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Compressive sensing microarrays (CSM) are DNA-based sensors that operate using group testing and compressive sensing
principles. Mathematically, one can cast the CSM as sparse nonnegative recovery (SNR) which is to find the sparsest solutions
subjected to an underdetermined system of linear equations and nonnegative restriction. In this paper, we discuss the l1 relaxation
of the SNR. By defining nonnegative restricted isometry/orthogonality constants, we give a nonnegative restricted property
condition which guarantees that the SNR and the l1 relaxation share the common unique solution. Besides, we show that any
solution to the SNR must be one of the extreme points of the underlying feasible set.

1. Introduction

Nowadays, with the rapid development of molecular biology
techniques, scientists use compressive sensing microarrays
to collect the gene expression changes of patients suffer
from specific diseases and test a lot of different drugs on
cells genetically to look for medicine being able to change
the abnormal gene expression [1, 2]. A DNA microarray
is a collection of microscopic DNA spots attached to a
solid surface. Each DNA spot contains a string of specific
DNA sequences, known as probes. These can be a short
section of a gene or other DNA element that are used
to hybridize an organism’s genetic sample under high-
stringency conditions. Probe-target hybridization is usually
detected and quantified by detection of chemiluminescence-
labeled targets to infer the genetic makeup in the test
sample.

Although the number of DNA sequences is extremely
large, not all agents are expected to be present in a significant
concentration at a given time and location. In traditional
microarrays, this results in many inactive probes during
sensing. On the other hand, we are often interested in
only a small quantity of certain harmful biological agents.
Therefore, it is important to not just detect the presence of
agents in a sample but also estimate the concentrations with
which they are present.

Assume that there are m spots and n labeled targets, and
we have far fewer spots than target agents such that m � n.
Mathematically, one can represent the DNA concentration
of each organism as an element in a vector x ∈ Rn and the
measurements as b ∈ Rm. For 1 ≤ i ≤ m and 1 ≤ j ≤ n,
the probe at spot i hybridizes to target j with probability
ai j . The target j occurs in the tested DNA sample with
concentration xj , which is clearly nonnegative. Denoting by
A := (ai j)m×n, the process of DNA microarrays leads to
the sparse nonnegative recovery (SNR) which is to find the
sparsest solutions subjected to an underdetermined system
of linear equations and nonnegative constraints, with the
mathematical model as follows:

min‖x‖0,

s.t. Ax = b, x ≥ 0,
(P0)

where the variable vector x ∈ Rn, ‖x‖0 denotes the number
of the nonzero entries of x, A ∈ Rm×n is the measurement
matrix with full row rank, m� n, and b ∈ Rm.

SNR can be regarded as a special case of the sparse
recovery, which is related to program min{‖x‖0 | Ax = b}.
This program has sparked the significant concern and rapid
development in recent years [3–5] owing to its wide appli-
cations. However, with the nonnegativity prior information
about the object to be recovered in various applications
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such as CSM, solutions on (P0) tend to be closer to the actual
situations and lead to substantial improvements in the image
reconstruction. Moreover, with the nonnegative constraints,
the feasible set becomes a polyhedral set instead of an affine
subspace. This will bring us essential hardness in projecting
on the feasible set. Thus, (P0) is more likely difficult to solve.
Therefore, SNR deserves specific study.

Problem (P0) has been shown to be NP-hard [6, 7] in
general from the perspective of computational complexity.
One popular approach is to reconstruct the vector via the l1
relaxation, which refers to

min‖x‖1,

s.t. Ax = b, x ≥ 0.
(P1)

Since (P1) is a standard linear program, it is easy to solve.
An important issue is how to guarantee the equivalence of
(P0) and (P1) in the sense that they have the same unique k-
sparse solution under some conditions. Here, we call a vector
x k-sparse if the number of its nonzero entries is no more
than k. There has been some increasing interest and activity
in this area; see, for example, [8–14]. Donoho and Tanner
[9] firstly proposed that (P0) and (P1) share the common k-
sparse unique solution if the polytope AT is outwardly k-
neighborly, where T is the standard simplex in Rn. Zhang
[13] proved that (P0) and (P1) share the common k-sparse
unique solution if the null space ofA is strictly half k-balance.
Juditsky et al. [11] developed several different necessary
and sufficient conditions for the (P0)-(P1) equivalence in
the case of general type sign restrictions, including the
nonnegative constraints as its special case. When the feasible
set of (P0) is a singleton, the unknown can be recovered by
optimizing any objective function over this constraint set,
and (P0) and (P1) definitely get the same unique solution.
In this case, Bruckstein et al. [8] got the uniqueness of the
feasible solution under a sufficient condition that A has
a rowspan intersecting the positive orthant. Furthermore,
Wang et al. [14] proved that the above sufficient condition
is also necessary to the uniqueness of the feasible solution.
Donoho and Tanner [10] proved that the underlying feasible
set is a singleton if and only if the polytope ARn

+ and Rn
+

have the same number of k-faces. Khajehnejad et al. [12] gave
another equivalent condition of the uniqueness property by
characterizing the support size of vectors in the null space of
A.

For the l1 relaxation of sparse recovery, one of the most
significant conditions is the restricted isometry property
(RIP), named by Candès and Tao [15] with the ground-
breaking work of Donoho et al. [16, 17]. However, to
the best of our knowledge, the nonnegative case of RIP
has not been investigated. This paper will deal with this
issue. We begin with investigating the solution property of
SNR and show that any solution to the SNR must be one
extreme point of its feasible set in Section 2. We prove in
Section 3 the nonemptiness and boundedness of the solution
set of (P1) and show that any solution of (P1) could be
stated as the convex combination of its optimal extreme
points. In Section 4, by defining the nonnegative restricted
isometry/orthogonality constants, we derive a sufficient

condition for exact recovery of the sparsest nonnegative
image/signal via the linear program relaxation.

Now we give some notations used in the text. We use
sol(·) and v(·) to denote the solution set and optimal value
of problem (·). The ei ∈ Rn would be the vector with only the
ith entry 1 and the rest all 0. el ∈ Rl is the vector with each
entry equal to 1; we also use e to demonstrate that en ∈ Rn

for short. The ai ∈ Rm for i = 1, . . . ,n denote the column
vectors of the matrix A and AI = (ai)i∈I⊂{1,...,n}. For any
x ∈ Rn, xi is the ith component and I(x) is the support set
of x; that is, I(x) = {i | xi /= 0, i = 1, . . . ,n}. For any subset
T ⊂ {1, . . . ,n}, Tc denotes the complement set of T out of
{1, . . . ,n}.

2. Solution Property

Throughout the paper we assume that

S := {x ∈ Rn | Ax = b, x ≥ 0} /=∅. (1)

Apparently, S is a polyhedral set in Rn. According to the
representation theorem, any x ∈ S could be represented as
follows:

x =
t∑

i=1

λix
(i) +

q∑

j=1

μjd
( j), (2)

where
∑t

i=1 λi = 1, λi ≥ 0, i = 1, . . . , t, and {x(i) ∈ Rn | i =
1, 2, . . . , t} are the extreme point set of S; μj ≥ 0, j = 1, . . . , q,
and {d( j) ∈ Rn | j = 1, 2, . . . , q} are the extreme direction set
of S. Apparently, Ax(i) = b, i = 1, . . . , t;Ad( j) = 0, d( j) ≥
0, j = 1, . . . , q.

Define subsets of Rn as follows:

S0 = sub{0},

S1 =
⎧
⎨
⎩

n⋃

i=1

sub{ei}
⎫
⎬
⎭ \ S0,

S2 =
⎧
⎨
⎩

n⋃

i1,i2=1

sub
{
ei1 , ei2

}
⎫
⎬
⎭ \

1⋃

j=0

Sj ,

...

Sr =
⎧
⎨
⎩

n⋃

i1,...,ir=1

sub
{
ei1 , . . . , eir

}
⎫
⎬
⎭ \

r−1⋃

j=0

Sj ,

...

Sn = {sub{e1, . . . , en}} \
n−1⋃

j=0

Sj ,

(3)

where sub{ei1 , . . . , eik} denotes the subspace spanned by the
vectors ei1 , . . . , eik , k = 1, . . . ,n. Clearly, {S1, S2, . . . , Sn} forms
a partition of Rn; that is,

⋃n
j=1 Sj = Rn and Si

⋂
Sj = ∅,

i /= j. Moreover, ‖x‖0 = r for any x ∈ Sr . Along with the
nonemptiness of S, it is easy to see that S must intersect one
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of these sets, hence v(P0) = min{r ∈ R | S
⋂
Sr /=∅} and

sol(P0) /=∅. Furthermore, we have the following result for
the optimal value of (P0).

Lemma 1. Assume that v(P0) = k, one must have k ≤ m.

Proof. Suppose that the conclusion is not true; that is, there is
x∗ ∈ sol(P0) with ‖x∗‖0 = k > m. Without loss of generality,
let x∗i > 0, i = 1, . . . , k. We get

x∗1 a1 + · · · + x∗k ak = b. (4)

Meanwhile, rank(A) = m < k. Thus, {ai ∈ Rm | i = 1, . . . , k}
must be linearly dependent; that is, there exist d1, . . . ,dk, not
all zero, such that

d1a1 + · · · + dkak = 0. (5)

Assume that d1 > 0. By denoting d = (d1, . . . ,dk, 0, . . . , 0)T ∈
Rn, we get Ad = 0. Taking δ = min{x∗i /di | di > 0, i =
1, . . . , k}, it holds that

A(x∗ − δd) = Ax∗ − δAd = b,

x∗ − δd ≥ 0,
∥∥x∗ − δd

∥∥
0 ≤ k − 1.

(6)

This is a contradiction with x∗ ∈ sol(P0). We complete the
proof.

To characterize property of the solution set sol(P0), we
need the next lemma. In particular, this brand new result will
play a key role in proposing the sufficient condition of the
uniqueness of sol(P0) in Section 4.

Lemma 2. Any two distinct solutions of (P0) must have
different support sets.

Proof. Assume for contradiction that x∗ and x̃ are two
different solutions of (P0), x∗ /= x̃. If I(x∗) = I(x̃), we
have x∗i > 0, x̃i > 0, for all i ∈ I(x∗). Set λ =
min{mini∈I(x∗){x∗i /x̃i}, mini∈I(x∗){x̃i/x∗i }}. Since x∗ /= x̃, it
must hold λ < 1. When λ = x∗i0 /x̃i0 , take

x̂ = 1
1− λ

x∗ − λ

1− λ
x̃. (7)

It is easy to see that

x̂i = 1
1− λ

x∗i −
λ

1− λ
x̃i ∈

{{0}, i = i0,

R+, i ∈ I(x∗) \ {i0}. (8)

Thus, we have Ax̂ = b, x̂ ≥ 0 and ‖x̂‖0 ≤ ‖x∗‖0 − 1. This is
a contradiction with the optimality of x∗. When λ = x̃ j0 /x

∗
j0 ,

just taking x̂ = (1/(1−λ))x̃−(λ/(1−λ))x∗ instead, we get the
contradiction by a similar way. The proof is completed.

Now we are in a position to give the main theorem in this
section.

Theorem 3. Any solution of (P0) must be one of the extreme
points of S.

Proof. Given any solution x∗ ∈ sol(P0) with representation

x∗ =
t∑

i=1

λ∗i x
(i) +

q∑

j=1

μ∗j d
( j), (9)

where
∑t

i=1 λ
∗
i = 1, λ∗i ≥ 0, x(i) ≥ 0, Ax(i) = b, for all i =

1, . . . , t; μ∗j ≥ 0, d( j) ≥ 0, Ad( j) = 0, for all j = 1, . . . , q. We
only need to prove that

p∑

i=1

λ∗i = 1, λ∗i ∈ {0, 1}, i = 1, . . . , t,

μ∗j = 0, j = 1, . . . , q,

(10)

in (9). To this end, we have the following three steps.
Firstly, we claim that in (9),

I
(
x(i)

)
= I(x∗), i ∈ {

i | λ∗i > 0, i = 1, . . . , t
}

,

I
(
d( j)

)
⊂ I(x∗), j ∈

{
j | μ∗j > 0, j = 1, . . . , q

}
.

(11)

According to the fact that x(i) ≥ 0, i = 1, . . . , t, and μ∗j ≥ 0,

d( j) ≥ 0, j = 1, . . . , q, one has for any l ∈ I(x(i)), i ∈ {i | λ∗i >
0, i = 1, 2, . . . , t},

x∗l =
t∑

i=1

λ∗i x
(i)
l +

q∑

j=1

μ∗j d
( j)
l > 0, (12)

which means that l ∈ I(x∗). This implies I(x(i)) ⊂ I(x∗).
Similarly, we get I(d( j)) ⊂ I(x∗). On the contrary, from the
optimality of x∗ and (9), we know that I(x∗) ⊂ I(x(i)).

Secondly, we will show that μ∗j = 0, j = 1, . . . , q. If this is

not true, there is an index j0 such that μ∗j0 > 0, then μ∗j0d
( j0)

has at least one positive component. Denote d =∑q
j=1 μ

∗
j d

( j),

so Ad = 0 and {dl > 0 | l = 1, . . . ,n} /=∅. Noting that x(i) ≥
0, (11) implies the fact that I(

∑t
i=1 λ

∗
i x

(i)) = I(x∗), I(d) ⊂
I(x∗). Take δ = min{(∑t

i=1 λ
∗
i x

(i))l/dl | dl > 0, l = 1, . . . ,n},
and

x̃ =
t∑

i=1

λ∗i x
(i) − δd. (13)

Without loss of generality, set δ = (
∑t

i=1 λ
∗
i x

(i))l0 /dl0 . It is
easy to verify that

x̃ j =
⎛
⎝

t∑

i=1

λ∗i x
(i)

⎞
⎠

j

− δdj ∈
{{0}, j = l0
R+, i ∈ I(x∗) \ {l0}, (14)

hence

Ax̃ = b,

x̃ ≥ 0,
∥∥x̃
∥∥

0 ≤
∥∥x∗

∥∥
0 − 1,

(15)

which is a contradiction with the optimality of x∗.
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Thirdly, we will prove that
∑t

i=1 λ
∗
i = 1, λ∗i ∈ {0, 1}, i =

1, . . . , t. Suppose that there exist λ∗1 > 0, λ∗2 > 0, and λ∗1 +λ∗2 =
1 and two different extreme points of S, say x(1), x(2), such
that

x∗ = λ∗1 x
(1) + λ∗2 x

(2). (16)

Based on (11), we have I(x(1)) = I(x(2)) = I(x∗), hence x(1) ∈
sol (P0), x(2) ∈ sol (P0). Nevertheless, by Lemma 2, this is
impossible. Hence, we show that

x∗ ∈
{
x(1), x(2), . . . , x(t)

}
. (17)

We complete the argument.

Theorem 3 tells us that each solution of (P0) lies in the
extreme point set of S. Here is a concrete example.

Example 4. Let A = (
1 1 −3
−1 0 2

)
, b = (

3
−2

)
. Obviously, the

solution set and optimal value of (P0) are

sol(P0) = {(2, 1, 0)}, v(P0) = 2, (18)

respectively. In this case, (2, 1, 0) is the only extreme point
of S. While the solution set and optimal value of (P) :=
min{‖x‖0 | Ax = b} are

sol(P) = {(0, 0,−1)}, v(P) = 1, (19)

respectively.

At the end of this section, we consider the lp (0 < p < 1)
relaxation of (P0)

min ‖x‖pp =
n∑

i=1

x
p
i ,

s.t. Ax = b,

x ≥ 0.

(
Pp

)

Clearly,
(
Pp

)
is a concave relaxation of (P0). For the program(

Pp

)
, Ge et al. [7] derived the useful result as the following.

Lemma 5. The set of all extreme points of S is exactly the set of

all local minimizers to
(
Pp

)
.

This lemma implies that any global solution of lp relax-
ation must be one of its extreme points. From Theorem 3 and
Lemma 5, we immediately draw a new proposition.

Proposition 6. For any p ∈ (0, 1), there exists an extreme
point of S that is both an exact solution of (P0) and a local

minimizer of
(
Pp

)
.

This is different from the result of Fung and Mangasarian
in [18], where they showed that for sufficiently small p ∈
(0, 1), there exists an extreme point x of the polyhedral set T ,
obtained by lifting the set S, such that x is an exact solution
of (P0) and a global solution of the lp relaxation.

3. Linear Program Relaxation

Consider the linear program relaxation (P1). Since the linear
objective function 〈e, x〉 is bounded below over the feasible
set, based on the Frank-Wolfe theorem, the minimum of (P1)
is attainable. Among all the extreme points of S, {x(i) ∈ Rn |
i = 1, . . . , t}, we call x(i) an optimal extreme point if it also
meets 〈e, x(i)〉 = v(P1).

Proposition 7. Any x∗ ∈ sol (P1) could be stated as
the convex combination of optimal extreme points of (P1).
Hence, sol (P1) is bounded.

Proof. Given any x∗ ∈ sol(P0) with representation (9). If
there is i0 ∈ {1, . . . , t} such that x(i0) is not an optimal
extreme point of (P1) and λ∗i0 > 0, we have 〈e, x(i0)〉 > v(P1),
hence

v(P1) = 〈
e, x∗

〉

=
t∑

i=1

λ∗i
〈
e, x(i)

〉
+

q∑

j=1

μ∗j
〈
e,d( j)

〉

≥
t∑

i=1

λ∗i
〈
e, x(i)

〉

>
t∑

i=1

λ∗i v(P1) = v(P1),

(20)

which is a contradiction.
Similarly, if there is j0 ∈ {1, . . . , q} such that μ∗j0 > 0, we

have μ∗j0〈e,d( j0)〉 > 0, hence

v(P1) = 〈
e, x∗

〉

=
t∑

i=1

λ∗i
〈
e, x(i)

〉
+

q∑

j=1

μ∗j
〈
e,d( j)

〉

>
t∑

i=1

λ∗i
〈
e, x(i)

〉

≥
t∑

i=1

λ∗i v(P1) = v(P1),

(21)

which is a contradiction. This completes the proof.

From the above proposition, we know that linear pro-
gram (P1) has at least one optimal extreme point. Thus, we
could use simplex method or interior point method to solve
(P1).

4. Nonnegative Restricted Property

In the framework of l1 relaxation, a significant problem is
how to guarantee the exact recovery of sparse image/signal
via the l1 relaxation. One of the most important qualifica-
tions is the restricted isometry property; see [15]. Recall that
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the k-restricted isometry constants (RIC) δk is the smallest
scalar satisfying

(1− δk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δk)‖x‖2
2, ∀‖x‖0 ≤ k.

(22)

Similarly, the k, k′-restricted orthogonality constants (ROC)
θk,k′ for k + k′ ≤ n is defined as the smallest scalar satisfying

∣∣〈Ax,Ay
〉∣∣ ≤ θk,k′‖x‖2

∥∥y
∥∥

2,

∀‖x‖0 ≤ k; ∀∥∥y∥∥0 ≤ k′,
(23)

where x and y have disjoint support sets. The RIC δk and
ROC θk,k′ measure how close each submatrix of A with
certain cardinality is behaving like an orthonormal system.
Under some restricted isometry property, one can get the
sparse recovery via its l1 relaxation. Nevertheless, for the
nonnegative case, the sparse recovery may maintain new
characterizations. Above all, we define NRIC and NROC.

Definition 8. Let A ∈ Rm×n. We define the nonnegative
k-restricted isometry constants (NRIC) δ+

k as the smallest
number satisfying

(
1− δ+

k

)
‖x‖2

2 ≤ ‖Ax‖2
2 ≤

(
1 + δ+

k

)
‖x‖2

2,

∀x ≥ 0, ‖x‖0 ≤ k.
(24)

Similarly, we define the nonnegative k, k′-restricted orthog-
onality constants (NROC) θ+

k,k′ for k + k′ ≤ n as the smallest
number satisfying

∣∣〈Ax,Ay
〉∣∣ ≤ θ+

k,k′‖x‖2

∥∥y
∥∥

2,

∀x ≥ 0,‖x‖0 ≤ k,∀y ≥ 0,
∥∥y
∥∥

0 ≤ k′,
(25)

with I(x) and I(y) being disjoint sets.

Clearly,

δ+
k ≤ δk, θ+

k,k′ ≤ θk,k′ . (26)

Moreover, the numbers δ+
k and θ+

k,k′ are nondecreasing in
k, k′.

By employing the projections of vectors in the null
space of A to Rn

+, we now provide a sufficient condition to
determine a solution of (P0).

Theorem 9. Suppose that k ≥ 1 is such that δ+
k + θ+

k,k−1 < 1
and x∗ ∈ S with ‖x∗‖0 = k. Then, x∗ is a solution of (P0).

Proof. We complete the proof by contradiction. If this is not
true, there exists x such that Ax = b, x ≥ 0,‖x‖0 ≤ k− 1. Set
h = x∗ − x. Clearly, Ah = 0. Take h = h+ − h− with h+ and
h− being the projections of h and −h to Rn

+, respectively. We
have h+ ≥ 0, h− ≥ 0, 〈h+,h−〉 = 0. In particular,

(h+)i =
{(

x∗i − xi
)

+, i ∈ I(x∗),

0, else,

(h−)i =
{(

x∗i − xi
)
−, i ∈ I(x),

0, else.

(27)

Therefore,

1 ≤ ‖h‖0 ≤
∥∥x∗

∥∥
0 + ‖x‖0 ≤ 2k − 1,

1 ≤ ∥∥h+
∥∥

0 ≤ k,

0 ≤ ∥∥h−
∥∥

0 ≤ k − 1.

(28)

Thus, we get

0 = ‖Ah‖2
2

= ∥∥Ah+ − Ah−
∥∥2

2

= ∥∥Ah+
∥∥2

2 +
∥∥Ah−

∥∥2
2 − 2

〈
Ah+,Ah−

〉

≥
(

1− δ+
k

)∥∥h+
∥∥2

2 +
(

1− δ+
k−1

)∥∥h−
∥∥2

2

− θ+
k,k−1

(∥∥h+
∥∥2

2 +
∥∥h−

∥∥2
2

)

≥
(

1− δ+
k − θ+

k,k−1

)∥∥h+
∥∥2

2

+
(

1− δ+
k−1 − θ+

k,k−1

)∥∥h−
∥∥2

2

> 0,

(29)

in which the first inequality is due to (24), (25), and the fact
that 2ab ≤ a2 + b2, and the last inequality is because of the
assumption of δ+

k + θ+
k,k−1 < 1 and the monotonicity of δ+

k in
k. This is a contradiction. Therefore, x∗ ∈ sol(P0).

With the special result that any two solutions of (P0) have
different support sets, we next derive a sufficient condition
on the uniqueness of solution to (P0).

Theorem 10. Suppose that k ≥ 1 is such that δ+
k + θ+

k,k < 1
and x∗ ∈ S with ‖x∗‖0 = k. Then, x∗ is the unique solution
of (P0).

Proof. Since δ+
k + θ+

k,k < 1 implies δ+
k + θ+

k,k−1 < 1, we know
that x∗ ∈ sol(P0). Now we just need to verify that x∗ is the
unique solution of (P0). Assume that this is not true; that is,
there is another solution x /= x∗. According to Lemma 2, it
must hold I(x) /= I(x∗). Take h = x∗ − x. By the argument
similar to that in the proof of Theorem 9, we get

2 ≤ ‖h‖0 ≤
∥∥x∗

∥∥
0 + ‖x‖0 ≤ 2k,

1 ≤ ∥∥h+
∥∥

0 ≤ k,

1 ≤ ∥∥h−
∥∥

0 ≤ k,

(30)

and the contradiction. We conclude the proof.

Now we are ready to give the main result of this paper,
which is called the nonnegative restricted property.

Theorem 11. Assume that k ≥ 1 is such that

δ+
2k +

(√
2 + 1

)
θ+
k,2k < 1, (31)

and x∗ ∈ S with ‖x∗‖0 = k. Then x∗ is exactly the common
unique minimizer of (P0) and (P1).



6 Computational and Mathematical Methods in Medicine

Proof. Since (31) implies δ+
k + θ+

k,k < 1, sol(P0) = {x∗} by
Theorem 10.

Suppose that x is a solution of (P1). Take h = x − x∗.
To get sol(P1) = {x∗}, it suffices to verify that h = 0. The
proof includes three steps, the first two steps are parallel to
that in [19], in the third step, we utilize the technique of
projecting the null space of A on Rn

+; for details, see (42) and
the argument around it.

Firstly, we introduce a partition of {1, . . . ,n}. Let T0 be
the support set of x∗, T1 the index set including the first k
large components of x in Tc

0, T2 the index set including the
next k large components of x in Tc

0 \ T1, and so on. Thus,

∣∣∣Tj

∣∣∣ = k, j = 0, 1, . . . ,
[
n

k

]
− 1,

∣∣∣Tj

∣∣∣ ≤ k, j =
[
n

k

]
.

(32)

Moreover, for any j = 0, 1, . . . , [n/k], we define

(
hTj

)
i
=
{
hi, i ∈ Tj ,

0, else,
(33)

which is exactly that for any j = 1, . . . , [n/k]

(
hTj

)
i
=

⎧
⎪⎪⎨
⎪⎪⎩

xi − x∗i , i ∈ T0,

xi, i ∈ Tj ,

0, else.

(34)

Therefore, Ah = 0,h =∑[n/k]
j=0 hTj , and

hTj ≥ 0, j = 1, . . . ,
[
n

k

]
,

∥∥∥hTj

∥∥∥
0
≤ k, j = 0, 1, . . . ,

[
n

k

]
.

(35)

Next, we show that ‖h(T0∪T1)c‖2 is bounded by ‖hT0‖1.
Note that for each j ≥ 2,

∥∥∥hTj

∥∥∥
2
≤
√
k
∥∥∥hTj

∥∥∥∞ ≤
1√
k

∥∥∥hTj−1

∥∥∥
1
, (36)

where the second inequality is because of the monotonicity
of hi on Tc

0, and

[n/k]∑

j=2

∥∥∥hTj

∥∥∥
2
≤ 1√

k

[n/k]−1∑

j=1

∥∥∥hTj

∥∥∥
1
≤ 1√

k

∥∥∥hTc
0

∥∥∥
1
. (37)

This gives

∥∥∥h(T0∪T1)c
∥∥∥

2
=
∥∥∥∥∥∥∥

[n/k]∑

j=2

h

Tj

∥∥∥∥∥∥∥
2

≤
[n/k]∑

j=2

∥∥∥hTj

∥∥∥
2
≤ 1√

k

∥∥∥hTc
0

∥∥∥
1
.

(38)

In fact,
∥∥∥x∗T0

∥∥∥
1
= ∥∥x∗

∥∥
1 ≥ ‖x‖1 =

∥∥x∗ + h
∥∥

1

=
∥∥∥x∗T0

+ hT0

∥∥∥
1

+
∥∥∥x∗Tc

0
+ hTc

0

∥∥∥
1

≥
∥∥∥x∗T0

∥∥∥
1
− ∥∥hT0

∥∥
1 +

∥∥∥hTc
0

∥∥∥
1
−
∥∥∥x∗Tc

0

∥∥∥
1

=
∥∥∥x∗T0

∥∥∥
1
− ∥∥hT0

∥∥
1 +

∥∥∥hTc
0

∥∥∥
1
,

(39)

which implies
∥∥∥hTc

0

∥∥∥
1
≤ ∥∥hT0

∥∥
1. (40)

By applying (38) and (40), we have
∥∥∥h(T0∪T1)c

∥∥∥
2
≤ 1√

k

∥∥∥hTc
0

∥∥∥
1
≤ 1√

k

∥∥hT0

∥∥
1. (41)

Finally, we show that ‖hT0∪T1‖2 = 0. By utilizing the
projection h = h+ − h−, where h+ and h− are projections
of h and −h on Rn

+, we have h(T0∪T1) = h+
(T0∪T1) − h−(T0∪T1).

Moreover,

(
h+

(T0∪T1)

)
i
=

⎧
⎪⎪⎨
⎪⎪⎩

(
xi − x∗i

)
+, i ∈ T0,

xi, i ∈ T1,

0, else,

(
h−(T0∪T1)

)
i
=

⎧
⎪⎪⎨
⎪⎪⎩

(
xi − x∗i

)
−, i ∈ T0,

0, i ∈ T1,

0, else.

(42)

It is easy to see
∥∥∥h+

(T0∪T1)

∥∥∥
0
≤ 2k,

∥∥∥h−(T0∪T1)

∥∥∥
0
≤ k.

(43)

From Ah = 0, we compute
∥∥Ah(T0∪T1)

∥∥2
2 =

〈
Ah(T0∪T1),Ah− Ah(T0∪T1)c

〉

= −
[n/k]∑

j=2

〈
Ah(T0∪T1),AhTj

〉
.

(44)

On one hand, based on the definition of NROC, (35), and
(43), for j ≥ 2,

−
〈
Ah(T0∪T1),AhTj

〉

= −
〈
Ah+

(T0∪T1),AhTj

〉
+
〈
Ah−(T0∪T1),AhTj

〉

≤
∣∣∣
〈
Ah+

(T0∪T1),AhTj

〉∣∣∣ +
∣∣∣
〈
Ah−(T0∪T1),AhTj

〉∣∣∣

≤ θ+
k,2k

∥∥∥h+
(T0∪T1)

∥∥∥
2
·
∥∥∥hTj

∥∥∥
2

+ θ+
k,k

∥∥∥h−(T0∪T1)

∥∥∥
2
·
∥∥∥hTj

∥∥∥
2

≤ θ+
k,2k

∥∥∥hTj

∥∥∥
2
·
(∥∥∥h+

(T0∪T1)

∥∥∥
2

+
∥∥∥h−(T0∪T1)

∥∥∥
2

)

≤ √2θ+
k,2k

∥∥∥hTj

∥∥∥
2
· ∥∥h(T0∪T1)

∥∥
2,

(45)
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where the last inequality is by the fact that (a + b)2 ≤ 2(a2 +
b2). On the other hand, together with the definition of NRIC
and (43), one has

∥∥Ah(T0∪T1)
∥∥2

2

=
∥∥∥Ah+

(T0∪T1) − Ah−(T0∪T1)

∥∥∥
2

2

=
∥∥∥Ah+

(T0∪T1)

∥∥∥
2

2
+
∥∥∥Ah−(T0∪T1)

∥∥∥
2

2

− 2
〈
Ah+

(T0∪T1),Ah
−
(T0∪T1)

〉

≥
(

1− δ+
2k

)∥∥∥h+
(T0∪T1)

∥∥∥
2

2
+
(

1− δ+
k

)∥∥∥h−(T0∪T1)

∥∥∥
2

2

− 2θ+
k,2k

∥∥∥h+
(T0∪T1)

∥∥∥
2
·
∥∥∥h−(T0∪T1)

∥∥∥
2

≥
(

1− δ+
2k

)∥∥∥h+
(T0∪T1)

∥∥∥
2

2
+
(

1− δ+
k

)∥∥∥h−(T0∪T1)

∥∥∥
2

2

− θ+
k,2k

(∥∥∥h+
(T0∪T1)

∥∥∥
2

2
+
∥∥∥h−(T0∪T1)

∥∥∥
2

2

)

=
(

1− δ+
2k − θ+

k,2k

)∥∥∥h+
(T0∪T1)

∥∥∥
2

2

+
(

1− δ+
k − θ+

k,2k

)∥∥∥h−(T0∪T1)

∥∥∥
2

2

≥
(

1− δ+
2k − θ+

k,2k

)∥∥h(T0∪T1)
∥∥2

2.

(46)

Therefore, we compute

(
1− δ+

2k − θ+
k,2k

)∥∥h(T0∪T1)
∥∥2

2

≤ √2θ+
k,2k

∥∥h(T0∪T1)
∥∥

2

·
[n/k]∑

j=2

∥∥∥hTj

∥∥∥
2

(
by (44), (45), and (46)

)

≤ √2θ+
k,2k

∥∥h(T0∪T1)
∥∥

2 ·
1√
k

∥∥∥hTc
0

∥∥∥
1

(
by (37)

)

≤ √2θ+
k,2k

∥∥h(T0∪T1)
∥∥

2 ·
1√
k

∥∥hT0

∥∥
1

(
by (40)

)

≤ √2θ+
k,2k

∥∥h(T0∪T1)
∥∥

2 ·
∥∥hT0

∥∥
2

≤ √2θ+
k,2k

∥∥h(T0∪T1)
∥∥2

2,

(47)

where the forth inequality is from the fact that ‖hT0‖2
1 ≤

k‖hT0‖2
2. Then the assumption δ+

2k + (
√

2 + 1)θ+
k,2k < 1 forces

∥∥h(T0∪T1)
∥∥2

2 = 0. (48)

Thus,

h(T0∪T1) = 0. (49)

Therefore, we get h(T0∪T1)c = 0 by (41), hence ‖h‖ = 0. This
is exactly what we want. We complete the proof.

5. Conclusion

In this paper, we have derived a nonnegative restricted
property condition, which ensures the exact recovery of
sparse nonnegative image/signal via the linear program
relaxation. Since the NRIC and NROC are defined in Rn

+,
there may be more types of measurement matrices satisfying
the nonnegative restricted property than that in the case of
RIP, regardless of random matrices or deterministic matrices.
As a byproduct of the main result, we have investigated the
solution property of the sparse nonnegative recovery and
shown that any solution of (P0) must be one of the extreme
points of its feasible set. However, it is not clear whether a
given extreme point of the feasible set is a solution to (P0).
This can serve as a target for future work.
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[11] A. Juditsky, F. KIlInç Karzan, and A. Nemirovski, “Verifiable
conditions of � 1-recovery for sparse signals with sign



8 Computational and Mathematical Methods in Medicine

restrictions,” Mathematical Programming B, vol. 127, no. 1, pp.
89–122, 2011.

[12] M. A. Khajehnejad, A. G. Dimakis, W. Xu, and B. Hassibi,
“Sparse recovery of nonnegative signals with minimal expan-
sion,” IEEE Transactions on Signal Processing, vol. 59, no. 1, pp.
196–208, 2011.

[13] Y. Zhang, “A simple proof for the recoverability of l1-
minimization (II): the nonnegative case,” Tech. Rep. TR05-
10, Department of Computational and Applied Mathematical,
Rice University, Houston, Tex, USA, 2005.

[14] M. Wang, W. Xu, and A. Tang, “A unique “nonnegative”
solution to an underdetermined system: from vectors to
matrices,” IEEE Transactions on Signal Processing, vol. 59, no.
3, pp. 1007–1016, 2011.

[15] E. J. Candès and T. Tao, “Decoding by linear programming,”
IEEE Transactions on Information Theory, vol. 51, no. 12, pp.
4203–4215, 2005.

[16] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic
decomposition by basis pursuit,” SIAM Journal on Scientific
Computing, vol. 20, no. 1, pp. 33–61, 1998.

[17] D. L. Donoho and X. Huo, “Uncertainty principles and ideal
atomic decomposition,” IEEE Transactions on Information
Theory, vol. 47, no. 7, pp. 2845–2862, 2001.

[18] G. M. Fung and O. L. Mangasarian, “Equivalence of minimal
l0- and lp-norm solutions of linear equalities, inequalities
and linear programs for sufficiently small p,” Journal of
Optimization Theory and Applications, vol. 151, no. 1, pp. 1–
10, 2011.

[19] E. J. Candès, “The restricted isometry property and its
implications for compressed sensing,” Comptes Rendus Math-
ematique, vol. 346, no. 9-10, pp. 589–592, 2008.


	Introduction
	Solution Property
	Linear Program Relaxation
	Nonnegative Restricted Property
	Conclusion
	Acknowledgments 
	References

