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Abstract: Chlorogenic acid (CGA), a bioactive compound commonly found in plants, has been
demonstrated possessing nutraceutical potential in recent years. However, the more critical issue
concerning how to improve production efficacy of CGA is still limited. It is a challenge to harvest
a large amount of CGA without prolonging extraction time. In this study, the feasibility of using
ultrasound for CGA extraction from Lonicera japonica was investigated. A central composite design
(CCD) was employed to evaluate the effects of the operation parameters, including temperature,
ethanol concentration, liquid to solid ratio, and ultrasound power on CGA yields. Meanwhile,
the process of ultrasound-assisted extraction was optimized through modeling response surface
methodology (RSM) and artificial neural network (ANN). The data indicated that CGA was efficiently
extracted from the flower of Lonicera japonica by ultrasound assistance. The optimal conditions for the
maximum extraction of CGA were as follows: The temperature at 33.56 ◦C, ethanol concentration at
65.88%, L/S ratio at 46:1 mL/g and ultrasound power at 150 W. ANN possessed greater optimization
capacity than RSM for fitting experimental data and predicting the extraction process to obtain
a maximum CGA yield. In conclusion, the process of ultrasound-assisted extraction can be well
established by a methodological approach using either RSM or ANN, but it is worth mentioning that
the ANN model used here showed the superiority over RSM for predicting and optimizing.

Keywords: Lonicera japonica; chlorogenic acid; extraction; optimization; response surface methodology;
artificial neural networks

1. Introduction

Phenolic acids have received a great deal of attention over the years due to its beneficial biological
activities. CGA is a common phenolic acid abundantly found in the coffee-related natural products,
vegetables, and fruits [1]. Structurally, CGA is a family of esters formed between caffeic acid and quinic
acids. Neochlorogenic acid (5-O-caffeoylquinic acid) is a very common isomer in CGA. It has been
widely demonstrated that CGA shows diverse bioactivities and health-promoting functionality such
as hepatoprotective, cardioprotective, anti-inflammation, antioxidant, anti-cancer, and anti-bacteria [2].
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However, literature has indicated that the high-temperature water extraction process can lead to CGA
isomerization, transformation and degradation [3], consequently reducing the antioxidant activity [4,5]
and other biological activity [3] of CGA.

The conventional extraction method of CGA, e.g., the Soxhlet extraction method or flask-shaking
method is time-consuming, generally exhibits low production efficiency [5] and low reproducibility [3].
Moreover, the extraction process requires large amounts of solvent and continuous heating at a high
temperature. In order to improve the yield and the quality of final products, the use of ultrasound for
bioactive compound extraction is a feasible approach to achieve a reduction in extraction time and
solvent consumption [3,6].

Ultrasound causes cavitation by alternating low-pressure and high-pressure waves in liquids [7].
As the cavitation bubbles collapse, the energy released, leading to an intense shock wave and largely
turbulent flow in the liquids. These turbulent flow further produce strong shear forces and damage to
plant materials [7]. These mechanical effects of ultrasound have four significant benefits for extraction
of plant substance, (a) assisting the release of contents after breaking the cell walls, (b) promoting more
penetration of solvent into the interior of the cell and enhancing the mass transfer [8], (c) reducing
extraction time at lower processing temperatures [9] and (d) reducing the degradation of products
extracted from plants [3]. For ultrasound-mediated plant extraction, the operating parameters such
as irradiation time and sonication power were believed to have dependent effects on extraction
yield [10,11]. Li et al. [10] reported an ultrasound-assisted extraction of CGA from fresh leaves of
Eucommia ulmodies Oliv. They found that the sonication method exhibited highly efficient in the
extraction of CGA from E. ulmodies compared with traditional methods. The optimum extraction
conditions were found to be aqueous methanol of 70%, solvent/sample ratio of 20:1 (v/w) and extraction
time of 30 min with three cycles. Moreover, Goltz et al. [12] investigated the extraction process of
the phenolic compounds from macela by ultrasonic assistance. They found that ultrasound-assisted
extraction not only increased the yield but also improved the antioxidant activity of the extracts.
Mazvimba et al. [13] studied the application of heat reflux and ultrasonic-assisted extraction techniques
for the extraction of CGA from dry tobacco leaves. Although the heat reflux extraction method with
methanol showed high extraction efficiency, the existence of methanol could cause the adulteration of
extracts. Ultrasound-assisted aqueous extraction process enhances CGA solubility in water, reduces
25% of solvent consumption, shortens the extraction time from 3.5 h per cycle to only 15 min per cycle
and improves extraction efficiency from dried tobacco leaves.

Response surface methodology (RSM) has been widely applied to optimize the process of bioactive
component extraction, which evaluates the relative importance of each independent variable and
determines the optimal operating conditions for the predicted responses. It has been successfully
applied to optimize parameters in various chemical processes [14–17]. However, any form of a
non-linear relationship between the variables may result in a decrease in the prediction accuracy of the
RSM [17]. Recently, an artificial neural network (ANN) has been developed as an alternative to the
RSM system for complex non-linear multivariate modeling. ANN performs the project by learning
from training examples and does not need any prior knowledge of the correlation between targeted
responses [17,18]. As compared to the RSM, ANN could be a powerful tool to propose higher accuracy
and efficiency on the fitting of experimental responses, prediction, and modeling of biochemical
processes [16–18]. Presently, the information about the production of CGA from Lonicera japonica in the
ANN system is still limited [13,19].

In this study, the efficiency of CGA extraction was determined by ultrasonic-assisted extraction.
On the other hand, RSM and ANN methods were conducted for modeling and optimizing the process
of ultrasonic-assisted extraction. The process was performed using a 5-level-4-factor central composite
rotatable design (CCRD) to develop RSM and ANN models. Results were statistically compared by
the coefficient of correlation determination (R2), root mean square error (RMSE), and absolute average
deviation (AAD).
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2. Results and Discussion

2.1. Single-Factor Experiments

As shown in Figure 1a, the extraction yield increased as the extraction time increased under the
experimental conditions of indicated L/S ratio (10 mL/g), a reaction temperature of 50 ◦C, ultrasonic
power of 150 W, and ethanol concentration of 75%. When the extraction time was in the range from 0
to 10 min, the yield of CGA tended to rise rapidly and reached a maximum value (35 mg/g). When the
extraction time continued to increase, the yield of CGA nearly remained constant. Considering the
extraction yield and production cost of the process, the extraction time of 10 min was selected for CGA
extraction from Lonicera japonica in a further experiment.Molecules 2019, 24, x FOR PEER REVIEW 4 of 16 
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Figure 1. Effect of (a) time, (b) temperature, (c) ethanol concentration, (d) liquid/solid ratio, and
(e) ultrasonic power on the yield of CGA. Different letters a, b, and c indicate significant differences
(p < 0.05).
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The effect of extraction temperature on the yield of CGA under the experimental conditions of L/S
ratio (10 mL/g), an extraction time of 10 min, ultrasonic power of 150 W, and ethanol concentration of
75%, was shown in Figure 1b. The result indicated that the extraction yield of CGA did not significantly
vary at different extraction temperatures from 30 ◦C to 70 ◦C. Mazvimba et al. [13] reported that
the maximum extraction yield of CGA from tobacco leaves was achieved under 70 ◦C of extraction
temperature, 3.5 h of extraction cycle time, and 80% of methanol. Hu et al. [19] indicated that some
chemical structures of phenolic acids might change at a higher temperature, leading to a loss of
biological activity. Therefore, performing an extraction at lower temperatures can improve functional
properties and reduce energy consumption.

The effects of ethanol concentration on the yield of CGA under the experimental conditions of L/S
ratio (10 mL/g), an extraction time of 10 min, ultrasonic power of 150 W, and a reaction temperature
of 50 ◦C, was shown in Figure 1c. The extraction yields firstly increased, and then decreased.
The maximum yield was observed in 34.96 mg/g with the treatment of 75% ethanol concentration.
Hu et al. [19] indicated that the use of ethanol at high concentrations might change the solvent polarity,
and then the solubility of CGA was affected. Li et al. [10] suggested that 70% of methanol and 90 min
of extraction time could recover the most CGA from leaves of Eucommia ulmodies Oliv.

As shown in Figure 1d, the yield of CGA was increased as the L/S ratio increased. This result
can be explained by mass transfer. When a higher solvent to solid ratio was used, the diffusion rate
increased, leading to an increase in the extraction yield. However, not only solvent to solid ratio but
also temperature and composition of the solution affected the extraction yield of the total phenolic
compound [20]. Water/ethanol mixtures as extractants can reduce the generation of free radical
from the decomposition of water because ethanol is more stable in terms of homolytic cleavage [3].
Cacace and Mazza [20] studied the optimization efficiency on the extraction of anthocyanins and
other phenolic compounds from black currants by using aqueous ethanol. The results showed that
the solvent to solid ratio has a critical role in the extraction efficiency of phenolic content. Phenolic
content increased as ethanol concentration increased (up to 60%), and then phenolic content decreased
as ethanol concentration further increased. As shown in Figure 1e, the yield of CGA was increased
as ultrasonic power increased. The maximum yield was observed at 150 W of ultrasonic power.
Higher power ultrasound exhibited more significant effect on cell damage and therefore improved the
extraction efficiency [11].

2.2. RSM Model

Temperature, ethanol concentration, L/S ratio, and ultrasonic power are the crucial parameters
affecting the extraction efficiency of CGA. In this study, the ranges of optimal temperature, ethanol
concentration, L/S ratio, and ultrasonic power were 30–70 ◦C, 55–95%, 10–50 mL/g, and 90–150 W,
respectively (Tables 1 and 2). The yields of CGA were obtained between 13.18 mg/g and 41.64 mg/g.
The second-order response model obtained was as follows:

Y(mg⁄g) = −344.708589+2.212185X1+5.044251X2+3.887346X3+1.337813X4+0.008599X1X2

−0.017324X1X3−0.011583X1X4−0.012547X2X3−0.000117X2X4−0.006649X3X4 (1)

−0.007313X1
2
−0.03598X2

2
−0.015413X3

2
−0.002116X4

2
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Table 1. Coding of experimental parameters and related levels.

Independent Variable Unit Symbols Coded Values

−2 −1 0 +1 +2

Temperature ◦C X1 30 40 50 60 70
Ethanol concentration % X2 55 65 75 85 95

L/S ratio mL/g X3 10 20 30 40 50
Ultrasonic power W X4 90 105 120 135 150

Table 2. Central composite rotatable design (CCRD) and experimental data for 5-level-4-factor response
surface analysis.

Run Independent Variable a Chlorogenic Acid Extraction Yield (mg/g)

X1 X2 X3 X4
Experimental

Data b RSM-Predicted RSM
Deviation ANN-Predicted ANN

Deviation

1 40 65 20 105 20.75 ± 3.60 25.45 4.70 20.77 0.02
2 60 65 20 105 39.41 ± 1.31 34.99 4.42 39.37 0.04
3 40 85 20 105 18.70 ± 1.92 20.01 1.30 18.70 0.01
4 60 85 20 105 35.23 ± 1.74 32.99 2.24 35.24 0.00
5 40 65 40 105 38.02 ± 3.10 40.56 2.55 38.01 0.00
6 60 65 40 105 39.84 ± 2.06 43.18 3.33 41.49 1.65
7 40 85 40 105 34.12 ± 2.26 30.11 4.01 34.12 0.00
8 60 85 40 105 37.67 ± 2.00 36.16 1.51 37.66 0.01
9 40 65 20 135 30.65 ± 1.29 32.23 1.58 30.64 0.00

10 60 65 20 135 30.44 ± 4.18 34.82 4.39 30.84 0.40
11 40 85 20 135 29.68 ± 3.48 26.72 2.96 29.66 0.01
12 60 85 20 135 35.23 ± 2.62 32.75 2.48 35.24 0.01
13 40 65 40 135 40.74 ± 1.79 43.36 2.62 43.92 3.19
14 60 65 40 135 40.25 ± 2.78 39.02 1.23 40.62 0.37
15 40 85 40 135 28.33 ± 3.10 32.83 4.50 28.32 0.01
16 60 85 40 135 36.25 ± 0.74 31.94 4.32 35.93 0.32
17 30 75 30 120 37.59 ± 1.16 32.67 4.92 37.94 0.36
18 70 75 30 120 36.85 ± 1.17 41.31 4.47 36.84 0.01
19 50 55 30 120 38.32 ± 0.77 31.79 6.53 38.32 0.00
20 50 95 30 120 13.18 ± 2.34 19.26 6.08 13.18 0.00
21 50 75 10 120 26.31 ± 0.95 26.60 0.29 26.33 0.01
22 50 75 50 120 41.64 ± 2.47 40.90 0.74 41.65 0.01
23 50 75 30 90 36.35 ± 1.39 36.73 0.38 36.36 0.00
24 50 75 30 150 40.12 ± 1.57 39.29 0.83 38.58 1.54
25 50 75 30 120 39.78 ± 2.38 39.92 0.14 39.89 0.12
26 50 75 30 120 39.99 ± 2.33 39.92 0.07 39.89 0.10
27 50 75 30 120 39.98 ± 0.35 39.92 0.07 39.89 0.09

a Independent variable X1: Temperature (◦C), X2: Ethanol concentration (%), X3: Liquid/solid ratio (mL/g), X4:
Ultrasonic power (W). b Mean of duplicate determinations.

As shown in Table 3, the linear term of ethanol concentration (X2) and L/S ratio (X3) and the
square term of ethanol concentration (X2

2) had significant (p < 0.05) influences on the yield of CGA.
The variance analysis of the model showed that the p value for the model was 0.0238, indicating that
the model was significant and could monitor the optimization [21]. However, the R2 value was 0.7913,
indicating that the model only explained 79.13% of the variation in the data. Moreover, the lack-of-fit
(p < 0.05) was significant, suggesting that the regression model was inadequate to describe the observed
data variations. Therefore, ANN was used to improve and obtain a more precise prediction.
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Table 3. ANOVA for the experimental results of central-composite rotatable design (CCRD).

Source Sum of Squares DF Mean Square F Value p-Value
Prob > F

Model 1113.03 14 79.5 3.25 0.0238 *
X1 112.13 1 112.13 4.58 0.0535
X2 235.33 1 235.33 9.62 0.0092 *
X3 306.68 1 306.68 12.54 0.0041 *
X4 9.82 1 9.82 0.4 0.5382

X1X2 11.83 1 11.83 0.48 0.5
X1X3 48.02 1 48.02 1.96 0.1865
X1X4 48.3 1 48.3 1.97 0.1853
X2X3 25.19 1 25.19 1.03 0.3302
X2X4 4.889 × 10−3 1 4.889 × 10−3 1.998 × 10−4 0.989
X3X4 15.91 1 15.91 0.65 0.4356
X1

2 11.41 1 11.41 0.47 0.5076
X2

2 276.17 1 276.17 11.29 0.0057 *
X3

2 50.68 1 50.68 2.07 0.1756
X4

2 4.84 1 4.84 0.2 0.6645
Residual 293.55 12 24.46
Lack of Fit 293.52 10 29.35 1983.46 0.0005 *
Pure Error 0.03 2 0.015
Cor Total 1406.58 26

Std. Dev. 4.95 R-Squared 0.7913
Mean 34.27 Adj R-Squared 0.5478
CV% 14.43
PRESS 1690.75

Independent variable X1: Temperature (◦C), X2: Ethanol concentration (%), X3: Liquid/solid ratio (mL/g), X4:
Ultrasonic power (W). * Significant at p-value less than 0.05.

2.3. ANN Model

ANN was an effective tool for modeling unknown or semi-unknown processes. It has been
applied in modeling to control the nonlinear multivariate process [22]. ANN can improve prediction
accuracy to optimize the process condition of extraction from Lonicera japonica. In this study, 70% of
the CCRD data (Table 2) were used to train the neural network model, 15% of the CCRD data were
used to test, and 15% of the CCRD data were used to verify. The experimental data was divided into
three parts in order to measure the performance of the neural network and predict the unobserved
data [23]. Various learning algorithms were tested for training neural network models, and the best
ANN model with a 4-10-1 topology was finally established (Figure 2). Figure 3 indicated that the
neural network between the experimental and predicted data for training, testing, and validation fitted
well. To conclude, the new construction ANN model can predict the yield of CGA.

Table 2 indicates that the extraction yield predicted by ANN were superior to those predicted
by RSM. The ANN-predicted values were very close to the actual yields. However, there was some
difference between the predicted values of RSM and the actual yields (Table 2). As shown in Figure 4,
the effect of each pair of independent variables on the yields of CGA was shown using contour plots.
Figure 4a indicates that the maximum yield was found when the ethanol concentration was 65–75%
and that the L/S ratio was 30–50 mL/g. The changes in extraction yield are related to the polarity of the
solvent [19]. Figure 4b illustrates the effects of ethanol concentration and ultrasound power on the
extraction yield, indicating that the highest yield was obtained by treatment with ethanol concentration
between 65% and 75%, but ultrasound power had no effect on extraction yield. Figure 4c illustrates
the effects of L/S ratio and temperature on extraction yield, indicating that the maximum yield was
obtained at L/S ratio of 30–50 mL/g, while the temperature increasing from 40–60 ◦C did not increase
the yield. As the liquid to solid ratio increased, the effect of temperature on yield decreased. Figure 4d
illustrates that the maximum yield was observed at an ethanol concentration range of 65–75% and a
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temperature range of 50–70 ◦C, while there was no increase in yield over this temperature range. The
contour plot showed that an extraction temperature above 70 ◦C might have similar extraction yield
to a temperature range of 50–70 ◦C, however, the higher extraction temperature may cause CGA to
be affected by temperature. Wianowska and Gil [3] indicated that CGA was prone to intramolecular
isomerization, transesterification, and degradation at high temperatures. On the other hand, the
results of the single factor experiment (Figure 1b) showed that the yield of CGA gradually decreased
above 40 ◦C. Therefore, the experimental design did not perform a higher extraction temperature
to investigate the extraction yield. Figure 4e–f illustrates that the highest yield was observed at an
L/S ratio between 30 mL/g and 50 mL/g, while the temperature increasing from 50 to 70 ◦C did not
increase the yield. It can be found that except for the ultrasonic power, the extraction temperature, the
liquid-solid ratio, and the ethanol concentration are important parameters affecting the yield. At a fixed
temperature (50 ◦C), it can observe that the ultrasonic effect on CGA extraction is significant (Figure 1e).
At lower temperature (30–50 ◦C), the extraction yields increased with increasing ultrasonic power.
The increase of ultrasonic power led to more rapid speed to generate cavitation. Thus, the extraction
process was enhanced [24]. However, the increased temperature may accelerate the formation of
free radicals during the ultrasonic process [25]. Thus, the total phenolic content decreased [25]. This
phenomenon may explain why ultrasonic power has a less significant effect on yield in RSM modeling
(Figure 4f). A contour plot of the experimental model described the relationship between the two
factors and the response; an elliptical contour plot indicated the interactions between the factors were
significant. The red area of the contour plot showed the range of high extraction yields, and extraction
temperatures were interpreted in the ranges of 30–70 ◦C (Figure 4c,d,f). However, the maximum
response operating condition based on the interaction between the four factors. Therefore, the most
appropriate extraction temperature was not in the range of 50–70 ◦C.
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2.4. Verification, Comparison and Optimization

In order to verify the predictive capability of both the ANN and RSM models, a new set of
experimental condition combinations was performed and did not part of the training data set (Table 4).
Table 5 shows the statistical comparison of the RSM and ANN models. R2 values for constructed RSM
and ANN were exhibited as 0.7913 and 0.9898 (Figure 5). It indicated that the ANN model has better
performance for prediction than RSM. The RMSE for RSM and ANN was found as 1.9050 and 0.7006.
The AAD for RSM and ANN was found as 1.6541 and 0.4204. Compared with the ANN model, RSM
had a higher prediction error. From the results, the prediction of the ANN model has higher prediction
accuracy in approximating the actual experimental values.
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Table 4. Validation experiments for the ultrasound-assisted extraction of CGA.

Run
Independent Variable a Chlorogenic Acid Extraction Yield (mg/g)

X1 X2 X3 X4
Experimental

Data b RSM-Predicted RSM
Deviation ANN-Predicted ANN

Deviation

1 60 65 30 120 39.65 ± 0.97 40.02 0.37 39.98 0.33
2 50 75 20 135 34.45 ± 2.17 35.96 1.51 33.29 1.16
3 60 75 30 135 37.70 ± 3.13 39.77 2.07 36.69 1.01
4 50 65 20 120 33.70 ± 2.55 33.08 0.62 33.82 0.12

a Independent variable X1: Temperature (◦C), X2: Ethanol concentration (%), X3: Liquid/solid ratio (mL/g), X4:
Ultrasonic power (W). b Mean of duplicate determinations.

Table 5. Comparison of optimization and prediction capabilities of ANN and response surface
methodology (RSM) for CGA extraction.

Parameters a RSM ANN

R2 0.7913 0.9898
RMSE 1.9050 0.7006
AAD 1.6541 0.4204

a AAD: Absolute average deviation (%); RMSE: Root mean square error; R2: Coefficient of correlation determination.Molecules 2019, 24, x FOR PEER REVIEW 12 of 16 
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The following optimal conditions for ultrasound-assisted extraction for CGA from Lonicera japonica
were determined using a ridge max analysis of an experimental model: Temperature (X1), 33.56 ◦C;
ethanol concentration (X2), 65.88%; L/S ratio (X3), 46 mL/g; and ultrasonic power (X4), 150 W; the
maximum yield was predicted to be 45.63 mg/g and 44.78 mg/g from the RSM and ANN model,
respectively. Under these conditions, the actual experimental yield was 43.13 mg/g. The results
confirmed that the constructed model adequately predicted the extraction yield of CGA. However,
it has been proven again that the prediction ability of ANN was superior to RSM, and an optimum
condition of extraction can be obtained more accurately. Compared to literature, Xu et al. [24] indicated
that 37.07 mg/g of CGA was obtained by ultrasound-assisted extraction using a response surface
methodology. Lin et al. [15] developed the enzyme-assisted ultrasonic extraction of resveratrol from
P. cuspidatum, suggesting that the ANN model demonstrated more accurately in data fitting as compared
to the RSM model. The results are consistent with this study. The present study demonstrated that
under multi-variable-multi-level operating conditions, ANN modeling could replace RSM modeling
as an operational tool for optimizing processes.

3. Materials and Methods

3.1. Materials

Lonicera japonica powder was purchased from He-Kang Chinese Medicine Co. (New Taipei City,
Taiwan). CGA was purchased from Acros Organics (Pittsburgh, PA, USA). Ethanol was purchased
from Taiwan Tobacco & Liquor Corporation (Taipei, Taiwan). Methanol was purchased from Aencore
Chemical Co. (New South Wales, Australia). Acetic acid was purchased from Sigma-Aldrich Co.
(St. Louis, MO, USA). All other chemicals and reagents were analytic grade.

3.2. Conventional Shaking Extraction of CGA from Lonicera japonica

The extracts were prepared according to the method of Chen et al. [14] and Hsu et al. [26].
Lonicera japonica flowers powder (0.1 g) was mixed with 1 mL of 75% EtOH in a cap-sealed glass tube.
The mixture was extracted at 50 ◦C for various times in an orbital shaking bath (100 rpm). After
extraction, the supernatant of the sample was collected by centrifugation (C2400-P, Labnet International,
Inc., Cary, NC, USA) at 13,000 rpm for 10 min. The supernatants were filtered through a 0.45 µm PVDF
syringe filter and stored in a dark room at 4 ◦C until analysis.

3.3. Ultrasonic-Assisted Extraction of CGA from Lonicera japonica

Lonicera japonica flowers powder (0.1 g) was mixed with 1 mL of 75% EtOH in a cap-sealed glass
tube. The mixture was extracted at 50 ◦C and 150 W of ultrasonic power with various times in an
ultrasonic bath (40 kHz, Delta DC150H, Dogger Science, New Taipei, Taiwan). After extraction, the
supernatant of the sample was collected by centrifugation at 13,000 rpm for 10 min. The supernatants
were filtered through a 0.45 µm PVDF syringe filter and stored in a dark room at 4 ◦C until analysis.

3.4. HPLC Analysis of Products Extracted from Lonicera japonica

The extracts of Lonicera japonica were analyzed by high-performance liquid chromatography
(HPLC) (Hitachi L-7400; Tokyo, Japan) according to the method described by Lin et al. [15]. Twenty µL
of the extract was loaded into a Thermo C18 capillary column (5 µm, 250 × 4.6 mm, Agilent, Waltham,
MA, USA) and assayed in gradient elution mode during the chromatographic analysis. Elution was
carried out using 0.1% acetic acid in water and methanol at a flow rate of 1.0 mL/min. Gradient elution
was performed as follows: Methanol was set 30% for the first 5 min, then the methanol was increased
to 50% between 5 and 10 min, and held at 100% for the last 5 min. The UV detector was set at a
wavelength of 325 nm. Calibration curves were established using CGA standards, and samples were
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analyzed by comparing their retention times with those of the standards. The yield of CGA from
Lonicera japonica was calculated according to the following formula Equation (2):

Extraction yield (mg/g) = mass of the compound in extraction solution (mg)/mass of

dried material (g)
(2)

3.5. Response Surface Methodology (RSM)

In this study, a 5-level-4-factor central composite rotatable design (CCRD), including 27 treatments,
was employed. To avoid any unknown factor that may affect the experiment, the 27 runs were
performed in random order. The independent variables of extraction temperature (30–70 ◦C), ethanol
concentration (55–95%), L/S ratio (10:1–50:1 mL/g), and ultrasonic power (90–150 W) are presented
in Table 1. Table 2 shows the independent factors, levels, and design matrix for the experiment. All
reactions were carried out in duplicate. Regression analysis was performed for the experiment data
by using Design-Expert (Version 8.0.6.1, Stat-Ease Inc., Minneapolis, MN, USA) software to fit the
following second-order response model:

Y = β0+β1X1+β2X2+β3X3+β4X4+β12X1X2+β13X1X3+β14X1X4+β23X2X3+β24X2X4+β34X3X4

+β11X1
2+β22X2

2+β33X3
2+β44X4

2 (3)

where Y represents the response variable and β0 is the constant term; β1, β2, β3 and β4 are coefficients
of the linear effects, β11, β22, β33 and β44 are coefficients of quadratic effects and β12, β13, β14, β23, β24

and β34 are coefficients of interaction effects for the four independent variables (X1 = temperature,
X2 = ethanol concentration, X3 = L/S ratio, X4 = ultrasonic power).

3.6. Artificial Neural Network (ANN)

A multi-layer perceptron (MLP) based feed-forward ANN was applied for modeling
ultrasonic-assisted extraction of CGA. A commercial ANN software, MATLAB version R2016a
(MathWorks software, MathWorks Inc., Natick, MA, USA) was used in the study. The experimental
data was constructed by the regression-based network approach. The network architecture consisted
of an input layer with four neurons (temperature, ethanol concentration, L/S ratio, and ultrasonic
power), an output layer with one neuron, which represented the extraction yield of CGA, and one
hidden layer with ten neurons. A schematic diagram of the MLP architecture can be observed in
Figure 2. BFGS quasi-Newton backpropagation (TRAINBFG) was an efficient training function because
it has good performance in non-smooth optimizations and smaller networks [27]. Gradient descent
method (LEARNGDM) as the adaptive learning function was used to minimize the mean squared
error (MSE) between the network output and the actual error rate [28]. Mean squared normalized error
performance function can appraise the network’s performance according to the MSE. The hyperbolic
tangent sigmoid transfer function (TANSIG) and linear transfer function (PURELIN) were used to
calculate a layer’s output from its net input [29]. All these functions were used to train the neural
network and built the best ANN.

3.7. Comparison of Prediction Capability between ANN and RSM for CGA Extraction

Several statistical parameters, including the coefficient of determination (R2), root mean square
error (RMSE) and absolute average deviation (AAD), were calculated for the comparison of estimation
capabilities of RSM and ANN[15] as shown in Equations (4) to (6), respectively.

R2= 1−

∑n
i=1 (Y pre−Yexp

)2

∑n
i=1 (Y m−Yexp

)2 (4)
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RMSE =

√∑n
i=1 (Y pre−Yexp

)2

n
(5)

AAD =


∑n

i=1

(∣∣∣Yexp−Ypre
∣∣∣/Ypre

)
n

×100 (6)

where Ypre is the predicted CGA extraction yield (by either RSM or ANN), Yexp is the observed CGA
extraction yield, Ym is the average CGA extraction yield, and n is the number of experiments (n = 27
for CCRD experiments and n = 4 for external experiments).

4. Conclusions

The yield of CGA reached 43.13 mg/g under the optimal conditions, which were as follows:
Temperature, 33.56 ◦C; ethanol concentration, 65.88%; L/S ratio, 46:1 mL/g; and ultrasound power,
150 W. Despite recent decade’s advances in the ultrasound-assisted extraction of CGA by applying
response surface methodology, some complex nonlinear factors still lead to the significant lack of fit
in the optimization process, especially the interaction between multiple factors. In this study, ANN
modeling has successfully employed the ultrasound-assisted extraction of CGA. The constructed ANN
shows high R2 values as 0.9898, whereas AAD and RMSE values had a smaller value as compared to
those observed from the RSM. In conclusion, the application of ANN in ultrasound-assisted extraction
of Lonicera japonica can obtain more CGA nutraceuticals, which has potential commercial applications.
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