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It is unclear why some people learn faster than others. We performed two independent studies in which we inves-
tigated the neural basis of real-time strategy (RTS) gaming and neural predictors of RTS game skill acquisition. In
the first (cross-sectional) study, we found that experts in the RTS game StarCraft R© II (SC2) had a larger lenticular
nucleus volume (LNV) than non-RTS players. We followed a cross-validation procedure where we used the vol-
ume of regions identified in the first study to predict the quality of learning a new, complex skill (SC2) in a sample
of individuals who were naive to RTS games (a second (training) study). Our findings provide new insights into
how the LNV, which is associated with motor as well as cognitive functions, can be utilized to predict successful
skill learning and be applied to a much broader context than just video games, such as contributing to optimizing
cognitive training interventions.
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Introduction

Some people learn faster than others. Skill
learning—the process that makes people more
accurate, efficient, and faster in a given task—
depends on several personal characteristics. From
the psychological perspective, there have been the-
ories and data regarding the prediction of learning
based on individual differences in noncognitive
and cognitive determinants since the 1950s. Specif-
ically, skill learning was well predicted by age;1
general ability measures, such as verbal, spatial, and
numerical reasoning; as well as working memory
capacity2–4 and fluid intelligence.5 Additionally,
Yesavage et al.6 showed that individuals with higher

mental status in terms of their scores in the Mini-
Mental State Examination7 were characterized by
better outcomes after memory training. There were
also attempts to verify more basic cognitive abilities
like perceptual–speed and psychomotor character-
istics as predictors of skill development in complex
paradigms (i.e., air traffic control simulation task).8
It needs to be pointed out that because the pro-
cess of skill acquisition is dynamic, cognitive and
noncognitive constructs may differentially deter-
mine individual differences in task performance,
depending on, for example, the type and stage of
the task’s practice.9 For example, one of the most
well-documented associations between individual
differences in the noncognitive domain and skill
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acquisition was from the personality domain (e.g.,
Big Five Inventory).10

The picture is even more complicated when it
comes to the relationship between the ability to
master new skills and its neuroanatomical predic-
tors. Plenty of cross-sectional imaging studies have
demonstrated structural brain differences between
experts in music, sport, and video games and non-
experts and showed that experts hadmore graymat-
ter volume (GMV) in certain brain regions.11–17
However, deliberate practice is necessary but not
sufficient to account for individual differences in
experts and novices.18–20 One of the criticisms of
cross-sectional studies as providing the evidence
for practice-dependent brain changes is that pre-
existing differences in brain organization could
explain some of the differences we observe between
experts and nonexperts. For example, the GMV
in the hippocampus of London taxi drivers may
be larger because they have regular experience
with navigation, or because they have some brain
structure characteristics that predisposed them to
become taxi drivers.21 Another study showed com-
plementary evidence in the domain of specific
predispositions and experience-dependent brain
plasticity.22 There are separate groups of studies that
assessed regional brain morphometry characteris-
tics of subjects who underwent longitudinal assess-
ments using magnetic resonance imaging (MRI).23
They showed changes in gray matter (GM) during
skill acquisition of, for example, juggling,24 play-
ing video games,25,26 learning languages,27 playing
music,28,29 and aerobics,30,31 and established a the-
ory of brain volume (BV) expansion in task-relevant
areas as an indicator of neural plasticity,32 espe-
cially during the initial stage of learning.33 Given
the above-described examples, the debate about the
predictive neural markers of learning has thus far
been inconclusive and still is one of the most chal-
lenging areas in cognitive neuroscience. Currently,
we can observe a growing interest in how individual
differences in the structure of the human brain can
influence the ability to learn and master complex
skills.34,35 Particularly, since the brain’s GM char-
acteristics are one of the most adequate biological
structures that could determine cognitive abilities, it
is essential to look at it as a variable predicting train-
ing efficacy.
Scientists reported that preexisting neu-

roanatomical profiles, including both cortical

thickness and white matter (WM) microstructure,
predict the outcomes of individuals following
multistrategic memory training.36 There is also
evidence suggesting that variance in WM structure
correlates with the ability to learn musical skills in
nonmusicians, offering an alternative explanation
for the structural differences observed between
musicians and nonmusicians.37 Only a few studies
have explored preexisting neural characteristics in
the case of learning how to play video games, as
an example of complex skill acquisition. In 2018,
Momi et al.38 identified that the lingual gyrus is
involved in the ability to predict the trajectories
of moving objects in action video games. Other
researchers have mostly investigated the volumetric
characteristics of the basal ganglia (BG), a group
of subcortical nuclei involved in motor and proce-
dural learning, as well as in reward learning and
memory.39–41
In the study reported here, we examined brain

GMV–related differences in the acquisition of skill
in a novel and complex cognitive–motor task, the
real-time strategy (RTS) game. We chose the game
StarCraft R© II (SC2) on the basis of evidence sug-
gesting that playing this cognitively demanding
strategic video game requires a host of special-
ized skills, including translating mental plans into
motor movements, performing actions with pre-
cise timing, bimanual hand coordination, and pro-
cessing rapid visual information.42 These skills are
trained and become increasingly automatic with the
amount of practice.43 What is more, we can use
telemetry data from the game (e.g., perception–
action cycle (PAC) latency, actions per minute
(APM), or hotkey select (HS) usage) to have more
detailedmeasures of skill learning during the course
of the game and use it for further investigations.
Moreover, a player’s current skill level can be deter-
mined by their position in one of the six tiers
in the game (a detailed description is provided
in the Methods section), and what is also impor-
tant, it classifies players on the basis of the Elo
score–like rating systems that allow for the objec-
tive assessment of changes in player’s expertise
over time. One additional benefit of SC2 is that it
belongs to a group of games that comprise pro-
fessional electronic sports (eSports). Because com-
petitive and professional players of eSports titles
dedicate a great deal of time to playing individual
games, they are a sample with a more stable source
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Figure 1. Overview of the study design. First, the GMVROIs were identified in the cross-sectional study (A), and then they were
used to predict RTS game skill acquisition in an independent training study (B). As a next step, a longitudinal studywas conducted
with the sameRTS game as in the first study (SC2) on a new group ofNVGPs. GMV, graymatter volume;MRI,magnetic resonance
imaging; NVGPs, non-video game players; ROIs, regions of interest; SC2, StarCraft II.

of video game experience. Thismakes the analysis of
connections between in-game actions and brain
structures more feasible.
In the current study, we wanted to test whether it

is possible to predict the level of skills acquired dur-
ing RTS game training on the basis of specific brain
GMVs. Our main hypothesis tested the possibility
of predicting the quality of skill acquisition (SC2) on
the basis of the volume of brain regions identified in
a group of expert players. In our attempt to under-
stand the neural predictors of learning success in
the SC2 environment, we took a two-step approach.
First, we analyzed a cross-sectional sample of expert
RTS players (those placed in the top five SC2
leagues) and non-video game players (NVGPs) to
investigate whether RTS video game experience is
associatedwith volumetric differences inGM. In the
second step, we used information gathered during
the first study to inform the analyses of data gath-
ered during the second training study, where naive
volunteers were trained with SC2.
With those steps, we followed a cross-validation

procedure44 in which one sample of subjects is
used to identify brain regions (ROIs) that differ

two groups (in our case, RTS experts and NVGPs),
and another sample (NVGPs) to predict skill acqui-
sition (in our case, complex skill learning dur-
ing SC2 training) from the ROIs identified in the
first step. Details of this procedure are depicted in
Figure 1A and B. To our knowledge, this is the first
studywhere individual neuroanatomical differences
between healthy adults were used as a predictor of
learning outcomes in an RTS action video game.

Materials and methods

The cross-sectional study
Participants. Sixty-four (n = 64) right-handed,
male subjects with a mean age of 24.55 years
(SD = 3.66) participated in this study. Two subjects
(n = 2) were excluded from the analysis because
of bad quality MRI data (image artifacts), so the
final sample consisted of 62 (n = 62) participants.
All subjects were male because of difficulties in
recruiting female participants with adequate video
game experience. All subjects completed an online
questionnaire about demographics, education sta-
tus, and video game playing experience. In our self-
designed questionnaire (online questionnaire on
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the GEX platform),45 we asked additional questions
to assess how often individuals engage in various
game genres. We broke the game genres down into
the following categories: first-person shooter (FPS),
RTS, role playing, sports, a multiplayer online bat-
tle arena, racing, puzzles, fighting, turn-based strat-
egy, adventure, and platform games. Inclusion crite-
ria for the RTS experts in our study were as follows:
(1) experience with SC2 play, (2) played RTS games
at least 6 h/week for the previous 6 months, (3)
declared playing SC2 for more than 60% of the total
game play time, and (4) is an active player (played
matches in the last two seasons) and has been placed
in one of the five SC2 leagues (Gold, Platinum, Dia-
mond, Master, and Grandmaster). Inclusion crite-
ria for NVGPs were as follows: little or no previous
experience with RTS video game play, and experi-
ence with other types of video games, totaling no
more than 8 h/week (most played less than 6 h)
over the past 6 months. The mean age of the RTS
expert group (n = 31) was 24.71 years (SD = 4.27)
and 24.39 years (SD = 3.00) in the NVGP group
(n = 31).
The education level wasmatched between groups

(all participants were at an undergraduate level).
The mean of years of education of the RTS expert
group was 15.55 years (SD = 2.77) and 16.10 years
for the NVGP group (SD = 2.95). We controlled
for working memory capacity using the Opera-
tion Span Task (OSPAN);46 the mean score was
51.77 (SD = 12.74) for RTS experts and 51.71
(SD = 13.19) for NVGPs. The average hours per
week of video games played in different genres from
the last six months in RTS experts was 22.74 h
(11.79) and 2.39 h (2.28) for NVGPs. Theminimum
for RTS experts was 10 h/week for the previous
6 months (experience with game genres presented
in Table S1, online only). The data from these par-
ticipants are also a part of our other study,47 but the
GMV analyses are unpublished in the case of all of
the included participants. The overall video game
playing characteristics and average weekly playtime
in each video game genre are presented in Table
S1 (online only). None of the participants had a
history of neurological illness, and they did not
declare the use of any psychoactive substances. We
also had access to information about each player’s
overall performance in the game (wins and losses
from the last two seasons) and the number of games
played.

All subjects participated in additional MRI and
cognitive measurement sessions in order to obtain
diffusion tensor imaging (DTI) measurements and
assess several cognitive functions, which were not
related to the project described in this article.
All subjects gave their informed consent to par-

ticipate in the study, in accordance with the SWPS
University Ethical Committee. All participants were
male because of difficulties in recruiting female
participants with sufficient video game experience.
They were paid (approximately 52 USD) for partic-
ipating in the study.

MRI image acquisition. High-resolution whole-
brain images were acquired on a 3-Tesla MRI scan-
ner (Siemens Magnetom Trio TIM, Erlangen, Ger-
many) equipped with a 32-channel phased-array
head coil. T1w images were acquired using an
MPRAGE sequence with the following specifica-
tion: repetition time (TR) = 2530 ms, echo time
(TE) = 3.32 ms, flip angle (FA) = 7°, field of view
(FOV) = 256 mm, inversion time (TI) = 1100 m,
and voxel size = 1 × 1 × 1 mm3, 176 axial slices.
Foam padding was used around the head to min-
imize head motion during scanning. During these
sequences, subjects were asked to relax and try not
to fall asleep or move.
The studywas a part of a larger project where par-

ticipants underwent three more MRI sessions (two
functional MRI tasks and DTI session), and a cog-
nitive session on other days.

Data preprocessing. The same approach was
used for both studies. For data preprocessing and
statistical analyses, we used statistical parametric
mapping (SPM8, Wellcome Trust Center for Neu-
roimaging, London, UK) running on MATLAB
R2015 (The Mathworks, Inc., Natick, MA). We
applied standard processing steps as proposed by
Ashburner and Friston:48 (1) checking for anatomi-
cal abnormalities and scanner artifacts for each par-
ticipant, (2) setting the image origin to the ante-
rior commissure (AC), (3) manual reorientation
to canonical T1 (canonical�avg152T1.nii), (4) seg-
mentation of tissue classes, (5) normalization using
DARTEL, (6) modulation of different tissue seg-
ments, and (7) smoothing. A segment algorithm
was used in order to obtain basic tissue classes:
WM, GM, and cerebrospinal fluid (CSF).48 Next,
a study-specific template was computed from all
participants using the Diffeomorphic Anatomical
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Registration through the Exponentiated Lie Alge-
bra (DARTEL) toolbox49 to determine the non-
linear deformations for warping all the GM and
WM images so that they match each other. This
step was followed by an affine registration of the
GM maps to the Montreal Neurological Institute
(MNI) space. Modulation (Jacobian determinant)
of different tissue segments by nonlinear normal-
ization parameters was applied to correct for indi-
vidual differences in brain sizes. Finally, data were
smoothed with an 8-mm isotropic Gaussian kernel.
A group-wise brain mask was computed for statis-
tical analysis to decrease false positives occurring
outside the brain. Coordinates of significant effects
are reported in the MNI space. XjView was used
to identify the structures showing effects (http://
www.alivelearn.net/xjview). The results were visu-
alized using BrainNet Viewer software50 (http://
www.nitrc.org/projects/bnv/).

Statistical analysis. Differences in GMV between
RTS experts and NVGPs were calculated using
two-sample t-tests. The two-group difference was
adjusted for the participant’s age. Given that the
total intracranial volume (TIV) could affect the rela-
tionships between regional BV and measures of
skill acquisition, we included TIV in our analy-
ses. An explicit mask was employed (group brain
mask with no threshold) to exclude false positives.
The group mask was computed by summing GM,
WM, and CSF (unmodulated) for each individ-
ual and then computing an average mask for the
whole group. The masking was performed using
MaskingToolbox.51 The model was computed with-
out an absolute threshold since clusters that include
voxels with smaller intensity are excluded from the
statistical analysis.51
Whole-brain voxel maps were thresholded with

5% family-wise error (FWE) cluster size inference,
with a P = 0.001 cluster-forming threshold (a min-
imal cluster size of 2125 voxels).
Next, the average GMV signal from a significant

cluster was extracted using the MarsBaR toolbox.52
Then, the GMVs (both right and left putamen and
the pallidum) were fed to the correlation analy-
sis with our SC experience indicator. The indicator
of SC2 experience was calculated using the num-
ber of hours spent playing all video games (weekly
averaged) over the last 6 months, multiplied by the
declared percentage of time spent playing SC2 (e.g.,

when somebody declared playing video games for
30 h a week and 80% of this time spent on RTS, their
index was 30 × 0.8).

Training study
Participants. Twenty subjects (n = 20) partici-
pated in the study, but four were excluded from
analysis because of low MRI data quality (image
artifacts) (n= 2) as well as training dropout (n= 2).
The final sample consisted of 16 (n = 16) right-
handed participants with a mean age of 22.94 years
(SD = 2.11): 5 males (22.20 years, SD = 2.39) and
11 females (23.27 years, SD= 2.01). Themean years
of education was 15.10 years (SD = 1.93). All sub-
jects completed the same online questionnaire as
described above (cross-sectional study). Theirmean
OSPANscorewas 52.31 (SD= 18.15).We also asked
about their video game playing experience, and the
number of mean weekly hours spent playing video
games over the last 6monthswas 0.97 h (SD= 1.16),
with no experience in any action video game genres.
None of the participants had a history of neurolog-
ical illness, and they did not report using psychoac-
tive substances.
All subjects provided written informed consent

to participate in the experiment, and the study pro-
tocol was approved by the SWPS University Eth-
ical Committee. They were paid (approximately
180 USD) for participating in the study.

Experimental task. Sixteen participants carried
out 30 h of SC2 gaming in a controlled labora-
tory setting. The training lasted from 3 to 4 weeks
(a minimum of 6 h per week, maximum of 10 h
per week), with a prohibition of gaming elsewhere
(outside the laboratory). Before participants started
the training, they had an introduction session with
the SC2 trainer. The training was carried out using
dedicated desktop PC running Windows 7 (profes-
sional edition, 64-bit operating system) equipped
with a dedicated graphic card (NVIDIA GeForce
GTX 770), 8GB or RAM and a 24′′ LED display,
allowing to play at high graphic quality (1920 ×
1080 pixels resolution, 60Hz). Participants played
the game using a mouse/keyboard/headset setup.
In SC2, game players need to build an econ-

omy (gathering resources and building bases) and
develop the military resources (training units) in
order to beat their opponents (destroying their base
and army). Cognitive and motor challenges of the
SC2 game are described in the Introduction. The
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participants played using only one race (Terrans)
against AI (artificial intelligence).
There were eight possible difficulty levels in the

SC2matches: very easy, easy, medium, hard, harder,
very hard, elite, and cheater. For each victory, the
player received 1 point. If the player lost, they lost
1 point (−1). The scoring intervals for each level
of difficulty were determined as follows: very easy,
0–4 points; easy, 5–8 points, medium, 9–12 points;
hard, 13–16 points; harder, 16–20 points; very hard,
21–24 points; elite, 25–28 points; and cheater, up
from 29 points. None of the participants reached
the cheater level, so we included seven levels in the
analysis.
We computed the variable indexing the weighted

time spent on every level of SC2 difficulty (the time
spent on the second level was multiplied by 2, the
time spent on the third level by 3, and so on) for
each participant. The final result is a standardized
(group-wise) sum of the time spent on all difficulty
levels, reflecting performance in the game.

RTS game skill acquisition indicator =
(hrs∗1) + (hrs∗2) + (hrs∗3) + (hrs∗4)

+(hrs∗5) + (hrs∗6) + (hrs∗7)

MRI image acquisition. High-resolution T1-
weighted (T1w) images were collected using the
IR-FSPGR sequence performed using a 3TMRI GE
Discovery MR750w scanner before RTS training.
The MRI scanner was equipped with an 8-channel
phased-array head coil. T1w images were acquired
with the following specification: TR= 7 ms, TE= 3
ms, FA = 11°, FOV = 256 mm, TI = 400 ms, and
voxel size = 1 × 1 × 1 mm3, 200 axial slices. Foam
padding was used around the head to minimize
head motion during scanning. Subjects were asked
to try and relax but not to fall asleep or move.
All participants performed a structural MRI and
cognitive assessment consisting of several cognitive
tasks at two time points: before (T0) and after 30 h
of video game practice (T1). In the current study,
we focused on pretraining (T0) MRI scans.

Data preprocessing. The same approach was
used for both studies. Details of data processing are
described in the Materials and methods, data pre-
processing section of the cross-sectional study.

Statistical analysis. We used one-sample t-tests
with the same steps as described in the Mate-

rials and methods, Statistical analysis section of
the cross-sectional study. Next, the putamen and
pallidum were defined using the AAL-11653 atlas
and on the basis of the results from the cross-
sectional study. Owing to the fact that it was a
group of novices (NVGPs), we decided to check
both the putamen and pallidum (bilaterally), and
not only within the results obtained from the cross-
sectional study where expert video game players
were recruited. We aimed to explore these data
more as a result of different skill levels between
our groups in the cross-sectional and training stud-
ies. Each ROI was extracted using the MarsBaR
toolbox.52 Then, the GMV was fed into the corre-
lation analysis. Because our data did not meet the
assumptions for regression models, all correlational
analyses were conducted using Spearman’s corre-
lation coefficient. Correction for multiple compar-
isons (FDR) for correlation analysis was applied.

Results

The cross-sectional study
Higher GMV in RTS experts compared with
NVGPs. Thirty-one RTS experts (in the SC2
game) were compared with 31 NVGPs using high-
resolution T1w images. GMV differences between
players and nonplayers were calculated using
whole-brain voxel-based morphometry (VBM)
analyses. RTS experts had a significantly higher
regional GMV in the right lenticular nucleus (RLN;
the putamen and pallidum) compared with non-
experts (peak MNI coordinates: x = 22; y = −11;
z = 7; t= 5.54; cluster size= 2125 voxels), P= 0.04
corrected for multiple comparisons with an FWE
correction at the cluster level using cluster size. The
obtained result is in the lenticular nucleus (LN),
a structure consisting of the putamen and pal-
lidum (also commonly called the globus pallidus),
which are separated by WM tracts called the lateral
medullary lamina. In the whole-brain analysis, the
RLN was the only area showing a significant dif-
ference in RTS experts in comparison with NVGPs
(Fig. 2A). There were no significant differences in
GMV for the reverse contrast (NVGPs versus RTS
experts).
We calculated Cohen’s d together with power

(Fig. 2B). Cohen’s dwas 1.061 and usingG∗Power,54
we had 82% power to detect differences between
groups.
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Figure 2. Differences inGMVs betweenRTS expert players and nonplayers. (A) Results fromVBManalyses showingRTS experts
> NVGPs difference in GMV, part of the LN (peak MNI coordinate x = 22; y = −11; z = 7; t = 5.54; cluster size = 2125 voxels;
P = 0.04). Clusters from the whole-brain exploratory analysis using FWE cluster correction. The LN is a collective name given to
the putamen and pallidum (also commonly called the globus pallidus); both are nuclei in the basal ganglia. (B) Presentation of
differences in GM between RTS experts and NVGPs. Cohen’s d presented to show the effect size of the difference (d= 1.06). GMV,
gray matter volume; NVGPs, non-video game players; ROIs, regions of interest; L, left; R, right.

No significant Spearman’s correlation was
observed between the GMV within the LN and
the index of experience in SC2 (hours spent playing
SC2, the RTS expert group only), r= 0.19, P= 0.32.

The training study
Regional GMV as a predictor of RTS game skill
acquisition. In the next study, we used the RTS
game SC2 as a tool to study complex skill learn-
ing in a longitudinal setup. We computed the vari-
able indexing the weighted time spent on every level
of SC2 difficulty, which reflects performance in the
game. Figure 3 represents the time (hours) spent on
each level for all participants.
To specifically target our hypothesis, we

employed the ROI analysis method for longitu-
dinal data. Our ROIs were defined on the basis of
the results from our cross-sectional study, which
showed that SC2 performance was associated with
volumes of the ventral striatum (the putamen and
pallidum).
We used anatomical ROIs based on GMV differ-

ences in areas that were related to RTS gaming activ-
ity in our first cross-sectional independent study.
We found that the volume of both putamens (left:
r = 0.67, P = 0.01; and right: r = 0.57, P = 0.02)
(Fig. 4A) and both pallidums (left: r = 0.62,

P = 0.01; and right: r = 0.62, P = 0.01) correlated
positively with RTS game skill acquisition (Spear-
man’s correlation, see Fig. 4B). No correlation met-
rics survived the false discovery rate (FDR) P< 0.05
correction for multiple comparisons, so the results
presented here are uncorrected for multiple com-
parisons. There were no training-related changes in
the GVM of the examined brain structures.

Regional GMV and PAC latency in RTS skill
acquisition. Our next step was to check what type
of in-game behavior correlates with VBM assess-
ments of GMV. Using measures of cognitive–motor
abilities extracted from SC2 game replay data from
16 participants, we constructed three indicators
based on in-game actions performed by trainees: (1)
PAC latency, time (in milliseconds) from a point-
of-view (PoV) change (switch in focus of atten-
tion) to the occurrence of the first action issued by
the player (indexing motor reaction); (2) HS usage,
expressed as the average number of hotkey presses
per minute in each game, where each such action
represents an automated selection of multiple units
or buildings; hotkeys are used to aid in the man-
agement of dispersed elements of the game; and
(3) APM, the average number of actions performed
during each minute of the game (a measure of
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Figure 3. Distribution of the average time (hours) spent on
each difficulty level in SC2 for all participants. Presentation of
possible difficulty levels in the SC2 matches: very easy, easy,
medium, hard, harder, very hard, and elite. None of the partic-
ipants reached the cheater level, so we included only seven lev-
els. The weighted time spent on each level of SC2 difficulty (the
time spent on the second level was multiplied by two, the time
spent on the third level by three, and so on) was computed for
each participant. The final result is a standardized (group-wise)
sum of the time spent on all difficulty levels, which reflects per-
formance in the game. This indicator was used in the correla-
tional analyses. Presentation of average time (M) and standard
errors (SE) for the number of hours played for each difficulty
level in SC2.

cognitive–motor speed).We defined PAC latency as
a cognitive marker of SC2 expertise, and APM and
HS usage as the motor markers of SC2 expertise.42
We divided the whole training time of each trainee
into quartiles and computed PAC latency, HS usage,
and APM for each quartile (within-subject).42

We found a significantly negative correlation
between PAC latency in the first quartile and GMV
in all of our predefinedROIs (the left and right puta-
men (left: r= −0.58, P= 0.02; and right: r= −0.43,
P = 0.10 tendency level; Fig. 5A), as well as both
pallidums (left: r = −0.57, P = 0.02; and right:
r = −0.54, P = 0.03; Fig. 5B). No correlation anal-
ysis survived the FDR P < 0.05 correction for mul-
tiple comparisons, so the results presented here are
uncorrected formultiple comparisons. Correlations
between PAC latency and ROIs volume for the sec-
ond, third, and fourth quartiles were not found. We
also conducted correlational analyses for all quar-
tiles for HS usage, APM, and all predefined ROIs,
but there were no significant correlations. All cor-

relation coefficients and significance levels are pro-
vided in Table S2 (online only). PAC latency distri-
bution for each participant is presented in Figure 6.

Discussion

In training-related plasticity studies, interindivid-
ual differences in learning performance have not
received much attention. A large number of pub-
lications focused on behavioral improvement and
experience-dependent structural changes in the
brain. However, neural factors of predisposing to
complex skill learning, such as video game acquisi-
tion, appear to play an important role in optimizing
the training paradigms dedicated to increasing the
subject’s efficiency and brain plasticity.
In the two studies described here, using VBM, we

observed that the volume of the RLN (part of the
BG) was predictive of success in the complex RTS
game SC2. Experts in SC2 (players from the top five
leagues) had the larger BG compared with people
who do not play RTS games. When we took into
consideration the volume of the areas identified in
the first study in a completely new, unrelated sam-
ple of individuals who were naive to RTS games,
we were able to predict the quality of learning in
SC2. The regional differences in the volume of the
BG (BGV) correlated with the pace at which par-
ticipants learned to play this complex video game.
In our opinion, the results presented here provide
new insights into how BVmeasurements can be uti-
lized to predict the success of the skill learning pro-
cess and can be applied to a much broader than just
video game context.
The cross-sectional study showed more GMV in

the RLN (putamen and pallidum) in RTS experts
when compared with NVGPs. In the training study,
we explored whether the preexisting volume of the
putamen and pallidum can predict improvement
in the RTS skill acquisition in novice players. We,
in fact, confirmed that the GMV of predefined
ROIs was correlated with complex skill acquisi-
tion, measured as time spent on more demanding
game levels, which is treated here as a proxy of
complex skill learning. The correlation was found
in both the right and left LN (the putamen and
pallidum), whereas, in the cross-sectional study,
we found differences between experts and non-
players in the RLN only. The LN is a subcortical
structure within the BG, composed of the puta-
men and pallidum, and constitutes a relay station,
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Figure 4. Predefined ROIs (the right/left putamen (A) and pallidum (B)) and scatterplots portraying the relationship between
GMV in ROIs and RTS game skill acquisition. On the basis of the significant difference in both the putamen and pallidum (part
of the LN from Fig. 3) in the cross-sectional study, we chose those areas as ROIs for the training study to evaluate the patterns of
RTS game skill acquisition. Panels show areas with a significant (bolded) positive correlation between mean GMVs in the ROIs
with SC2 game performance. The blue color represents the results for the putamen, and the pink color represents the results for
the pallidum. The results of correlation analyses are uncorrected for multiple comparisons. ROIs, regions of interest; L, left; R,
right.

conveying information between different subcor-
tical areas and the cerebral cortex (mainly the
primary motor cortex and supplementary motor
area).55 Both the pallidum and putamen play an
important role in a variety of motor acts, such
as sequential motor learning56 and movement
control,57–59 including the operation of a joystick.60
It is also abundantly clear that pallidum and puta-
men neurons are involved in more than just the
organization and/or execution of movements. They
are also actively involved in a variety of cogni-
tive functions, such as visual attention,61 working
memory,62,63 and cognitive control.64 Additionally,
pallidum neurons encode actions such as the actual
location of the target on a screen, as well as monitor
behavioral goals (spatial or object), indicating that
this region is involved in goal-directed decisions
and action selection.65 We did not find any GM
alterations in attention- or perception-related brain
areas, such as the occiptioparietal loop, which we
observed and described in our previous study on

DTI.47 Changes in GM and WM microstructure
associated with learning do not always occur within
the same brain areas. Acquiring new skills can
simultaneously affect distinct structural properties
of multiple brain areas, which could be detected
by different MRI-related methods with different
sensitivities.66,67
To properly understand the results from the two

studies presented here, we need to take into con-
sideration the dynamics of the learning process and
expertise levels. Playing a demanding RTS game
like SC2 requires the engagement of a wide range
of cognitive and motor functions.42,68,69 However,
the degree to which each of these functions is
engaged is not likely to be equally engaged across
all stages of SC2 learning. Specifically, early attempts
to acquire a novel skill, especially as complex as
learning to play SC2, are characterized by effort-
ful, explicit information processing, which pro-
ceeds under executive control functions (especially
working memory). As the practice advances, the
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Figure 5. Predefined ROIs (the right/left putamen (A) and pallidum (B)) and scatterplots portraying the relationship between
GMVs in ROIs and PAC latency in the first quartile. The brain area with a significant difference (part of the LN from Fig. 3.) was
the data point to choose the GMVs in the ROIs (both the putamen and pallidum), which were included to evaluate the patterns
of PAC latency in the first quartile (Q1). The panels show areas with a significant (bolded) negative correlation between the mean
GMVs in the ROIs with PAC latency inQ1. The blue color represents the results for the putamen, and the pink color represents the
results for the pallidum. The results for correlation analyses are uncorrected for multiple comparisons. ROIs, regions of interest;
PAC, perception–action cycle, Q, quartile.

skill becomes less effortful and more procedural-
ized, with almost complete automaticity attained
at the expert levels of performance.43 Our obser-
vations paint a pattern of results, suggesting that
such a process is taking place within BG struc-
tures. The result of more GMV in the RLN of
expert RTS players may stem from the effective
use of learned motor sequences (especially auto-
matic movements). On the road to success in most
RTS games, including SC2, the expertise level is
commonly multistaged and connected with acquir-
ing an increasingly higher degree of automatization
of specific sequences of movements. Such autom-
atization allows expert players (like those in our
first study) to perform actions that were at first
(in novice players, like in our training study) com-
plicated and cognitively demanding, with minimal
effort.43 SC2 has an economic component, which
means that players have to spend resources on the
production of military units and structures. Hence,
many of the player’s decisions/strategies are related

to the balancing of expenses on military and eco-
nomic strength. Second, the game board, called
the map, is much larger than what the player can
see at one time. Third, players do not have to
wait for the opponent to play their turn, so the
pace of the game is incomparably faster than in,
for example, chess. Players who can more effec-
tively and quickly implement their strategy have
a huge advantage. Therefore, motor skills, mainly
related to handling the keyboard, are an integral
part of the game that leads to victory. And thus,
the growth of the subcortical structure is proba-
bly the result of the above-described experience.
We know from other studies that the putamen
plays a special role in game-related processes and is
also important formovement preparation, learning,
and motor sequence control.59,70–72 An additional
confirmation that video games strongly stimulate
motor skills, especially those that are highly spe-
cialized and automated, was conducted by Borecki
et al.73 Their study assessed a wide range of hand
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Figure 6. PAC latency distribution for each participant. Additionally, the plot represents PAC latency distribution in the first
quartile (Q1) separately for participants below and above the median: computed from the average GMV for all the ROIs (both the
right/left putamen and pallidum). ROIs, regions of interest; PAC, perception–action cycle; Q, quartile.

movement coordination skills and demonstrated
that FPS players were able to use motor skills more
effectively than control subjects, and the scope of
these skills included improved targeting accuracy,
reduced tremors, more effective eye–hand coordi-
nation, and an increased speed of wrist movements.
This range of motor skills has been investigated
using the game Counter-Strike R© , owing to its inter-
active nature. In Counter-Strike, players perceive
battlefield-like conditions from the first-person per-
spective, which forces them to engage in various
military activities requiring an immediate response.
The biggest advantage of the top video game play-
ers over other opponents is speed, which develops
toward expertise.
It should also be added that all subjects in our

first study were right-handed, but their left hand,
formany years, was extensively used during gaming.
It can be seen as intensive training of the left hand,
and what we see on the level of VBM are differences
in the right hemisphere. Evidence for lateralization
related to specific movement has already been well
described in the literature.74,75 What is more, there
is a study showing that action video game players
are characterized by faster reaction times in tasks
thatmeasure visual and spatial abilities (in compari-
sonwith nonplayers), but only when responses were
given using the nondominant hand.76 It should be

mentioned that we did not observe a relationship
between the size of the LN and experience with RTS
games. Other studies12,77,78 have similarly failed to
show such correlations, suggesting that the relation-
ship between anatomical plasticity measured using
VBMmethods and behavior may be more complex
and mediated by other variables.79 There was also
low variability in SC2 experience among our partic-
ipants, which may explain the lack of correlation.
The lack of correlation can also be interpreted as
an argument for the existence of certain predisposi-
tions in complex video game skill acquisition, which
we tested and confirmed in our second training
study. Because of the correlational nature of the first
study, we cannot determine whether the structural
differences between the RTS and NVGP groups
were the result of extensive video game experience
or because RTS players have brain structure charac-
teristics that predispose them to engage in activities
like playing RTS video games.We designed our lon-
gitudinal study, which followed a cross-validation
procedure44 and introduced a training regimenwith
the same RTS game as in the first study with a group
of NVGPs, to shed some light on this conundrum.
On the basis of the dominant theory concern-

ing BG involvement in motor skills, we assumed
that the differences seen in our cross-sectional study
were driven mainly by the motor component of the

52 Ann. N.Y. Acad. Sci. 1492 (2021) 42–57 © 2020 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals, LLC on behalf of New York Academy of Sciences
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prolonged SC2 usage. To test that, we followed the
methodological approach proposed by Thompson
and others42 and focused on the game telemetry.We
performed an analysis of both more cognitive game
indicators, namely PAC latency, and more motor-
related game characteristics, that is, APM and HS
usage. We found a negative correlation between the
GMV of the left putamen and both the left and
right pallidum, and PAC latency at the beginning
of RTS game skill acquisition. From the cognitive
perspective, PACs represent shifts in attention focus
followed by a set of motor actions, as SC2 play-
ers have to constantly relocate a narrow PoV win-
dow over a large map area to attend to different
locations and execute actions associated with the
current state of the game. Technically, each PAC
is a PoV that contains one or more actions. PACs
encompass roughly 87% of player game time42 and
closely resemble the structure of individual trials
in experimental tasks that record the set of partici-
pant’s reactions to presented stimuli. We found that
PAC latency was relevant to game performance at
the beginning of RTS skill acquisition among novice
players. This advantage in the early stage of training
can be explained by better attentional filtering of rel-
evant gameobjects. This edge diminishes in the later
stages of learning, as the game has a finite number
of visual elements with meaningful affordances that
can be learned over time. For new players, most of
the work being done is within an individual PAC.
To engage a PAC, players have to first attend to
a cue, assess what they are looking at within that
region of interest, and then start producing actions.
PACs latency represents the time it takes for percep-
tual abilities to paint a picture of the situation and
for attentional abilities to pick through the relevant
stimuli. As players accumulate experience and game
knowledge, the attentional demands within a PAC
should decrease. A larger pretraining BGV could
boost attention by focally releasing the inhibition
of task-relevant representations80 at the beginning
of learning how to play RTS games. That demand
is constantly being stressed through each cycle and
should improve up to some biological limits, if game
knowledge permits.However, in contrast to our pre-
dictions, correlations between HS usage, APM, and
BGV were not found. The usage of HS speeds exe-
cution and the speed of execution is represented by
APM.However, speed plays a very crucial role at the
top level of players, but not in novice players, and

30 h of training was likely not enough to develop
automatization.
From the perspective of a novice player, suc-

cess in most RTS video games is by design based
on tactical planning, which involves the memory
functions and attention of players in many ways.
As in almost all strategy games, players devise the
most optimal game-opening strategies and counter-
strategies and commit them to memory. For play-
ers learning a game like SC2, the most challeng-
ing aspect involves memorizing the visuals of inter-
active game elements and the complex mechanics
associated with particular units (e.g., What can that
building produce?What types of special actions can
this unit make?). Moreover, as the underlying con-
cept of SC2 gameplay is the counterplay mechanic,
it forces players to memorize complex interactions
between units (e.g., Which unit will be most effec-
tive against a specific threat?), and as the game
progresses, players need to constantly monitor and
update their internal representation of the oppo-
nent’s unit composition to react accordingly. On
a higher strategic level, RTS video games require
players to be able to memorize many game states
from their past experience, as this allows for a more
accurate prediction of the opponents’ intentions.
The putamen and pallidumwere shown as uniquely
sensitive brain structures in the abovementioned
situations.81

It needs to be added that the obtained results
of a greater GMV in the RTS group (our cross-
sectional study) may be interpreted as the effect of
long-term training in the planning and execution
of motor sequences (as it has been discussed ear-
lier), but the GMV of the LN as a neural predic-
tor of RTS training outcomes should be also consid-
ered. And the interaction of these two factors seems
to be the most probable, as people who engage in
intensive and effective video game playing probably
have some structural brain predispositions to take
such actions and be good at them (which, in turn,
motivates them to engage evenmore). This does not
mean that there is no effect of training, but that the
correlational nature of our study does not allow us
to conclude whether people who start playing video
games have different brain structure characteristics
in comparison with nongamers. This unresolved
question about brain predispositions in acquir-
ing new skills motivated us to perform a training
study.
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Our results are in line with Erickson and others,39
who showed that putamen volumes were positively
correlated with learning new procedures and devel-
oping new strategies in a noncommercial RTS video
game designed by psychologists. Additionally, Vo
and collaborators41 found that patterns of time-
averaged T2∗-weighted signal in the dorsal striatum
recorded before the start of extensive training were
predictive of future learning success in the same
game. Other regions were recognized as predictors
of RTS skill acquisition in an elderly population,
such as the prefrontal and frontal regions, includ-
ing the frontal gyrus, AC, central gyrus, cerebellum,
precentral gyrus, and premotor cortex.40
It needs to be added that owing to the fact

that we did not include any active control train-
ing experience group, we cannot determinewhether
the mechanism of action is motivational or driven
by the capacity to learn. A future longitudinal
study with active control training groups, motiva-
tion questionnaires, and flow measures would be
necessary to determine the mechanism of action.
Furthermore, some behavioral predictors should

also be investigated, as they have been shown to
explain a significant amount of variance in video
game performance, such as intelligence level82 or
early game learning rate.83 It would be ideal to com-
bine different measures of brain characteristics with
behavioral measures in the identification of video
game skill acquisition potential.
Additionally, we found no effects of training

on brain structures in the longitudinal study. This
result does not support the hypothesis that short-
term RTS video game training (30 h in total) causes
alterations in GMV. This does not rule out the pos-
sibility that there were changes in GMV, but they
are too small to detect using the VBM method.84
Using diffusion-weighted MRI to study WM can
provide complementary information about neuro-
plastic changes after video game training.

Conclusions and future directions

This paper presents novel findings showing that
RTS video game players have a larger LN than
NVGPs. The greater volume of the LN can be
explained as a result of intensive and complex
motor sequence learning (especially automated
movements) by our group of RTS experts. How-
ever, the counterargument is supported by the
assumption that people with specific brain struc-

ture characteristics (a larger LN) have predis-
positions to become good video game players.
To resolve it, we conducted a training study and
checked if there are some neural predispositions
that define the manner in which playing a game
is learned. We showed that regional differences in
the volumes of brain areas identified in the cross-
sectional study (on expert RTS players) correlated
with the learning pace observed in the training
study conducted on a completely new, unrelated,
and naive to RTS game participants. The present
study provides new insights into how skill learning
success can depend on brain characteristics. Our
results show the importance of individual features
of the brain in the effectiveness of training, and
in the case of our study, learning to play a new
video game. The conclusion that comes to mind
is that people with a specific brain structure have
a better chance of acquiring new skills. In our
study, we showed this in relation to learning a
video game, but there is a good chance that it is a
more general attribute of the human brain. These
findings also point to the usefulness of MRI brain
structure characteristics in predicting relevant
intervention outcomes and greatly improve the
practicability and effectiveness of those interven-
tions. On the level of a more direct application, our
results may open the window to identifying the
structural characteristics of successful professional
eSports players, much like physical measurements
are used in professional sports.
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