh soil for
each treatment was air-dried and sieved for soil physicochemical analyses and another
part was stored at −80 ◦C for microbial analysis. SOM (soil organic matter) was calculated
by multiplying the SOC concentration by 1.724 [22], and SOC was determined using the
potassium dichromate oxidation method [23]. TN, TP and TK were measured using the
Kjeldahl method, the molybdenum stibium colorimetric method and the Cornfield method,
respectively [22,24]. AN, AP and AK were determined using the alkaline diffusion method,
the sodium bicarbonate extraction method and the ammonium acetate extraction method,
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respectively [22]. Soil residual cerium concentration was determined using inductively
coupled plasma mass spectrometry (ICP-MS, Perkin Elmer SCIEX).

2.3. Soil Bacterial 16S rRNA Gene Sequencing and Analysis

The soils stored at −80 ◦C were delivered to Gene Denovo Biological Technology Co.
Ltd. (Guangzhou, China) for bacterial 16S rRNA gene sequencing. Microbial genomic DNA
was extracted from 0.5 g soil using the PowerSoil DNA Isolation Kit (QIAGEN, Hilden,
North Rhine Westphalia, Germany) following the manufacturer’s instructions. The quality
and quantity of extracted DNA were checked using 1% agarose gel electrophoresis and
a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Cleveland, OH, USA),
respectively. The sequencing was conducted using the primer set 341F (CCTACGGGNG-
GCWGCAG) and 806R (GGACTACHVGGGTATCTAAT) targeting the V3-V4 region of the
bacterial 16S rRNA gene [25] on an Illumina Hiseq2500 PE250 platform.

The raw reads obtained in FASTQ format were analyzed using the omicsmart cloud
platform of Gene Denovo Biological Technology Co. Ltd. (Guangzhou, China)
(http://www.omicsmart.com) (accessed on 5 September 2021). Briefly, the paired-end
raw reads were assigned to each sample according to the barcode. After removal of the
primers and barcodes, the sequences were filtered to obtain clean reads using FASTP
(https://github.com/OpenGene/fastp) (accessed on 5 September 2021) by removing
reads containing more than 10% ambiguous bases or less than 60% of bases with quality
(Q-value) >20. Paired-end clean reads were subsequently merged into raw tags using
FLASH (v1.2.11) with a minimum overlap of 10 bp and mismatch error rates of 2% [26],
followed by denoising of raw tags using the QIIME (v1.9.1) [27] pipeline under specific
filtering conditions [28]. Then, chimeras were checked and removed using the UCHIME
algorithm (http://www.drive5.com/usearch/manual/uchime_algo.html) (accessed on
5 September 2021) to obtain high-quality reads. Then, high-quality reads with 97% simi-
larity were assigned into the same OTU (operational taxonomic unit) using the UPARSE
pipeline [29], followed by representative sequences’ selection of each OTU. Taxonomic
classification of the representative sequences was performed using the RDP classifier
(v2.2) [30] based on the SILVA database (v128, https://www.arb-silva.de/) (accessed on
5 September 2021) [31] with a confidence threshold value of 0.8. Then, the sequences
were randomly subsampled down to the lowest number of sequences in any sample and
non-bacterial reads were removed. Rarefaction curves generation and calculation of alpha
diversity statistics, including the Sobs richness index, Shannon–Weaver diversity index,
Pielou evenness index and Goods coverage index, were conducted in QIIME using the
defined OTUs. The Adonis (Permanova) [32] test based on Bray–Curtis distance matrices
was performed to determine whether there were significant differences in soil bacterial
phylogenetic diversity among the treatments. Two-way ANOVA was performed to test the
interaction effects of cerium species (nanoceria or ionic cerium) and dose on soil bacterial
community composition at the phylum level. Bacterial taxa significantly correlated with
Ce dose (R > 0.60, p < 0.05) for both nanoceria and ionic cerium were screened out using
the Hmisc package (v4.4-0, https://CRAN.R-project.org/package=Hmisc) (accessed on
7 September 2021).

Bray–Curtis distances of bacterial composition between treatments at both the phylum
and OTU level were calculated to perform hierarchical bi-clustering analysis using the
pheatmap package (v1.0.12, https://CRAN.R-project.org/package=pheatmap) (accessed
on 9 September 2021) in the R environment (v4.0.2). PCA (principal component analysis)
and CAP (constrained analysis of principal coordinates) were used to depict the differen-
tiation of the bacterial community structure among treatments using the vegan package
(2.5-6, https://CRAN.R-project.org/package=vegan) (accessed on 10 September 2021) and
prcomp function in R, respectively.

Linear discriminant analysis (LDA) effect size (LEfSe) was calculated to identify
enriched bacterial taxa in soils under different cerium treatments. To discover the specific
taxa enriched under nanoceria or ionic cerium exposure, the biomarkers in each NC or IC

http://www.omicsmart.com
https://github.com/OpenGene/fastp
http://www.drive5.com/usearch/manual/uchime_algo.html
https://www.arb-silva.de/
https://CRAN.R-project.org/package=Hmisc
https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=vegan


Microorganisms 2022, 10, 1982 4 of 19

treatment were defined as those with significantly greater abundances than in CK, while
the biomarkers of CK were those with significantly different abundances against all NC or
IC treatments. A significance level of p < 0.05 and an effect size threshold of 3 were used
for all the biomarkers.

Network analysis was performed to investigate the co-occurrence patterns of bacterial
taxa between NC and IC treatments using igraph packages [33] in the R environment
and the interactive platform Gephi [34] as previously described [35]. Briefly, the bacterial
genera with a relative abundance >0.05% of NC treatments and IC treatments were used
to calculate Spearman’s correlation coefficients. Co-occurrence events with a significant
Spearman’s coefficient (R > 0.60, p < 0.01) were considered to be robust [36]. All the robust
correlations jointly formed a correlation network, and each edge indicates a strong and
significant correlation between the nodes. Network topology parameters were calculated
as well. Nodes with a high betweenness centrality value, which indicates the relevance of a
node as capable of holding together communicating nodes, were considered as keystone
taxa [37,38].

PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unob-
served States) was employed to predict the potential functions of bacterial communities [39].
The BugBase algorithm was used to predict biologically interpretable phenotypic traits
at the organism level, such as Gram status, oxygen requirements, biofilm formation and
stress tolerance [40]. Hierarchical bi-clustering analysis among different treatments was per-
formed based on both the predicted potential functions and the predicted phenotypic traits.

All statistical analyses, the multivariate analysis and the relevant graph plotting were
conducted with R (v4.0.2), unless stated otherwise. Sequence data have been deposited
into the Sequence Read Archive (SRA) database under accession number PRJNA760827.

3. Results
3.1. Soil Physicochemical Properties

The physicochemical properties in different treatments are displayed in Table 1. No
significant differences were observed for either SOM or TN among different treatments
(p > 0.05). Compared to CK, the contents of AN were significantly decreased in NC100, IC10
and IC100 (p < 0.05), while for AP, a significant decrease was observed in all NC and IC
treatments except for IC10. Significant decreases in TK and AK were found in all treatments
compared to CK. Additionally, all NC treatments and IC500 significantly increased the
soil TP contents compared to CK (p < 0.05). The soil residual cerium concentration at
harvest was significantly different among treatments (p < 0.05), with the highest being
135.03 mg/kg in NC500 and the lowest being 9.57 mg/kg in IC10. Compared to the
initial adding concentration, the residual cerium concentration decreased by 73% and
79% in NC500 and IC500, respectively, and it decreased by 67% and 55% in NC100 and
IC100, respectively. However, there were no significant differences in residual cerium
concentration between NC10, IC10 and CK, as the average background values of cerium
in soil in Shanxi Province were previously found to be 69.6 mg/kg [41]. Moreover, the
soil residual cerium concentration positively correlated with TP (R = 0.48, p = 0.03) and
negatively correlated with AP (R = −0.46, p = 0.03) and AK (R=−0. 64, p = 0.002).

Table 1. Soil physicochemical properties in different treatments.

SOM
g/kg

TN
g/kg

AN
mg/kg

TP
g/kg

AP
mg/kg

TK
g/kg

AK
mg/kg

Ce
mg/kg

NC10 17.22 ± 1.27 a 0.19 ± 0.02 a 75.21 ± 3.01 a,b 0.78 ± 0.03 a 18.51 ± 2.69 c 19.02 ± 0.51 b 107.19 ± 3.01 b,c 10.09 ± 2.63 d

NC100 17.22 ± 1.06 a 0.16 ± 0.01 a 55.97 ± 3.19 b 0.7 ± 0.06 a 22.68 ± 1.24 c 19.19 ± 0.67 b 119.32 ± 15.47 b,c 38.87 ± 0.66 c

NC500 17.14 ± 0.98 a 0.18 ± 0.001 a 73.16 ± 10.01 a,b 0.78 ± 0.01 a 23.43 ± 2.63 c 19.09 ± 0.21 b 107.53 ± 25.43 bc 135.03 ± 28.91 a

IC10 16.33 ± 1.04 a 0.16 ± 0.003 a 56.78 ± 2.51 b 0.65 ± 0.07 a,b 43.3 ± 7.28 a,b 20.34 ± 0.96 b 141.71 ± 7.96 b 9.57 ± 2.56 d

IC100 17.26 ± 0.65 a 0.17 ± 0.01 a 58.01 ± 6.07 b 0.64 ± 0.005 a,b 32.45 ± 3.64 b,c 18.89 ± 0.68 b 124.21 ± 3.96 bc 44.43 ± 0.65 c

IC500 17.99 ± 1.1 a 0.19 ± 0.02 a 80.81 ± 20.1 a,b 0.74 ± 0.003 a 27.85 ± 0.63 c 19.8 ± 0.58 b 95.09 ± 3.88 c 103.13 ± 14.10 b
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Table 1. Cont.

SOM
g/kg

TN
g/kg

AN
mg/kg

TP
g/kg

AP
mg/kg

TK
g/kg

AK
mg/kg

Ce
mg/kg

CK 17.19 ± 0.9 a 0.21 ± 0.02 a 101.97 ± 2.66 a 0.51 ± 0.08 b 49.63 ± 6.68 a 22.39 ± 0.48 a 252.36 ± 16.7 a 9.74 ± 1.24 d

Notes: NC = nanoceria; IC = ionic cerium; the number means the concentration of cerium (mg/kg); the same
below. SOM = soil organic matter; TN = total nitrogen; AN = available nitrogen; TP = total phosphorus;
AP = available phosphorus; TK = total potassium; AK = available potassium; Ce = soil residual cerium concentra-
tion. Different superscript lowercase letters within each column mean significant differences (p < 0.05) between
different treatments revealed by one-way ANOVA.

3.2. Bacterial α-Diversity and Community Composition

A total of 3,371,276 raw reads of the bacterial 16S rRNA gene were obtained from
the sequencing, and 3,197,402 high-quality reads were yielded after quality control and
assembly. After random subsampling for homogenization, each sample had 92,969 high-
quality reads. In total, 8874 OTUs defined by 97% sequence similarity were clustered in all
samples. The rarefaction curves (Figure S1) based on the Sobs index (number of observed
OTUs) and coverage index (Table S1) indicated that the bacterial community of all samples
was well captured at the current sequencing depth.

The alpha diversity indexes of the different treatments are listed in Table S1. The Sobs
richness index of all cerium treatments was higher than that of CK, but significantly higher
values were only observed in IC500 compared to CK (p < 0.05). No significant differences
were observed for the Shannon–Weaver diversity index and Pielou evenness index among
the different treatments. The coverage index of all treatments was higher than 0.98, which
indicated that the current sequencing depth is sufficient to saturate the bacterial diversity
of all the soil samples.

All the bacterial high-quality reads were classified into 35 phyla, 108 classes, 222 orders,
334 families and 661 genera, and a summary of the taxonomic classification of the 21 samples
is listed in Table S2. Most high-quality reads (99.55%) could be classified at the phylum
level. Planctomycetes, Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia,
Chloroflexi, Firmicutes, Patescibacteria, Gemmatimonadetes and Bacteroidetes were the top
ten dominant bacterial phyla and cumulatively accounted for more than 90% of all the taxa
abundance in all treatments (Figure 1). The correlation analysis found that Proteobacteria,
Lentisphaerae and Rokubacteria significantly positively correlated with nanoceria dose,
while Epsilonbacteraeota had a significant negative correlation (p < 0.05, Table 2). For
ionic cerium treatments, Hydrogenedentes and Bacteroidetes were found to positively
and negatively correlate with cerium (III) nitrate dose at a significant level, respectively
(p < 0.05).

Table 2. Bacterial taxa significantly correlated with cerium dose at the phylum level.

Cerium Type Bacterial Taxa r p

Nanoceria Proteobacteria 0.67 0.017
Lentisphaerae 0.62 0.033
Rokubacteria 0.60 0.037

Epsilonbacteraeota −0.60 0.037
Ionic cerium Hydrogenedentes 0.59 0.043

Bacteroidetes −0.71 0.009
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Figure 1. Soil bacterial community composition at the phylum level in different cerium treatments.

3.3. Differences in Soil Bacterial Community Patterns

The two-way ANOVA revealed that both Ce species and dose had a significant effect
(p < 0.05) on the abundance of several bacterial phyla (Table S3). However, no signifi-
cant interactive effects (p < 0.05) of Ce species and dose were observed other than for
Fibrobacteres. Among the top ten phyla, Acidobacteria, Actinobacteria, Verrucomicrobia,
Chloroflexi and Gemmatimonadetes were significantly affected by both Ce species and
dose (p < 0.05). Proteobacteria and Bacteroidetes were just under the significant one-way
effect of Ce species (p < 0.05).

To reveal the dissimilarities of bacterial community patterns after different cerium
treatments, hierarchical bi-clustering analysis was performed at both the phylum and OTU
level, and the corresponding heatmaps were plotted (Figure 2). It was observed that at
both the phylum level (Figure 2A) and the OTU level (Figure 2B), all three NC treatments
were obviously differentiated from all IC treatments and CK, which were grouped in
the same cluster. Proteobacteria, Gemmatimonadetes, Acdidobacteria, Nitrospirae and
Elusimicrobia showed a similar distribution pattern among the different treatments, which
was consistent with the clustering pattern of the treatments (Figure 2A)—i.e., these bacterial
phyla similarly had a higher abundance in the NC cluster and a lower abundance in the
other cluster (IC and CK).

A PCA was performed based on the bacterial genera composition, and the coordinate
biplot is shown in Figure 3A. The first two PC axes collectively explained 91.43% of
the bacterial community composition variations among the different cerium treatments.
The first axis obviously separated the NC treatments from the IC treatments and CK. A
CAP was also performed to further investigate the differentiation of the bacterial genera
community composition among different treatments and the key shaping factors. As
presented in Figure 3B, the first two axes explained 29.41% of the variation. The NC
treatments were obviously separated from the IC treatments and CK, which was similar
to the PCA biplot. It showed that residual Ce, TP, AP and AK were the important factors
shaping the differentiation of IC and NC treatments. Furthermore, the Adonis test indicated
that the bacterial genera composition differentiation among the NC and IC treatments was
significant with R2 = 0.24 and p = 0.001. Both PCA and CAP biplots indicated that the
bacterial community composition was different between the NC and IC treatment groups,
but no obvious differentiation was observed between dose treatments within each group.
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3.4. Bacterial Biomarkers under Cerium Exposure

The LEfSe algorithm was used to compare two or more treatments to identify the bacte-
rial biomarkers that were significantly enriched. The taxa with an LDA score >3.0 from each
treatment are depicted in Figure 4. Compared to the NC treatments, the five biomarkers
enriched in CK belonged to Chloroflexi. They are Herpetosiphonaceae and Herpetosiphon
of Chloroflexales and Thermomicrobiaceae, Nitrolancea and Nitrolancea hollandica Lb of
Thermomicrobiales (Figure 4A). Compared to CK, five biomarkers were identified in all
NC treatments, including Subgroup_6 of Acidobacteria, Nitrosomonadaceae of Proteobac-
teria, c_NC10 and Rokubacteriales of Rokubacteria and Rokubacteria itself (Figure 4A).
Three biomarkers were enriched in NC100 and NC500, namely WD2101_soil_group of
Planctomycetes, Gemmatimonadaceae of Gemmatimonadetes and Stenotrophobacter of Aci-
dobacteria (Figure 4A). More than half of the taxa exclusively enriched in either of the
NC treatments were assigned to Proteobacteria, such as Aeromonas, Pseudomonadaceae,
SZB85 (Nitrosococcaceae) and MND1 (Nitrosomonadaceae).
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Figure 4. LDA scores of bacterial taxa in NC (A) and IC treatments (B). The biomarkers in each NC or
IC treatment were defined as those significantly enriched only compared to CK, while the biomarkers
of CK were those with significantly different abundances compared to all NC or IC treatments.
A significance level of p < 0.05 and an effect size threshold of 3 were used for all the biomarkers.
The lowercase prefix letters indicate the taxonomic level of the biomarker: p = phylum; c = class;
o = order; f = family; g = genus; s = species.

Compared to the IC treatments, nine bacterial taxa were significantly enriched in
CK, including three Bacillales taxa of Firmicutes (Family_XII, Exiguobacterium and Ex-
iguobacterium mexicanum) and six Gammaproteobacteria taxa of Proteobacteria (Figure 4B).
Two of the six Gammaproteobacteria belonged to Enterobacteriales and three belonged to
Pseudomonadales (Moraxellaceae and Pseudomonadaceae). Compared to CK, three Phycis-
phaerae taxa of Planctomycetes (Phycisphaerae, Tepidisphaerales and WD2101_soil_group)
were enriched in both IC10 and IC100. For IC500, three Armatimonadetes taxa (Fimbri-
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imonadia, Fimbriimonadales and Fimbriimonadaceae), one Patescibacteria (Parcubacteria),
one Verrucomicrobia taxon (Chthoniobacterales) and one Planctomycetes taxon (OM190)
were enriched. Two taxa of Planctomycetes (Gemmata) and Chloroflexi (KD4_96) were
exclusively enriched in IC100.

3.5. Comparison of Co-Occurrence Network Patterns of NC and IC Treatments

The bacterial co-occurrence networks of nanoceria- and ionic cerium-treated soil were
generated based on the robust co-occurrence events between the predominant bacterial
genera. The topological properties of the two co-occurrence networks are presented in
Table 3. The two networks of NC and IC consisted of 82 and 91 nodes (genera), respectively.
The number of edges, representing the robust correlations between bacterial genera, was
101 for the NC network and 214 for the IC network. The IC network had a higher average
degree of 4.703 than the NC network at 2.463. The diameters of the networks were 9 (NC)
and 16 (IC), while the graph density was higher in the IC network. The modularity and
clustering coefficient were all found to be higher in the NC network. The modularity was
0.781 for the NC network and 0.719 for the IC network, both of which were >0.4, indicating
a modular structure.

Table 3. Topological properties of bacterial co-occurrence networks under different treatments.

Node Edge Average
Degree

Network
Diameter

Graph
Density Modularity Clustering

Coefficient
Average

Path Length

NC 82 101 2.463 9 0.03 0.781 0.534 3.632
IC 91 214 4.703 16 0.052 0.719 0.515 5.233

The 82 nodes (genera) in the NC network belonged to 12 phyla (Figure 5). Among
them, nodes from Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Firmicutes,
Verrucomicrobia and Planctomycetes were predominant with a cumulative abundance
of 91.5%. Proteobacteria constituted 39.02% of the nodes. All 82 nodes were clustered
into 20 modules (Figure S3A), among which the first four modules constituted 54.88% of
the nodes.
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relation analysis sorted in color by phylum. A connection indicates a significant (r > 0.6, p < 0.01)
correlation. The size of each node (genus) is proportional to its abundance; the thickness of each
connection between two nodes (edge) is proportional to the corresponding correlation coefficient.

According to the betweenness centrality scores of each node, the top ten identified
keystone genera were, in descending order of the score, as follows: Bdellovibrio, Terrimonas,
Pedobacter, Subgroup_10, Ellin6067, Steroidobacter, Acidovorax, Pajaroellobacter, Longimicro-
bium and Arenimonas. Among the ten keystone taxa, six were assigned to Proteobacteria,
while two were Bacteroidetes, one was Acidobacteria and one was Chloroflexi.

For the IC network, all 91 nodes (genera) were assigned into 12 phyla (Figure 6).
Among them, nodes from Proteobacteria, Actinobacteria, Planctomycetes, Acidobacte-
ria, Bacteroidetes and Firmicutes were predominant with a cumulative abundance of
84.62%. Proteobacteria, the most predominant phylum, constituted 39.56% of the nodes. All
91 nodes were clustered into nine modules (Figure S3B), among which the first four mod-
ules included 71.43% of the nodes in total. According to the betweenness centrality scores
of each node, the top ten identified keystone genera were, in descending order of the score,
as follows: Herpetosiphon, Bosea, Cellvibrio, Steroidobacter, Aeromonas, Hydrogenophaga, Aci-
dovorax, Mesorhizobium, Vicinamibacter and Dyadobacter, seven of which were Proteobacteria
while the other three belonged to Chloroflexi, Acidobacteria and Bacteroidetes.
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3.6. Differences in Predicted Function and Phenotypic Traits

The potential functions of the soil bacterial community were predicted using PICRUSt2.
The hierarchical heatmap clustering analysis revealed that the function patterns of NC
treatments obviously differed from those of IC treatments and CK (Figure 7). The heatmap
showed that the relative abundance of lipid metabolism and replication and repair was
lower in NC treatments than in IC treatments and CK, while the relative abundance of
glycan biosynthesis and metabolism and signal transduction was higher in NC treatments.
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The heatmap is based on the normalized function abundance data. Warmer color (red) indicates a
higher function abundance, while colder color indicates a lower function abundance.

The predicted phenotypic traits of the soil bacterial community are depicted in Figure 8.
Consistently, NC treatments had a phenotypic patten dramatically different from that of
IC treatments and CK. Aerobic taxa, those containing mobile elements, stress-tolerant
taxa and Gram-positive taxa were less abundant in NC treatments than in IC and CK
treatments. However, facultative anaerobes, potential pathogens and Gram-negative taxa
were more abundant in NC treatments. Specially, the relative abundance of anaerobes in
NC treatments was higher than in CK, with significant differences observed in NC100 and
NC500 (p < 0.05).
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4. Discussion
4.1. Effect Differentiations between Nanoceria and Ionic Cerium

In this study, cerium content in soil was found to be an important shaping factor
of bacterial community structure (Figure 3B). After exposure to nanoceria, soil bacterial
richness, diversity and evenness showed an increasing, but not significant, trend in all dose
treatments compared to the control (CK) (Table S1). Smaller, and also non-significant, in-
creases were also observed in the ionic cerium treatments compared with CK. Furthermore,
the variations in soil bacterial community structure under cerium exposure were more
obvious: the hierarchical bi-clustering heatmap, PCA biplot and CAP biplot collectively
revealed that the effect of nanoceria on soil bacterial community was greater than that of
ionic cerium (Figures 2 and 3), as NC treatments were in one cluster, differentiated from
IC treatments which were close to CK. Consistently with this, the same clustering pattern
was also observed in the predicted bacterial functions and phenotypic traits. Generally,
it implied that both nanoceria and ionic cerium can promote soil bacterial diversity, and
nanoceria with all doses showed a greater promotion than ionic cerium did. The mecha-
nism for this difference is suggested to be as follows: Ce is in a more bioavailable form as
nanoceria due to improved transport to the bacteria surface compared with ionic cerium.
Nanoforms as delivery agents are well known [9], but this hypothesis needs testing.

Few previous studies have focused on the microbial toxicity comparation of nanoceria
and ionic cerium, especially regarding community diversity. Dahle and Arai [42] studied the
effects of nanoceria and ionic cerium on soil denitrification and found that both nanoceria
and ionic cerium at all doses exhibited significant inhibitory effects on depletion time and
denitrification rate, and ionic cerium was far more toxic than nanoceria with an equal total
cerium concentration, which seemed to be opposite to our promoting effect on bacterial
diversity. However, those studies focused on the function of denitrifying microorganisms
only, while our study paid attention to general community composition and the diversity
of bacteria. For certain bacterial taxa, inhibitory effects on abundance were also observed
in this study (Table 2), in agreement with Dahle and Arai [42].

The CAP revealed that TP, AP and AK were important factors correlated with the
differentiation of IC and NC treatments other than residual Ce (Figure 3B), which indicated
phosphorus and potassium to be key elements in driving the interactions between cerium
and the bacterial community. Nanoceria was reported to be a promising phosphorus
sorbent by the rapid forming of cerium–phosphate complexes [43,44]. It was predicted that
soil microorganisms dissolve insoluble secondary phosphates by the production of organic
ligands that compound with lanthanide ions including cerium [45]. Cervini-Silva et al. [46]
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found that rhabdophane dissolution is controlled either by strong ligand complexation of
Ce3+(aq) or by sequestration of Ce4+ ions as CeO2(s), which effectively increases the mineral
solubility. The interactions between organics, CePO4·H2O and CeO2(s) revealed in their
study implied that there are important linkages among the cerium, phosphorus and organic
carbon cycles in soil. Above all, it could be predicted that nanoceria and ionic cerium might
directly affect phosphorus availability by the formation of cerium–phosphate complexes,
which could account for the significant increase in total phosphorus and significant decrease
in available phosphorus in all cerium treatments (Table 1). Consequently, the variation
in available phosphorus further influenced the soil bacterial community structure [47]. It
has been reported that potassium can act as a modifier or chemical promoter to improve
the performance and stability of CeO2 as a catalyst [48]. However, the detailed interaction
mechanisms among soil bacterial, nutrients (P and K) and nanoceria or ionic cerium still
need further verification.

4.2. Bacterial Co-Occurrence Patterns under Exposure to Cerium

The co-occurrence networks showed that the IC treatments had a more complex
network than nanoceria treatments according to their topological properties. This indicated
that the connections between bacterial taxa were weaker after nanoceria exposure than ionic
cerium exposure. This implied that soil bacteria were responsive in community structure
under cerium exposure. To be detailed, in the networks, the top ten keystone genera
revealed by the betweenness centrality score of each node were entirely different except for
two shared genera, namely Steroidobacter and Acidovorax. Hamidat et al. [13] found that
nanoceria treatment resulted in an increased relative abundance of Acidovorax, a degrader
of polycyclic aromatic hydrocarbons (PAHs). They assumed that Acidovorax potentially
harbors tolerance to heavy metals as well as resistance to antibiotics and multi-drugs just
as other hydrocarbon-degrading bacteria do [49–51]. Therefore, the presence of Acidovorax
in the top ten keystone taxa in both the NC and IC networks in this study could also be
attributed to its tolerance or resistance to cerium.

For the keystone taxa in the NC network, previous studies found that the relative
abundance of Bdellovibrio and Terrimonas increased under exposure to nanoceria [52,53],
while the relative abundance of Arenimonas decreased [53]. For the keystone taxa in the
IC network, we speculate that the role of Aeromonas might be attributed to its potential
ability to synthesize nanoparticles using ionic cerium as a substrate; it was reported to
be capable of synthesizing several kinds of nanoparticles previously [54–56]. Acidovorax
was found to be markedly resistant to Ag+ rather than nanosilver [57], based on which
it could be preliminarily assumed that Acidovorax would also be resistant to Ce3+ rather
than nanoceria, although this needs testing. That is why Acidovorax was a top keystone
taxon in the IC network but not in the NC network. Other keystone taxa in both networks
were not referred to in previous studies, but it could be predicted that they might be
responsive, tolerant or resistant to nanoceria or ionic cerium so they were stimulated under
corresponding exposure.

4.3. Responsive Bacterial Taxa, Functions and Phenotypes

The composition, activity and biomass of soil microbial communities are sensitive
indicators of soil response to environmental stress. In this study, the two-way ANOVA
revealed that both Ce species and dose played significant roles in affecting the abundance
of bacterial taxa at the phylum level, especially the dominant ones (Table S3). However, no
significant interactive effects of Ce species and dose were found, which indicated that Ce
species and dose solely affected soil bacterial community composition. Among the top ten
phyla, the abundance of Acidobacteria, Actinobacteria, Verrucomicrobia, Chloroflexi and
Gemmatimonadetes was significantly affected by both Ce species and dose. Proteobacteria
and Bacteroidetes were just significantly affected by Ce species. To be more detailed, the
bacterial biomarkers were screened out (Figure 4).
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Under exposure to nanoceria, Proteobacteria (Nitrosomonadaceae, Aeromonas, Pseu-
domonadaceae, SZB85 and MND1), Acidobacteria (Subgroup_6 and Stenotrophobacter),
Rokubacteria (c_NC10 and Rokubacteriales), Planctomycetes (WD2101_soil_group) and
Gemmatimonadetes (Gemmatimonadaceae) were significantly enriched. Among them, Pro-
teobacteria and Rokubacteria showed a positive dose-dependent correlation with nanoceria
(Table 2). More interestingly, Nitrosomonadaceae, MND1 (Nitrosomonadaceae), SZB85
(Nitrosococcaceae), Nitrospiraceae and Rokubacteria could function as a comammox, anam-
mox and nitrifier [58–61]. Thus, it could generally be summarized that Proteobacteria and
nitrifying bacteria are the most responsive taxa to nanoceria exposure.

Hamidat et al. [13] also found that the abundance of Proteobacteria in canola plants
significantly increased from nanoceria treatment in comparison to the control. However,
Kamika and Tekere [62] reported that the abundance of Proteobacteria decreased as the
concentration of nanoceria increased in activated sludge. Miroshnikov et al. [63] claimed
that one of the peculiar actions of nanoceria on zebrafish’s intestinal microbiota was the
decrease in Proteobacteria phylum abundance. The differing effects of nanoceria on the
abundance of Proteobacteria could be related to the different systems or to the different
physicochemical properties of the NPs (size, Ce3+/Ce4+ ratio, O2 storage and enzymatic-
mimetic activities of the nanoparticle [64]), and this needs further investigation. The particle
diameter (crystallite size) of the nanoceria used by Hamidat et al. [13] was 31 nm, which
was similar to that of our study (25 nm). However, the particle size was much smaller
(15.8 nm) in Miroshnikov et al. [63]. The nanoceria diameter was not stated in Kamika
and Tekere [62]. It was previously assumed that toxicity increases as the nanoparticle size
becomes smaller, because smaller particles harbor a larger surface area per mass unit and
are thus potentially more reactive [65–67]. For nanoceria, a higher specific surface area
leads to a larger surface Ce3+/Ce4+ ratio, which could contribute to a higher toxicity for
smaller nanoceria [68,69].

In addition, the different effects of nanoceria on Proteobacteria could also be due to
the different exposure scenarios. Most environmental exposure scenarios of nanoparticles
were in aqueous conditions and in media with different chemical and biological properties.
Nanoceria acts as a colloid in aqueous body fluids and soil environments, and its surface
chemistry, dispersity, reactivity and mobility can be changed by the adsorbed materials and
environmental factors such as temperature, surface atomic arrangements, ions in solution,
pH, and inorganic or organic ligands adsorbed on its surface [70]. Thus, the environmental
and biological effects of nanoceria were changed and varied in different exposure sce-
narios [43]. The exposure environments of Hamidat et al. [13] and this study were both
planting soils. Edaphic physicochemical properties such as texture, porosity, pH, ionic
strength, organic matter and mineral composition play a critical role in determining the
aggregation, dissolution, sorption, chemical transformation, bioavailability, reprecipitation
and migration of nanoparticles in media [71]. These would lead to variations in the effects
of nanoparticles on soil microbial communities. For example, the presence of natural
organic matter and ionic strength determine the electrophoretic mobility, transport charac-
teristics and toxicity of nanoparticles in the environment [72]. Therefore, greater differences
would be observed when the media are different, such as those in the previous referenced
studies including planting soil, activated sludge and zebrafish’s intestines [13,62,63]. To
date, no model can quantify this complexity. Moreover, Proteobacteria is a bacterial phylum
including a large number of taxa with different physiological and functional characteristics.
To some extent, the identified increase or decrease in Proteobacteria abundance was an
overall superimposed effect of all the specific taxa’s responses after cerium exposure. The
differences in detailed taxonomic composition and predominance within Proteobacteria
between different studies also contribute to the consistence or inconsistence. Therefore,
future studies should try to elucidate mechanisms by investigating these exposure changes
in controlled ways.

On the other hand, the identification of nitrifying bacteria, including Nitrosomon-
adaceae, MND1 (Nitrosomonadaceae), SZB85 (Nitrosococcaceae), Nitrospiraceae and
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Rokubacteria, as biomarkers of nanoceria exposure (Figure 4A) was also found in a previ-
ous study [73]. Just like Proteobacteria, nitrifiers were also mostly found to be damaged by
the cytotoxicity of nanoceria [74–76], inconsistent with our study. However, Yu et al. [75]
also reported that there was a possible establishment of an anti-toxicity mechanism in
Nitrosomonas europaea under nanoceria exposure. This anti-toxicity mechanism may be ubiq-
uitously established in nitrifying bacteria. Of course, the inconsistent effects of nanoceria
among different studies could also be due to the differences in those nanoparticle properties
and exposure scenarios as discussed above for Proteobacteria.

Under exposure to ionic cerium, Planctomycetes (Phycisphaerae, Tepidisphaerales
and Gemmataceae) were the main biomarkers for ionic cerium disturbance. This might be
because Planctomycetes were a group of methylotrophic or anammox bacteria, and ionic
cerium acted as a cofactor for methanol dehydrogenase in methylotroph [77].

Although the significant variation in most of those bacterial biomarkers was not dose-
dependent, it still indicated that the bacterial community was responsive under either
nanoceria or ionic cerium exposure stress, which was in accordance with the indicator role
of microorganisms for soil perturbation or xenobiotic pollutants (Tai et al., 2020).

In our study, the differentiation of NC from CK and IC was not only observed in the
community composition but also in the predicted functions and predicted phenotypes
(Figures 7 and 8). The most remarkable phenomenon would be the enrichment of anaerobic
and facultatively anaerobic phenotypes in NC, together with the reduction in the aerobic
phenotype. It might contribute to the protecting effect of nanoceria as it could adhere to
the cellular surface, suppress the production of reactive oxygen species and induce cellular
resistance to an exogenous source of oxidative stress [78]. This facilitates the anaerobes to
be more tolerant to oxidative stress from the environment. Furthermore, it is also noticeable
that nanoceria seemed to promote Gram-negative phenotypes and inhibit Gram-positive
ones, which still needs further investigation to confirm in the future.

Collectively, our study systematically revealed the different response patterns of soil
bacteria to exposure to nanoceria and ionic cerium from several perspectives including
community diversity, biomarkers, predicted functions and phenotypes and co-occurrence.
We believe it will help to unveil the previous uncertainties about the microbial ecological
effects of nanoceria. However, the detailed mechanisms of these effects still need further
investigation. Therefore, future work should comprise more concrete studies to reveal the
microbial biomarker effects of nanoceria and ionic cerium at the genomic, transcriptomic
and metabonomic levels.

5. Conclusions

Our study demonstrated that nanoceria and ionic cerium both promote soil bacterial
diversity. The bacterial composition, predicted functions and phenotypes under nanoceria
exposure were dramatically different from those under ionic cerium exposure and had a
less complex co-occurrence network. Proteobacteria and nitrifying bacteria were the most
responsive biomarkers to nanoceria exposure. The biomarkers under ionic cerium exposure
were mainly taxa of Planctomycetes. Anaerobic and Gram-negative bacteria were enriched
under nanoceria exposure. Soil cerium together with potassium and phosphorus were key
factors driving the differentiation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10101982/s1, Figure S1: SEM micrograph of
nanoceria particles used in this study (acceleration voltage of 5.0 kV, magnification of 170,000×);
Figure S2: Rarefaction curves of bacterial 16S rRNA gene sequencing in different treatments; Figure
S3: Network of co-occurring bacterial genera of nanoceria (A) and ionic cerium (B) treatments based
on Spearman correlation analysis, sorted in color by modularity; Table S1: Alpha diversity indexes
among different treatments; Table S2: Summary of the taxonomic classification of all samples; Table
S3: Two-way ANOVA of cerium’s effect on soil bacterial phyla abundance.

https://www.mdpi.com/article/10.3390/microorganisms10101982/s1
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