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Abstract: Alzheimer’s disease (AD), a common form of dementia, is caused in part by the aggre-
gation and accumulation in the brain of amyloid β (Aβ), a product of the proteolytic cleavage of
amyloid precursor protein (APP) in endosomes. Trafficking of APP, such as surface-intracellular
recycling, is an early critical step required for Aβ generation. Less is known, however, about the
molecular mechanism regulating APP trafficking. This study investigated the mechanism by which
SPIN90, along with Rab11, modulates APP trafficking, Aβ motility and accumulation, and synaptic
functionality. Brain Aβ deposition was lower in the progeny of 5xFAD-SPIN90KO mice than in
5xFAD-SPIN90WT mice. Analysis of APP distribution and trafficking showed that the surface frac-
tion of APP was locally distinct in axons and dendrites, with these distributions differing significantly
in 5xFAD-SPIN90WT and 5xFAD-SPIN90KO mice, and that neural activity-driven APP trafficking to
the surface and intracellular recycling were more actively mobilized in 5xFAD-SPIN90KO neurons. In
addition, SPIN90 was found to be cotrafficked with APP via axons, with ablation of SPIN90 reducing
the intracellular accumulation of APP in axons. Finally, synaptic transmission was restored over time
in 5xFAD-SPIN90KO but not in 5xFAD-SPIN90WT neurons, suggesting SPIN90 is implicated in Aβ

production through the regulation of APP trafficking.

Keywords: SPIN90; Alzheimer’s disease; Amyloid β accumulation; APP trafficking; APP recycling;
Rab11; synaptic transmission

1. Introduction

Alzheimer’s disease (AD), the most prevalent type of neurodegenerative disease, is
caused by several factors, including amyloid β (Aβ) oligomer deposition and Tau based
neurofibrillary tangles [1]. Aβ peptides accumulate in extracellular spaces and form Aβ

aggregates, which are toxic to neurons and cause synaptic dysfunction, memory loss and
cognitive impairments [2]. Aβ peptides are produced by the sequential cleavage of amyloid
β precursor protein (APP) by the enzymes β-site APP-cleaving enzyme 1 (BACE1) and
γ-secretase complex [3]. Both APP and BACE1 are transmembrane proteins internalized
into early endosomes, with γ-secretase complex being later internalized into endosomes [4].
Endosomal APP is cleaved by BACE1 and γ-secretase, producing Aβ peptides [5,6].

APP is a transmembrane protein consisting of a long ectodomain, a glycosylation
domain and a short cytoplasmic domain. Because Aβ peptide is generated from APP,
studies have focused on APP processing [7,8]. However, proper APP trafficking is required
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for APP processing [6,9–11]. For example, cotrafficking of APP and BACE1 is essential
for APP processing, which is induced by neural activities [12,13]. Rab35, a member of the
Rab-GTPase protein family involved in membrane trafficking, was shown to negatively
regulate Aβ production by coordinating the intracellular trafficking of APP and BACE1 [14].
RNAi screening of all Rab-GTPase proteins identified Rab3 and Rab11 as key molecules
involved in the amyloidogenic process [15]. Furthermore, this trafficking was accelerated
by mutant forms of APP [16,17]. Less is known, however, about the general distribution of
APP on the surfaces and in the internal areas of neurons, such as dendrites and axons; about
APP recycling trafficking; or about the molecular mechanisms and molecules involved in
this process.

SH3 protein interacting with Nck, 90 kDa (SPIN90) is a protein interacting with the
non-catalytic region of tyrosine kinase (Nck) [18] that participates in various membrane
trafficking processes, including membrane ruffling, clathrin-mediated endocytosis, epi-
dermal growth factor receptor (EGFR) endocytosis and endosomal trafficking [19–23]. By
interacting with syndapin and dynamin1, SPIN90 is involved in clathrin-mediated endocy-
tosis. The ablation of SPIN90 was found to attenuate the trafficking of early endosomes [23].
SPIN90 was also found to interact with Rab5 (early endosome regulator) and Gapex5 (Rab5
GEF) during epidermal growth factor (EGF) mediated endocytosis [24]. These findings
suggested that SPIN90, along with Rab GTPase, is involved in Aβ production through its
regulation of APP trafficking.

The present study describes the development of a mouse model in which 5xFAD
mice were crossed with SPIN90 wild-type (WT) and SPIN90 knockout (KO) mice, with the
SPIN90 KO mice showing improved Aβ deposition in mouse brains. SPIN90 was found
to regulate the distribution of APP on the surfaces and internals of axons and dendrites,
to modulate the activity-dependent recycling of APP between the surfaces and internals
and to control axonal trafficking of APP. SPIN90 KO was found to reduce anterograde
APP motility and its internal accumulation, and SPIN90 was found to interact with Rab11.
Finally, SPIN90 ablation in 5xFAD neurons restored synaptic functionality. Collectively,
these findings indicate that SPIN90 modulates APP trafficking along with Rab11, thereby
controlling Aβ production.

2. Results
2.1. Deficiency of SPIN90 Reduces Aβ Deposition in the Brains of AD Model Mice

The involvement of SPIN90 in membrane trafficking [21–24] and the importance
of APP trafficking in the early process of Aβ generation suggested that SPIN90 may
be related to the pathogenesis of AD, particularly the production of Aβ. To determine
whether SPIN90 interacts genetically with Aβ deposition, 5xFAD mice, a model of AD
characterized by the rapid accumulation of Aβ plaques due to the expression of APP
mutant transgenes [25,26], were mated with SPIN90 KO mice, which have been used in
functional studies of membrane trafficking and neural function [24,27]. The time course of
Aβ deposition in the hippocampus and subiculum was compared immunohistochemically
in 5xFAD-SPIN90 WT (5xFAD/SPIN90+/+) and 5xFAD-SPIN90 KO (5xFAD/SPIN90−/−)
mice. Anti-Aβ antibody (4G8) was applied to brain slices of mice aged 2, 3, 4, and 6 months,
with binding visualized using the Dab staining system. As expected, the deposition of Aβ

in the hippocampus and subiculum significantly increased over time in 5xFAD-SPIN90
WT mice, but was relatively lower in 5xFAD-SPIN90 KO mice (Figure 1A–D). Further
evaluation of Aβ plaque accumulation in brain slices by thioflavin staining showed that
the levels of Aβ plaque were lower in the hippocampus (~57%) and subiculum (~31%) of
5xFAD-SPIN90 KO than of 5xFAD-SPIN90 WT mice (Figure 1E,F) and that the mean sizes
of Aβ plaques were slightly decreased in the hippocampus (~18.5%) and subiculum (~23%)
of 5xFAD-SPIN90 KO (Figure S1). Assays to determine whether decreased Aβ deposition
was caused by decreased APP expression in 5xFAD-SPIN90 KO mouse brains showed that
the levels of expression of APP, as well as of related proteins such as BACE1 and nicastrin,
did not differ in 5xFAD-SPIN90 KO and 5xFAD-SPIN90 WT mice (Figure S2), nor did the
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activity of BACE1 (Figures S3 and S4). Thus, these results suggest that SPIN90 deficiency
down-regulates Aβ production and accumulation.
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Figure 1. SPIN90 knockout reduces amyloid β (Aβ) deposition in AD model mice. (A,B) Rep-
resentative images of Aβ plaques in the brains of 5xFAD-SPIN90 WT (A) and 5xFAD-SPIN90
KO mice (B), as shown by Dab reaction (brown) and hematoxylin straining (blue). Brains of
mice aged 2, 3, 4, and 6 months were fixed and stained with anti-Aβ antibody. (Top) The
entire area of a hemisphere; (middle) magnified images of the hippocampus; (bottom) mag-
nified images of the subiculum. Scale bars, 500 µm. (C,D) Mean areas of Aβ deposition in
the hippocampus (C) and subiculum (D) of brains from 2-, 3-, 4-, and 6-month old 5xFAD-
SPIN90 WT (Black) and 5xFAD-SPIN90 KO (Red) mice. Total areas of Aβ plaque were quanti-
fied and normalized relative to areas of the hippocampus or subiculum. Hippocampus: [2M;
Aβ plaque]5xFAD-SPIN90WT = 0.18 ± 0.05%, n = 18 (6 mice), [2M; Aβ plaque]5xFAD-SPIN90KO = 0.08
± 0.01%, n = 18 (6 mice), [3M; Aβ plaque]5xFAD-SPIN90WT = 0.4 ± 0.07%, n = 21 (7 mice), [3M;
Aβ plaque]5xFAD-SPIN90KO = 0.36 ± 0.03%, n = 21 (7 mice), [4M; Aβ plaque]5xFAD-SPIN90WT =
0.75 ± 0.1%, n = 21 (7 mice), [4M; Aβ plaque]5xFAD-SPIN90KO = 0.44 ± 0.04%, n = 21 (7 mice), [6M; Aβ

plaque]5xFAD-SPIN90WT = 1.9 ± 0.47%, n = 18 (6 mice), [6M; Aβ plaque]5xFAD-SPIN90KO = 0.89 ± 0.17,
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n = 18 (6 mice). Subiculum: [2M; Aβ plaque]5xFAD-SPIN90WT = 3.58 ± 0.66, n = 18 (6 mice), [2M; Aβ

plaque]5xFAD-SPIN90KO = 2.04 ± 0.2, n = 18 (6 mice), [3M; Aβ plaque]5xFAD-SPIN90WT = 6.79 ± 0.7, n = 21
(7 mice), [3M; Aβ plaque]5xFAD-SPIN90KO = 7.54 ± 0.5, n = 21 (7 mice), [4M; Aβ plaque]5xFAD-SPIN90WT

= 11.29 ± 1.09, n = 21 (7 mice), [4M; Aβ plaque]5xFAD-SPIN90KO = 8.22 ± 0.67, n = 21 (7 mice), [6M; Aβ

plaque]5xFAD-SPIN90WT = 12.02 ± 0.73, n = 18 (6 mice), [6M; Aβ plaque]5xFAD-SPIN90KO = 9.85 ± 0.43,
n = 18 (6 mice). (E) Representative images of thioflavin S- stained Aβ plaques in the hippocampus
and subiculum in the brains of 6-month-old 5xFAD-SPIN90 WT (left) and 5xFAD-SPIN90 KO (right)
mice. Images are shown inverted to clearly display Aβ plaques. Scale bars, 500 µm. (F) Quantification
of Aβ aggregates in the hippocampus and subiculum of 5xFAD-SPIN90 WT and 5xFAD-SPIN90
KO mice. [Hippocampus: Aβ aggregates]5xFAD-SPIN90WT = 65.83 ± 15.88 (n = 6), [Hippocampus:
Aβ aggregates]5xFAD-SPIN90KO = 28.17 ± 7.94 (n = 6), [Subiculum: Aβ aggregates]5xFAD-SPIN90WT =
57.33 ± 6.32 (n = 6), [Subiculum: Aβ aggregates]5xFAD-SPIN90KO = 39.5 ± 3.61 (n = 6). * p < 0.05. N.S.;
not significant.

2.2. APP Distribution on the Surfaces of Axons and Dendrites Is Altered in 5xFAD-SPIN90
KO Neurons

Findings showing that the deletion of SPIN90 reduced Aβ production and that SPIN90
is involved in membrane trafficking [21–24] suggested that SPIN90 may be involved in
APP trafficking. To test this hypothesis, APP distribution was evaluated on the membranes
of various areas of neurons, including axons, dendrites, and soma. pHluorin has a pKa of
7.1, making it useful for evaluating surface and internal vesicle trafficking [28,29]. Surface
and internal APP were therefore traced using a recombinant APP with pHluorin at its
N-terminus (pH-APP) (Figure 2A). APP on membrane surfaces and internals could be
quantified by sequentially applying acid quenching solution (AQ) (e.g., MES, pH5.5) and
alkalizing solution (e.g., NH4Cl, pH7.4) [30]. Under resting conditions, the surface fraction
of APP differed in various areas of 5xFAD-SPIN90 WT neurons, with higher accumulation
in dendrites and soma (about 10–12%) than in axons (about 5.85%) (Figure 2B–H, Figure
S5A–C). APP distribution differed, however, in the 5xFAD-SPIN90 KO neurons, with
higher APP surface fraction in dendrites (~23.3%) and lower accumulation in axons (~2.7%)
(Figure 2B–H). These findings indicate that the surface distribution of APP is both locally
distinct and regulated by SPIN90.

2.3. SPIN90 Modulates Activity-Dependent APP Trafficking between Surfaces and Internals of
Axons and Dendrites

To determine whether SPIN90 modulates activity-dependent APP trafficking, 5xFAD-
SPIN90 WT and 5xFAD-SPIN90 KO neurons transfected with pH-APP were electrically
stimulated with 20 Hz for 30 s, and APP trafficking in each region (i.e., axons, dendrites,
and soma) was monitored. Region-specific trafficking of APP was observed in 5xFAD-
SPIN90 WT neurons. In axons, APP surface level was increased in response to electrical
stimulation (Figure 3A–D), indicating that internal APP is exocytosed during stimulation,
and endocytosed after the end of stimulation. In contrast, surface APP in dendrites was
endocytosed during electrical stimulation, and recycled after stimulation, as previously
reported [12] (Figure 3E–H), with surface APP in soma showing a similar response to electri-
cal stimulation as in dendrites, being endocytosed during neuronal activity (Figure S5D–F).
In addition, ablation of SPIN90 neurons significantly enhanced activity-dependent APP
trafficking. Activity-dependent surface accumulation of APP was ~2.5 fold higher on
the surfaces of axons (Figure 3C,D and see also movie S1) and ~2.8 fold higher on the
surfaces of dendrites (Figure 3G,H and see also movie S2) than on the corresponding
surfaces of 5xFAD-SPIN90 WT neurons, with findings in soma similar to those in dendrites
(Figure S5D–F). The rates of exo- and endocytosis of APP were also determined by ana-
lyzing slopes of exo- and endocytosis. The slopes of exocytosis during neuronal activity
and of endocytosis after stimulation were ~2.5-fold higher in axons of 5xFAD-SPIN90
KO than of 5xFAD-SPIN90 WT neurons (Figure 3I–L). Conversely, the slopes of endocy-
tosis during stimulation and of exocytosis after stimulation were about 3-fold higher in
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dendrites of 5xFAD-SPIN90 WT than of 5xFAD-SPIN90 KO neurons (Figure 3M–P), with
activity-dependent APP trafficking in soma similar to that in dendrites (Figure S5H–K).
To determine whether these phenotypes of APP trafficking are caused by artifacts that
are dependent on the parallel accumulation of APP in axons or its diffusion in dendrites,
changes in fluorescence in regions of interest (ROIs) and adjacent areas were carefully
analyzed in axons and dendrites. During stimulation, the intensity of fluorescence was
increased in ROIs of axons and was modestly decreased in areas adjacent to these ROIs,
whereas the intensity of fluorescence was decreased in ROIs of dendrites and was modestly
decreased in areas adjacent to these ROIs, indicating that APP is recycled (exo-endo) in an
activity-dependent manner, not through accumulation or diffusion by parallel movements
(Figure S6). Collectively, these findings indicate that, during neuronal activity, the path-
ways for APP trafficking between surfaces and internal areas are locally distinct, with APP
exocytosis in axons and endocytosis in dendrites, and that SPIN90 markedly modulates
activity-driven, locally distinctive APP trafficking in axons and dendrites (Figure 3Q,R).
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Figure 2. Deficiency of SPIN90 alters surface fraction of APP in axons and dendrites of 5xFAD
neurons. (A) Schematic diagram of pHluorin-conjugated APP (pH-APP). (B) Illustration of surface
pH-APP (left) and endosomal pH-APP (right). (C) Representative images of pH-APP in axons of
5xFAD-SPIN90 WT (left) and 5xFAD-SPIN90 KO (right) neurons at rest (top), after acid quenching
(middle), and after NH4Cl treatment (bottom). Scale bar: 5 µm. (D) Representative traces of pH-
APP in response to acid quenching in axons of 5xFAD-SPIN90 WT (black) and 5xFAD-SPIN90 KO
(red) neurons. (E) Mean surface fraction of APP in axons of 5xFAD-SPIN90 WT and 5xFAD-SPIN90
KO neurons. [Surface fraction: axon]5xFAD-SPIN90WT = 5.85 ± 0.42% (n = 9 cells), [Surface fraction:
axon]5xFAD-SPIN90KO = 2.66 ± 0.38% (n = 13 cells). (F) Representative images of pH-APP in dendrites
of 5xFAD-SPIN90 WT (left) and 5xFAD-SPIN90 KO (right) neurons at rest (top), after acid quenching
(middle), and after NH4Cl treatment (bottom). Scale bar, 5 µm. (G) Representative traces of pH-APP
in response to acid quenching in dendrites of 5xFAD-SPIN90 WT (black) and 5xFAD-SPIN90 KO (red)
neurons. (H) Mean surface fraction of APP in dendrites of 5xFAD-SPIN90 WT and 5xFAD-SPIN90 KO
neurons. [surface fraction: dendrite]5xFAD-SPIN90WT = 11.56 ± 1.63% (n = 15 cells), [surface fraction:
dendrite]5xFAD-SPIN90KO = 23.26 ± 2.23% (n = 19 cells). *** p < 0.001.
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Figure 3. Activity-driven recycling of APP in axons and dendrites is enhanced in 5xFAD-SPIN90 KO
neurons. (A,E) Representative images of pH-APP in axons (A) and dendrites (E) of 5xFAD-SPIN90 WT
(left) and 5xFAD-SPIN90 KO (right) neurons at rest (top), in the presence of an action potential (AP) of
600 (middle), and after NH4Cl treatment (bottom). Scale bar: 5 µm. (B,F) Kymographs of pH-APP in
corresponding areas of axons (B) and dendrites (F) in 5xFAD-SPIN90 WT (top) and 5xFAD-SPIN90 KO
(bottom) neurons in response to 600AP. (C,G) Representative traces of pH-APP in axons (C) and den-
drites (G) of 5xFAD-SPIN90 WT (black) and 5xFAD-SPIN90 KO (red) neurons in response to 600AP.
(D,H) Mean peak amplitudes in axons (D) and dendrites (H) of 5xFAD-SPIN90 WT and 5xFAD-
SPIN90 KO neurons in response to 600AP. [600AP: axon]5xFAD-SPIN90WT = 9.30 ± 1.31% (n = 8 cells),
[600AP: axon]5xFAD-SPIN90KO = 25.87 ± 3.69% (n = 8 cells); [600AP: dendrite]5xFAD-SPIN90WT =
−5.48 ± 0.62% (n = 10 cells), [600AP: dendrite]5xFAD-SPIN90KO = −20.80 ± 2.05% (n = 13 cells). Repre-
sentative traces of pH-APP with linear fit-line during stimulation of (I) axons and (M) dendrites and
after stimulation of (J) axons and (N) dendrites in 5xFAD-SPIN90 WT (black) and 5xFAD-SPIN90 KO
(red) neurons. (K,O) Mean slopes as determined by linear fitting during stimulation of axons (K) and
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dendrites (O) in 5xFAD-SPIN90 WT and 5xFAD-SPIN90 KO neurons. [Degree of slope:
axon]5xFAD-SPIN90WT = 0.33 ± 0.05 (n = 10 cells); [Degree of slope: axon]5xFAD-SPIN90KO = 0.97 ± 0.15
(n = 14 cells); [Degree of slope: dendrite]5xFAD-SPIN90WT = −0.17 ± 0.05 (n = 11 cells); [Degree of
slope: dendrite]5xFAD-SPIN90KO = −0.65 ± 0.11 (n = 13 cells). (L,P) Mean slopes as determined by
linear fitting after stimulation of axons (L) and dendrites (P) in 5xFAD-SPIN90 WT and 5xFAD-
SPIN90 KO neurons. [Degree of slope: axon]5xFAD-SPIN90WT = −0.057 ± 0.01 (n = 10 cells); [Degree of
slope: axon]5xFAD-SPIN90KO = −0.18 ± 0.03 (n = 14 cells); [Degree of slope: dendrite]5xFAD-SPIN90WT

= 0.032 ± 0.009 (n = 11 cells); [Degree of slope: dendrite]5xFAD-SPIN90KO = 0.16 ± 0.03 (n = 13
cells). (Q) Schematic illustration of activity-driven pH-APP recycling in axons (endosome-surface-
endosome). (R) Schematic illustration of activity-driven pH-APP recycling in dendrites (surface-
endosome-surface). ** p < 0.01, *** p < 0.001.

2.4. SPIN90 Is Implicated in the Axonal Transport of APP

APP processing and trafficking can be further classified not only by local recycling
between surfaces and internals but also by the motility of APP via axons and dendrites. To
determine whether SPIN90 is involved in APP motility and trafficking via axons, neurons
cotransfected with GFP-APP and RFP-SPIN90 were monitored by live-cell imaging. This
monitoring showed that some GFP-APP and RFP-SPIN90 molecules colocalize and remain
stationary whereas other GFP-APP and RFP-SPIN90 molecules move together through
axons (Figure 4A). Analysis of APP motility in 5xFAD-SPIN90 WT and 5xFAD-SPIN90
KO neurons showed that APP motility through axons was lower in 5xFAD-SPIN90 KO
than in 5xFAD-SPIN90 WT neurons, with anterograde movement also reduced in 5xFAD-
SPIN90 KO neurons (Figure 4B–F), indicating that SPIN90 is involved in APP motility
through axons.

2.5. SPIN90 Regulates Internal APP Accumulation in Axons

The involvement of SPIN90 in APP motility through axons, coupled with the motility
associated aggregation of GFP-APP signals suggested that the latter may be associated
with increases in stationary and retrograde motility of APP in axons and the accumulation
of APP with presynaptic proteins in the brains of patients with AD [12]. This hypothesis
was tested by monitoring APP aggregation and assessing whether this accumulation is
internal or on the membrane surface. Neurons from both 5xFAD-SPIN90 WT and 5xFAD-
SPIN90 KO mice expressing pH-APP were evaluated after the sequential application of
AQ and NH4Cl solutions. APP was found to accumulate in internal areas, but not on
membrane surfaces (Figure 5A,B). In addition, the percentage of neurons without internal
APP accumulation was more than three-fold higher in 5xFAD-SPIN90 KO (~43%) than in
5xFAD-SPIN90 WT (~9%) mice (Figure 5C). Among neurons positive for APP, the amount
and size of APP accumulation were significantly lower in 5xFAD-SPIN90 KO than in
5xFAD-SPIN90 WT neurons (Figure 5D–G). These findings indicate that, in the absence
of SPIN90, APP axonal trafficking is decreased or becomes more the retrograde, reducing
internal APP accumulation in axons and suggesting that SPIN90 is a regulator of APP
trafficking and accumulation. Notably, we cannot find these accumulations of APP in the
dendrite area (Figure S7) [31].

2.6. SPIN90 Preferentially Interacts with the Inactive form of Rab11 GTPase

SPIN90 has been shown to participate in Rab protein mediated membrane trafficking
by enhancing Rab activity [23,24], and Rab11 was identified as a regulator of Aβ produc-
tion [15]. These findings suggested that modulation of APP trafficking by SPIN90 may be
associated with Rab11. The ability of SPIN90 to physically interact with Rab11 was tested
by in situ and biochemical interaction assays. In the in-situ proximity ligation assays (PLA),
control or SPIN90-specific shRNA was introduced into cells, followed by incubation with
antibodies specific to SPIN90 and Rab11 and monitoring using the Duolink visualization
system. Numerous interacting puncta were observed in control cells, with only about one
third the number of puncta observed in SPIN90 knock-down cells (Figure 6A,B). An in vitro
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binding assay showed that the C-terminus of SPIN90 interacts directly with and binds to
Rab11 (Figure 6C). To determine whether its interaction with SPIN90 is related to the status
of Rab11 activity, the ability of SPIN90 to interact with active and mutated, inactive forms
of Rab11 was evaluated by in vitro binding assays. SPIN90 was found to preferentially
interact with an inactive form of Rab11, Rab11 S25N (Figure 6D–G), increasing station-
ary APP in axons (Figure S8), suggesting that the interaction of SPIN90 with Rab11 may
contribute to APP trafficking.
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Figure 4. SPIN90 modulates axonal motility of APP. (A) Representative images of GFP-APP and
RFP-SPIN90 in rat hippocampal neurons. Selected images from the boxed area in top and kymo-
graphs (bottom) of GFP-APP and RFP-SPIN90. Scale bar: 5 µm. (B) (Top) Representative images
of GFP-APP in 5xFAD-SPIN90 WT (left) and 5xFAD-SPIN90 KO (right) neurons. (Bottom) Kymo-
graphs of GFP-APP in 5xFAD-SPIN90 WT (left) and 5xFAD-SPIN90 KO (right) neurons. Scale bar:
10 µm. (C) Mean stationary APP in 5xFAD-SPIN90 WT and 5xFAD-SPIN90 KO neurons. [station-
ary APP]5xFAD-SPIN90WT = 0.48 ± 0.04 (n = 14 cells); [stationary APP]5xFAD-SPIN90KO = 0.67 ± 0.04
(n = 20 cells). (D) Mean motile APP in 5xFAD-SPIN90 WT and 5xFAD-SPIN90 KO neurons. [motil-
ity APP]5xFAD-SPIN90WT = 0.52 ± 0.04 (n = 14 cells); [motility APP]5xFAD-SPIN90KO = 0.33 ± 0.04
(n = 20 cells). (E) Mean anterograde transport of APP in 5xFAD-SPIN90 WT and 5xFAD-SPIN90 KO
neurons. [anterograde transport of APP]5xFAD-SPIN90WT = 0.73 ± 0.03 (n = 12 cells); [anterograde
transport of APP]5xFAD-SPIN90KO = 0.57 ± 0.05 (n = 11 cells). (F) Mean retrograde transport of APP in
5xFAD-SPIN90 WT and 5xFAD-SPIN90 KO neurons. [retrograde transport of APP]5xFAD-SPIN90WT

= 0.27 ± 0.03 (n = 12 cells); [retrograde transport of APP]5xFAD-SPIN90KO = 0.43 ± 0.05 (n = 11 cells).
** p < 0.01. #; number.
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Figure 5. Depletion of SPIN90 regulates internal accumulation of APP in 5xFAD neurons. (A) Repre-
sentative images of pH-APP accumulation in 5xFAD-SPIN90 WT (left) and 5xFAD-SPIN90 KO (right)
neurons. Cells transfected with pH-APP were fixed at DIV 14~17. Scale bar: 20 µm. (B) Magnified
images of the boxed area in (A) at rest (top), during acid quenching (middle), and during NH4Cl
application (bottom). Scale bar: 5 µm. (C) Pie chart showing the percentages of cells with/without
APP endosomal accumulation. [Cell without APP endosomal accumulation]5xFAD-SPIN90WT = 9.09%
(n = 11 cells); [Cell without APP endosomal accumulation]5xFAD-SPIN90KO = 43.75% (n = 16 cells);
[Cell with APP endosomal accumulation]5xFAD-SPIN90WT = 90.91% (n = 11 cells); [Cell with APP
endosomal accumulation]5xFAD-SPIN90KO = 56.25% (n = 16 cells). (D) Mean pH-APP accumulation in
5xFAD-SPIN90 WT and 5xFAD-SPIN90 KO neurons. [pH-APP accumulation/Cell]5xFAD-SPIN90WT

= 3.18 ± 0.6 (n = 11 cells); [pH-APP accumulation/Cell]5xFAD-SPIN90KO = 0.88 ± 0.26 (n = 16 cells).
(E) Cumulative pH-APP accumulation in 5xFAD-SPIN90 WT (black) and 5xFAD-SPIN90 KO (red)
neurons. (F) Mean sizes of endosomal pH-APP accumulation in 5xFAD-SPIN90 WT and 5xFAD-
SPIN90 KO neurons. [size of pH-APP accumulation]5xFAD-SPIN90WT = 179.34 ± 17.03 pixel (n = 35
puncta); [size of pH-APP accumulation]5xFAD-SPIN90KO = 105 ± 7.63 pixel (n = 14 puncta). (G) Cumu-
lative sizes of endosomal pH-APP accumulation in 5xFAD-SPIN90 WT (black) and 5xFAD-SPIN90
KO (red) neurons. ** p < 0.01, *** p < 0.001.
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Figure 6. SPIN90 interacts with inactive Rab11. (A) Left: Representative images of SPIN90 and
Rab11 interaction by Duolink in HeLa cells bearing shControl (top) and shSPIN90 (bottom). Right:
Magnified image of the box areas. Red puncta indicate in situ interactions between SPIN90 and Rab11.
(B) Mean numbers of puncta in shControl and shSPIN90-HeLa cells. [Puncta #]shControl = 20.25 ± 0.05
(564 cells, n = 4 experiments), [Puncta #]shSPIN90 = 9.92 ± 0.58 (272 cells, n = 4 experiments). scale bar:
20 µm. (C) Representative immunoblot of SPIN90 and Rab11 interactions, as shown by GST-binding
assays. Cells transfected with GFP-SPIN90 full-length (FL), N-term (N), C-term (C), CN+CM (CNM),
and CC domain were lysed and the lysates subsequently incubated with GST-Rab11 protein. GST-Rab11
was pull-downed and interactions were verified by immunoblotting with anti-GFP antibody. (D–F)
Representative immunoblots of the interactions of SPIN90 and Rab11. Interactions of the active/inactive
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forms of Rab11 with full-length SPIN90 (E), or with its C-terminus (F). (G) Quantification of rela-
tive band intensities in (E,F). The intensities, normalized to the band intensities of GST-Rab11 WT
and SPIN90 FL. [GST-Rab11 Q70L]SPIN90 FL = 0.93 ± 0.16; [GST-Rab11 S25N]SPIN90 FL = 2.11 ± 0.22;
[GST-Rab11 WT]SPIN90 C-term = 1.8 ± 0.07; [GST-Rab11 Q70L]SPIN90 C-term = 1.43 ± 035; [GST-Rab11
S25N]SPIN90 C-term = 2.89 ± 0.36 (n = 3). (H–K) Representative images of Rab11, SPIN90, APP, and
VAMP2 in hippocampal neurons. Neurons were cotransfected with GFP-Rab11/VAMP2-mCh (H),
GFP-SPIN90/VAMP2-mCh (I), GFP-SPIN90/mCh-Rab11 (J) and pH-APP/RFP-SPIN90 (K) at DIV 8
and fixed at DIV 14–16. (L–O) Line scans of each image. (P–S) Distribution and correlation of expres-
sion levels of GFP-Rab11/VAMP2-mCh (P: n = 277 synapses), GFP-SPIN90/VAMP2-mCh (Q: n = 470
synapses), GFP-SPIN90/mCh-Rab11 (R: n = 887 synapses) and pH-APP/RFP-SPIN90 (S: n = 330
synapses). (T–W) Quantification of colocalization of corresponding proteins (T: GFP-Rab11/VAMP2-
mCh, U: GFP-SPIN90/VAMP2-mCh, V: GFP-SPIN90/mCh-Rab11, and W: pH-APP/RFP-SPIN90). *
p < 0.05, ** p < 0.01 *** p < 0.001.

Furthermore, the distribution of SPIN90, APP and Rab11 in the synapses of neurons
was also evaluated. The three molecules were coexpressed in various combinations along
with VAMP2, a presynaptic marker, and their colocalization in nerve terminals was ana-
lyzed. SPIN90 and Rab11 were highly colocalized at synapses (more than 80%), as were
SPIN90 and APP (about 50%) (Figure 6H–W), suggesting that SPIN90-Rab11 may cooperate
in regulating APP trafficking in neurons.

2.7. SPIN90 Deficiency Restores Activity-Driven Synaptic Function in AD Model Neurons

Although AD usually results in neurodegeneration or neuronal cell death, Aβ has
been shown to cause synaptic depression and synaptopathy [32–36] prior to neuronal cell
death. Because SPIN90 ablation reduced Aβ accumulation, the ability of SPIN90 deficiency
to restore activity-driven synaptic function, such as synaptic transmission, was investigated.
The combination of a primary hippocampal culture system and a pHluorin-based assay
has been utilized to monitor activity-driven synaptic transmission [37,38]. The fusion of
the pH-sensitive GFP protein pHluorin to the luminal region of the synaptic vesicle protein,
vesicular glutamate transporter1 (vGlut1), yields the protein vGlut-pHluorin (vG-pH), a
very efficient sensor of synaptic function (e.g., synaptic transmission) [28,30]. The protein
vG-pH was introduced into primary hippocampal neurons from WT-SPIN90 WT, WT-
SPIN90 KO, 5xFAD-SPIN90 WT, and 5xFAD-SPIN90 KO mice, and synaptic transmission in
response to stimulation with 10 Hz for 10 s (100 APs) was monitored. Synaptic transmission
was ~50% lower in 5xFAD-SPIN90 WT than in WT-SPIN90 WT neurons (Figure 7A–C),
in good agreement with previous results [34]. However, synaptic transmission in 5xFAD-
SPIN90 KO neurons recovered almost completely, similar to that in controls (Figure 7A–C).
These findings suggested that the reduced level of Aβ plaque accumulation in 5xFAD-
SPIN90 KO neurons has an effect on synaptic functionality.

To closely mimic neurodegeneration in humans, synaptic functionality over time was
evaluated in the four types of hippocampal neurons. As expected, synaptic transmission
in 5xFAD-SPIN90 WT neurons was gradually reduced over time, whereas synaptic trans-
mission in 5xFAD-SPIN90 KO neurons remained unchanged, with a functionality of up
to ~20% (Figure 7D–J), suggesting that APP trafficking and processing via the SPIN90
pathway is related to synaptic functionality.
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Figure 7. SPIN90 deficiency restores synaptic function in 5xFAD neurons. (A) Representative synapse
images of vG-pH at rest (top) and differences from 100 AP-treated (∆F100AP, middle), and NH4Cl-
treated (bottom) neurons from WT-SPIN90 WT, WT-SPIN90 KO, 5xFAD-SPIN90 WT and 5xFAD-
SPIN90 KO mice. Scale bar: 5 µm. (B) Representative traces of vG-pH in response to 100AP in WT-
SPIN90 WT (black), WT-SPIN90 KO (red), 5xFAD-SPIN90 WT (green) and 5xFAD-SPIN90 KO (blue)
neurons. (C) Mean synaptic transmission in WT-SPIN90 WT, WT-SPIN90 KO, 5xFAD-SPIN90 WT and
5xFAD-SPIN90 KO neurons. [synaptic transmission]WT-SPIN90WT = 0.24 ± 0.03 (n = 16 cells); [synap-
tic transmission]WT-SPIN90KO = 0.22 ± 0.026 (n = 11 cells); [synaptic transmission]5xFAD-SPIN90WT

= 0.11 ± 0.01 (n = 46 cells); [synaptic transmission]5xFAD-SPIN90KO = 0.21 ± 0.01 (n = 63 cells).
(D–F) Representative synapse images of vG-pH at rest (top) and differences from 100 AP treated
(∆F100AP, middle), and NH4Cl treated (bottom) neurons from 5xFAD-SPIN90 WT and 5xFAD-SPIN90
KO mice at DIVs (D) 13–15, (E) 16–18, and (F) 19–21. Scale bar: 5 µm. (G–I) Representative traces
of vG-pH in response to 100AP in 5xFAD-SPIN90 WT (black) and 5xFAD-SPIN90 KO (red) neurons
at DIVs (G) 13–15, (H) 16–18, and (I) 19–21. (J) The mean synaptic transmission in 5xFAD-SPIN90
WT (black) and 5xFAD-SPIN90 KO (red) neurons in various time window at DIVs 13–15, 16–18
and 19–21. [synaptic transmission: DIV 13–15]5xFAD-SPIN90WT = 0.12 ± 0.02 (n = 15 cells), [synaptic
transmission: DIV 16–18]5xFAD-SPIN90WT = 0.13 ± 0.02 (n = 12 cells), [synaptic transmission: DIV
19–21]5xFAD-SPIN90WT = 0.08 ± 0.01 (n = 17 cells), [synaptic transmission: DIV 13–15]5xFAD-SPIN90KO =
0.21 ± 0.02 (n = 22 cells), [synaptic transmission: DIV 16–18]5xFAD-SPIN90KO = 0.22 ± 0.02 (n = 19 cells),
[synaptic transmission: DIV 19-21]5xFAD-SPIN90KO = 0.22 ± 0.01 (n = 22 cells). * p < 0.05, ** p < 0.01,
*** p < 0.001.

3. Discussion

The involvement of Aβ in the pathology of AD has suggested that APP processing
is crucial for the development of AD. During the amyloidogenic process, APP is cleaved
by BACE1 and γ-secretase to yield Aβ which accumulates in brain tissue. Thus, the
spatiotemporal regulation of APP and these enzymes is involved in the development of AD.
In addition to controlling the activity of these enzymes, the regulation of APP trafficking is
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a critical process in the amyloidogenesis pathway because the availability of APP controls
both enzyme activity and Aβ production.

The present study found that the depletion of SPIN90 from 5xFAD AD model brains
reduced Aβ deposition and restored synaptic functionality, suggesting that SPIN90 may be
involved in the production of Aβ from APP. Moreover, the surface and internal distribution
of APP differed in axons and dendrites, with SPIN90 deficiency significantly altering
these distributions. For example, the amount of surface APP was lower in axons but
higher in dendrites of resting 5xFAD-SPIN90 KO than resting 5xFAD-SPIN90 WT neurons.
The activity-driven recycling of APP on the surfaces and internal areas of both axons
and dendrites was significantly higher in 5xFAD-SPIN90 KO than in 5xFAD-SPIN90 WT
neurons. The finding, that SPIN90 interacts with inactive Rab11 protein, suggests that the
regulation of APP trafficking might be coordinated by complexes of SPIN90 and Rab11.
SPIN90-Rab11 and SPIN90-APP were found to colocalize at nerve terminals. This study
also found that SPIN90 is cotrafficked with APP and that, in the absence of SPIN90, the
transport of APP and its internal accumulation in axons were reduced. Collectively, these
results indicate that SPIN90, together with Rab11, regulates APP trafficking and may affect
the efficiency of Aβ production.

These findings raise several intriguing points regarding APP trafficking, including
whether the localized distributions of APP in axons and dendrites play different roles in
APP processing. The distribution of APP in axons and dendrites and its local recycling
between cell surfaces and internal areas are distinct. The surface distribution of APP is not
the same on axons and dendrites of 5xFAD mouse neurons, with axons having about 5%
and dendrites having about 10% surface APP. This difference was increased in the absence
of SPIN90, with axons having about 2.5% and dendrites having about 25% surface APP,
suggesting that SPIN90 controls the specific subcellular distribution of APP in neurons.
In addition, activity-driven APP recycling between surfaces and internal areas differed
significantly in axons and dendrites. During activation, intracellular APP in axons moved
to the surface, but was endocytosed after stimulation. In dendrites, surface APP was
endocytosed during neuronal stimulation, but was subsequently recycled to the surface
after stimulation. These phenotypes were strongly enhanced in the absence of SPIN90,
suggesting that SPIN90 modulates activity-dependent local APP recycling. Moreover, the
involvement of Rab11 suggests that the interaction between SPIN90 and the inactive form of
Rab11 may be involved in the distribution and recycling of APP. Because a negative form of
Rab11 downregulates Aβ production [15], SPIN90 may regulate Rab11 guanine nucleotide
exchange factor (GEF) or act as a cofactor of GEF during Rab11-mediated amyloidogenesis.

Another question is related to internal APP accumulation in axons. APP was shown
to accumulate in the brains of patients with AD [31]. The present study found that SPIN90
was partially cotrafficked with APP and that the absence of SPIN90 affected APP motility
through axons. In particular, internal accumulation of APP in axons was significantly
reduced in the absence of SPIN90, suggesting that, in accordance with its modulation of
local recycling, SPIN90 is a regulator of APP motility via axons, which is related to its
accumulation. Internal accumulation of APP in axons suggests that these may be prime
sites of Aβ production. However, it is unclear whether axons or dendrites are more essential
for Aβ production. Studies are needed to identify the intracellular fractions, such as early
endosomes, recycling endosomes, lysosomes, and autophagosomes, that contain internal
APP and the internal organelles associated with to amyloidogenesis.

Synaptic failure or synaptopathy was shown to be an invariant indicator of AD at
an early stage. Synaptic transmission was strongly suppressed in 5xFAD neurons, likely
because of the high levels of Aβ production and deposition. However, SPIN90 deficiency
ameliorated synaptic transmission and restored age-dependent synaptic depression, per-
haps because the reduced level of Aβ production following the depletion of SPIN90 would
lead to recovery of synaptic function. Collectively, these findings showed that modu-
lation of APP trafficking altered APP processing and Aβ production, thereby altering
synaptic function.
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4. Materials and Methods
4.1. Animals

All animal procedures were approved by the Animal Care and Ethics Committees of
the GIST (GIST-2019-096, GIST-2022-001). All experiments with animals were performed
using age-matched littermates. The 5xFAD mice, with five familial AD mutations that
were introduced in APP695 and PS1 cDNAs (APP K607N/M671L + I716V + V717I and
PS1 M146L + L286V), were purchased from Jackson Laboratory (#034840-JAX). SPIN90
KO mice were generated as previously described [39]. Male 5xFAD transgenic mice were
backcrossed onto homozygous female SPIN90 KO mice to yield male and female 5xFAD-
SPIN90 heterozygous (F1) mice, which were mated to generate four types of F2 mice,
WT-SPIN90 WT, WT-SPIN90 KO, 5xFAD-SPIN90 WT, and 5xFAD-SPIN90 KO.

4.2. Antibodies and Reagents

Primary antibodies included anti-Aβ 4G8 (SIG-39220, BioLegend, San Diego, CA,
USA), anti-SPIN90 (generated in our laboratory), anti-Rab11 (ab3612, Abcam, Cambridge,
UK), anti-GFP (sc-9996, Santa Cruz Biotechnology, Dallas, TX, USA), anti-APP (MAB348,
EMD Millipore, Darmstadt, Germany), anti-BACE1 (B0681, Sigma, St. Louis, MO, USA),
anti-Nicastrin (5665, Cell Signaling Technology, Danvers, MA, USA), anti-β-actin (sc-47778,
Santa Cruz Biotechnology, Dallas, TX, USA), anti-p35/p25 (2680, Cell Signaling Technology,
MA, USA) and anti-tubulin (T6199, Sigma, St. Louis, MO, USA). Secondary antibodies
included horseradish peroxidase (HRP)-conjugated donkey anti-mouse (115-035-006) and
anti-rabbit antibodies (111-035-006, Jackson Laboratory, Bar Harbor, ME, USA). Unless
otherwise noted, all chemicals were purchased from Sigma.

4.3. Plasmids and Transfection

Human APP695 cDNA was generated from a mouse cDNA library of 5xFAD primary
neurons that express human APP695 mutant (K607N/M671L + I716V + V717I) and cloned
by PCR into pHluorin vector with signal sequences. SPIN90 variants were sub-cloned
into pEGFP-C1 and RFP vectors [24]. To generate Rab11 plasmids, human Rab11 cDNA
was cloned from a human cDNA library, Q70L and S25N mutants were generated using
a QuikChange site-directed mutagenesis kit (200518, Agilent, San Diego, CA, USA), and
these Rab11 variants were sub-cloned into the mCherry vector pGEX4T-1. Plasmids were
transfected into HEK 293T and HeLa cells using Lipofectamine 3000 supplemented with
P3000 reagents and into primary cultured neurons using the Ca2+ phosphate precipitation
method. In the latter method, plasmids were incubated with 2x HEBS (273 mM NaCl, 9.5
mM KCl, 1.4 mM Na2HPO4·7H2O, 15 mM D-glucose, 42 mM HEPES pH 7.10) containing 2
mM Ca2+, after which the mixture was applied to 7–8 DIV neurons as described [30].

4.4. Immunohistochemistry and Immunocytochemistry

Brain tissues from male mice were fixed in 10% neutral buffered formalin, embedded
in paraffin, and sectioned into 6 µm slices. These samples were deparaffinized in Histoclear
(National Diagnostics, Atlanta, GA USA, HS-200), hydrated with ethanol, immunostained
with anti-amyloid β (4G8) antibodies and visualized using the Dako REAL EnVision
detection system (K5007, Dako, Glostrup, Denmark). Images were acquired using Aperio
Image Scanning Scope (Leica Biosystems, Wetzlar, Germany). To identify Aβ aggregates,
deparaffinized and hydrated slides were incubated with 1% Thioflavin S (Sigma) for 10
min at RT, washed once each for 3 min with 80% and 95% ethanol, and mounted onto a
coverslip with FluoroshieldTM (Sigma) solution. Fluorescence signals were scanned using
VS200 Research Slide Scanner (Olympus, Tokyo, Japan).

For presynaptic terminal imaging, mouse hippocampal neurons were transfected
with corresponding pairs of constructs (VAMP2-mCh, GFP-SPIN90, mCh-Rab11 and pH-
APP695) 8 days after plating. The neurons were fixed with 4% paraformaldehyde (PFA)
14–16 days after plating. Images were acquired using PL APO 63x (1.32NA) or PL Fluor 40x
(1.0 N.A.) objectives of a Leica DMRBE microscope along with a CoolSNAP HQ camera
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(Photometrics, Tocson, AZ, USA) driven by MetaMorph software(ver. 6.1), as previously
described [30].

4.5. Cell Culture and Primary Neuron Culture

SPIN90 knock-downed (KD) HeLa cells were generated using the Mission RNAi sys-
tem (SHCLNV, Sigma), as described [23]. HeLa control/KD and HEK 293T cells were grown
in Dulbecco’s modified Eagle’s Media (DMEM; Gibco, Carlsbad, CA, USA) supplemented
with 10% (v/v) fetal bovine serum (Hyclone, Logan, UT, USA), 100 units/100 mg/mL
penicillin-streptomycin (Gibco, Waltham, MA, USA), and 2 µg/mL puromycin to select for
SPIN90 KD cells. To culture primary neurons, cortical or hippocampal regions were dis-
sected from postnatal day 1–3 Sprague Dawley rats (DBL, Eumseong-gun, Chungcheongbuk-
do, Republic of Korea) or C57/J mice, dissociated, and plated onto poly-ornithine-coated
coverslips. The cells were transfected 8 days later and further incubated in culture media
as previously described [30].

4.6. Protein-Protein Interaction Assays and Western Blotting

Duolink proximity ligation assays (PLA) were performed using Duolink kits (DUO92007,
Sigma), according to the manufacturer’s instructions. Cells were fixed with 4% PFA, per-
meabilized with 0.5% Triton X-100, and incubated with mouse anti-SPIN90 and rabbit
anti-Rab11 primary antibodies. The cells were subsequently incubated with secondary PLA
probes, which contain a synthetic oligonucleotide that hybridized with and ligated two
adjacent molecules separated by less than ~40 nm. Ligation resulted in the amplification of
fluorescence signals, which were detected with a FV1000 confocal microscope (Olympus).
For glutathione s-transferase (GST) pull-down assays, GST tagged recombinant proteins
were purified from BL21 bacteria and immobilized on glutathione-Sepharose beads (In-
cospharm, Daejeon, Korea) in buffer A (20 mM Tris-HCl pH 8.0, 1 mM EGTA, 150 mM
NaCl, 0.5% sodium deoxycholate, 1 mM phenylmethylsulfonyl fluoride (PMSF). Cells
expressing GFP-SPIN90 were lysed in pull-down assay buffer B (25 mM HEPES, 100 mM
NaCl, 5 mM MgCl2, 1% Nonidet P40 (NP-40), 10% glycerol, 1 mM PMSF, protease inhibitor
cocktail), and the lysates were incubated with purified GST conjugating proteins. After
incubation for 2 h at 4 ◦C, beads bound with proteins were washed four times with buffer
B. The concentrations of cell lysates were measured using PierceTM bicinchoninic acid
(BCA) protein assay kits (23225, Thermo Fisher Scientific, Waltham, MA, USA). The lysates
were resolved on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
gels, and the proteins transferred to polyvinylidene difluoride (PVDF) membranes. The
membranes were blocked by incubation with buffer containing 5% bovine serum albumin
or skim milk and incubated with primary antibodies at 4 ◦C overnight. After washing, the
membranes were incubated with the appropriate HRP-conjugated secondary antibodies.
Antibody binding was detected by WesternBrightTM enhanced chemiluminescence (ECL)
(Advansta, San Jose, CA, USA) using a LAS-2000 (Fujifilm, Tokyo, Japan).

4.7. BACE1 Activity Assay

BACE1 activity was measured using β-secretase activity fluorometric assay kits
(MAK237, Sigma) according to the manufacturer’s instructions. Briefly, tissues were ho-
mogenized and sonicated with β-secretase extraction buffer. Tissue lysates were incubated
with fluorogenic β-secretase substrate, containing a β-cleavage site. Fluorescence was
measured at Ex/Em = 33–355 nm/495–510 nm using Flexstation 3 (Molecular Devices, San
Jose, CA, USA).

4.8. Live-Cell Imaging for Synapse Physiology

Presynaptic terminal live imaging of synaptic transmission and APP695 recycling were
evaluated by transfecting constructs (vG-pH and pH-APP695) 6–8 days after plating, with
experiments performed 10–21 days after plating. Coverslips were mounted in a stimulation
chamber with laminal-flow perfusion on the stage of a custom-built laser-illuminated
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epifluorescence microscope. Live images were acquired with an Andor iXon Ultra 897
(Model #DU-897U-CS0-#BV; Belfast, Northern Ireland) back-illuminated EM CCD camera.
The light source was a diode-pumped OBIS 488 laser (Coherent, Santa Clara, CA, USA), with
shutters activated by synchronizing the TTL on/off signal from the EMCCD camera during
acquisition. The fluorescence excitation wavelength was 498 nm, using dichroic filters
(Chroma, Irvine, CA, USA) for pHluorin, and the emission wavelengths were 500–550 nm.
Images were acquired using a 40× (1.3 NA) Fluar Zeiss objective lens. Action potentials (AP)
were evoked by passing a current pulse of 1 ms through platinum-iridium electrodes from
an isolated current stimulator (World Precision Instruments, Hitchin, Hertfordshire, UK).
Neurons were perfused with Tyrode’s buffer, containing 119 mM NaCl, 2.5 mM KCl, 2 mM
CaCl2, 2 mM MgCl2, 25 mM HEPES, 30 mM glucose, 10 µM 6-cyano-7-nitroquinoxaline-
2,3-dione (CNQX), and 50 µM D,L-2-amino-5-phosphonovaleric acid (AP5), adjusted to
pH 7.4. All experiments were performed at 30 ◦C. Images for vG-pH-transfected neurons
were stimulated for 10 s at 10 Hz. NH4Cl was applied to measure the size of the total
synaptic vesicle pool. Images were acquired at 2 Hz with 50 ms exposure, as described
previously [40]. To image APP695 distribution, MES-buffered Tyrode’s solution (pH 5.5)
was initially applied to pH-APP695 transfected neurons; the neurons were washed with
normal Tyrode’s buffer, followed by the application of NH4Cl (pH 7.4) buffer, as described
previously [30]. To evaluate APP695 recycling, neurons transfected with pH-APP695 were
stimulated with 20 Hz for 30 s.

4.9. Image Analysis

All images were analyzed using Image J software (Image J. Available online: http:
//rsb.info.nih.gov/ij, accessed on 30 July 2022). To analyze IHC data, the relative areas
of Aβ deposition were quantified. Because signals representing areas of Aβ deposition
partially overlapped or were connected in samples from older mice, ambiguity was encoun-
tered in determining the number of Aβ deposits. Binding of antibodies to brain sections
was measured by calculating the percent total areas of the hippocampus and subiculum
positive for Aβ signals on each of three slides and determining their averages. Because the
fluorescence signals of thioflavin S were unambiguous, the numbers of Aβ aggregates were
counted by determining the numbers of thioflavin S positive puncta with areas greater
than six pixels (72 µm2). SPIN90-Rab11 interaction signals in the Duolink assay were
quantified by counting the number of PLA positive puncta in each cell. pHluorin signals
were analyzed using the ImageJ plugin time-series analyzer with minor modifications. For
synaptic transmission and APP695 recycling, vG-pH-positive boutons (over 50 boutons
per neuron) and pH-APP695, respectively, were selected as regions of interest (>1.5-µm
diameter). Fluorescence traces were analyzed using Origin Pro 2020. The pHluorin signal
amplitudes (∆F values of each 100 AP response or surface distribution of pH-APP695)
were normalized relative to the maximum value of NH4Cl, as previously described [30].
Accumulations of pH-APP695 were defined as puncta >120 pixels in size, as determined
using ImageJ software.

4.10. Statistics

OriginPro (ver. 2020) was utilized for statistical analysis. All data are presented as
mean ± standard error of the mean (SEM). Data in two groups were compared by Student’s
t-tests, whereas data in three or more groups were compared by one-way ANOVA. A
p-value < 0.05 was defined as statistically significant.

5. Conclusions

APP trafficking is an important process in the generation of Aβ. The present study
showed that SPIN90 regulates APP processing by modulating APP trafficking. Along with
Rab11, SPIN90 regulates the distribution of APP in axons and dendrites, and of activity-
dependent local recycling. Depletion of SPIN90 reduced surface APP on axons while
increasing surface APP on dendrites, while strongly enhancing activity-driven recycling of
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APP. This study also found that APP axonal trafficking and intracellular accumulation were
related to SPIN90. APP moves along with SPIN90 via axons, with less APP accumulating
in endosomes in the absence of SPIN90. Over time, SPIN90 deficiency can influence Aβ

production and deposition and restore synaptic functionality.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms231810563/s1.
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EGF Epidermal growth factor
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AQ acid quenching
ROI region of interest
AP action potential
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