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The field of materials sciences has always been strongly interconnected with the most
significant technological developments in the modern era, and such an interconnection is
absolutely evident at least since the 1950s revolution of electronics and microelectronics,
driven by advances in the science of semiconductors.

Nowadays, there is a widespread awareness, not just in the scientific world but also in
the applicative-industrial world, that the study of some physical and chemical–physical
processes of a fundamental nature is not a matter relegated to specific sectors of academic
research. In this statement, we refer in particular to some of the topics that are the subject
of the Special Issue "TiO2-Based Nanostructures, Composites and Hybrid Photocatalysts”, edited
by us [1]. These topics broadly involve the science and technology of titanium dioxide
(TiO2) and its modifications (e.g., doping and TiO2-based composites) and lie at the core
of research on photocatalytic materials. A topical list is shown in the web page of the
Special Issue. Here, for the sake of simplicity, we list some of these topics along with few
representative references:

• Fundamental properties of TiO2 nanostructures such as: electronic states, defects,
optical properties, etc. [2–6].

• Applications of TiO2-based photocatalytic systems: water and/or air remediation [7–9],
gas sensors [10–13], generation of solar fuels and energy applications [14–17], degra-
dation of dyes and/or pharmaceuticals [18–20].

• Improvement of TiO2 photocatalytic efficiency through doping and/or self-doping [21–24]
and/or through synthesis and use of TiO2-based composites/heterostructures [25–27].

The above topics address the fundamental questions that define the core of the science
and technology not only of TiO2 but, more generally, of photocatalytic materials. These
materials are a representative example of the interconnection between some branches of
materials sciences and important technological challenges. In fact, the photo-transformative
properties of nanostructured photocatalysts are relevant for two of the most important
challenges of the modern era: water pollution and the depletion of fossil fuels.

Regarding water pollution, the availability of drinking water free of pathogens and of
polluting/toxic chemicals has become a severe problem in many parts of the world and
in developing countries. Hazardous contaminants can be removed from fresh water or
be transformed in harmless species via oxidation processes: photodegradative oxidation
promoted by TiO2 (or TiO2-based composites) is widely regarded as a possible route to
pursue that goal. In fact, TiO2 in aqueous solution acts as an oxidative agent due to its
ability to generate reactive oxygen species (ROS) under ultraviolet (UV) illumination. ROS
species, in turn, function as bactericide agent and/or depolluting agent in fresh waters
and wastewaters.

The depletion of fossil fuels and the environmental risk related to greenhouse gas
release—also referred to as climate change—are also sources of social concerns. Public
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policies are, in fact, targeting the “carbon neutrality” goal in several ways, intended as
the balance between emitting carbon into the atmosphere and absorbing carbon from
the atmosphere to appropriate sinks (i.e., carbon sequestration). To achieve the goal,
sustainable forms of energy exploitation need to be developed, hence the keyword of
“energy transition” [28]. Additionally, in this regard, TiO2-based (photo-)catalysts play a
crucial role in hydrogen and fuel production and in the carbon-free conversion of chemical
energy into electrical energy.

Apart from its photocatalytic properties, TiO2 also exhibits chemo-resistive and chemo-
optical effects, i.e., molecules adsorbed on its surface induce a redistribution of mobile
charge and a surface band-bending, thus affecting the electrical conductivity [29] and the
photoluminescence [30] of the material. This effect allows its use as the sensitive element of
chemical (gas) sensors, as in some of the papers published in the Special Issue.

Both photocatalytic and gas-sensing effects are relevant for practical purposes only
when using materials with large values of the specific surface area (SSA). For this reason,
TiO2 is consistently used in the form of either nanoparticle films/powders or of isolated
nanostructures, deposited/synthesized via various chemical and physical methods that al-
lows us to achieve SSA values of ~100 m2/cm3 [31–35]. While nanoparticle films/powders
are easier to produce, quasi one-dimensional structures such as nanowires/nanopillars
with diameters of a few tenths of nanometers can, in principle, be more effective for high-
sensitivity gas sensors. This is because typical depletion width caused by adsorption is
also of the order of a few tenths of nanometers, so that the presence of the analyte can in
principle completely “pinch off” the charge carriers. In this context, the literature on the
use of 1D and quasi-1D TiO2 structures for gas sensing has been reviewed by Kaur and
coauthors in their review contribution [36] to the Special Issue.

Under these premises, covering the state-of-the-art of applications of TiO2 clearly
represents a very demanding task, which has been excellently fulfilled by several pub-
lished reviews in recent literature [37–41]. The review published by Lettieri, Pavone, and
coworkers in this Special Issue [2], instead, focuses on specific fundamental mechanisms
and processes that lie behind and determine the photo-physical behavior of the material.
In particular, we refer here to issues such as the energy levels of occupied and excited
defect (trap) states, optical absorption and photoluminescence, trapping and detrapping
processes and lifetimes, while also dealing with attention with the interaction between
photo-generated carriers and environmental oxygen (O2). Although often given for granted
and not fully understood, these features are very important as they ultimately affect the
functional performances of TiO2-based materials.

The pros and cons of TiO2 as photocatalytic agent are well established. Its two most
important limitations are the impossibility to activate it by means of solar light and the
overall low photoactivity. The latter is due to the fact that most of the photogenerated
free carriers recombine before reaching the surface and reacting with the species to be
transformed, e.g., the adsorbed H2O molecules in oxygen evolution reaction (OER).

Possible approaches for overcoming these limitations can be classified in two cate-
gories: (1) routes based on doping of TiO2 and (2) routes based on heterojunction photocat-
alysts, where TiO2 is electronically coupled with a second material that acts as sensitizer or
as cocatalyst.

Some of the papers published in the Special Issue deal with doped TiO2 [42–44].
Dopants in TiO2 can shrink the optical bandgap by introducing additional energy states in
the semiconductor bandgap [45,46], thus allowing the generation of mobile charge carriers
via absorption of sunlight. Moreover, dopants can favor the charge separation due to
formation of Schottky junctions or can act as co-catalysts [26]. These modifications can all,
in principle, enhance the photocatalytic efficiency.

Edelmannova and coauthors investigated the effect of lanthanide dopants (lanthanum
and neodymium) on the photocatalytic generation of H2 from ammonia (NH3), reporting
on a beneficial effect on the photocatalytic NH3 to H2 conversion associated by small con-
centrations (0.1 % weight) of Lanthanum (La) as dopant of TiO2 immobilized on foams [42].
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Sturini and coauthors [43] reported on the use of composites made from pristine and
nitrogen-doped TiO2 (N-TiO2) and sepiolite and zeolites for the photocatalytic removal of
ofloxacin (a widespread antibiotic), remarking that, in this case, the presence of the dopant is
not necessarily is benefit as the doping routes improve the optical absorption (as discussed
above) but also decrease the overall specific surface of the immobilized photocatalyst.

Finally, Gao et al. performed first-principle calculation of density of states modification
caused by the presence of atoms belonging to the platinum family (Pd, Ru, Rh) as dopants
of anatase TiO2 (101) surfaces, calculating the possible formation of occupied states above
valence band edge and below the center the band-gap region, associated with Ru and Rh
atoms [44]. These results can provide a support for the interesting experimental results on
the photocatalytic performances of Ru-doped TiO2 [47].

As mentioned above, TiO2 also has an application in the gas sensors field. The use of
1D and quasi-1D TiO2 structures as gas sensors is reviewed by Kaur and coauthors [36].
We recall their review for an extensive bibliography on experimental results recorded for
gas sensing devices toward different analytes, including both reducing species (e.g., H2,
H2S, NH3, CO, ethanol, acetone) and oxidating species (e.g., NO2, O2).

TiO2 /O2 interaction and its exploitation for optical sensing is discussed in some
detail in the review paper [2], also showing that mixed-phase TiO2 can be employed in an
unconventional ratiometric approach based on the difference between photoluminescence
of rutile and anatase phases [48].

The paper by Fioravanti and coauthors also deals with the use of TiO2 as chemical
sensors. In particular, their work discusses the interesting application of TiO2/SnO2
composites in monitoring the degradation of hydraulic oils [49]. The authors used solid
solutions of TiO2 mixed with SnO2 to fabricate thick-film resistive devices sensitive to the
presence of the hydraulic fluids into the oil headspace, finding that optimal results, in terms
of best responses and lower recovery time, were obtained with composites made by 90%
(molar percentage) TiO2.

Other works deal with preparation of various forms of TiO2 and application as photo-
catalysts, as briefly summarized below.

Di and coauthors [50] report on a hydrothermal procedure for the synthesis of self-
assembled of anatase TiO2 microspheres of average diameters in the range of 0.5–3 um.
Interestingly, they showed that the investigated chemical process employed allowed to tune
the percentage of crystalline (001) facets, which is an important parameter, as highlighted
by different studies showing that the exposure of well-defined crystalline anatase facets is
accompanied by a significant boost in photocatalytic activity [25].

The work by Cizmic and coauthors [51] deals with the relevant problem of water
pollution by pharmaceuticals. As the authors point out, conventional wastewater treatment
plants are not designed for removing complex organic compounds, such as pharmaceuticals.
In particular, the dispersion of antibiotics is a major issue, as it aggravates the spread of new
branches of microorganisms resistant to conventional to antibiotics (antibiotic resistance).
Cizmic and coworkers studied the ability of anatase TiO2 nanopowders to degrade (photo-
oxidize) the azithromycin antibiotic, studied the influence of several parameters (e.g., water
pH, spectral range of the UV light that activates the TiO2 photocatalysts, presence of
sulfamethoxazole as interfering species) on the photodegradation, finding encouraging
results and optimal condition at pH 10 under UV-C illumination.

M.G. Toro and coauthors [52] face the interesting challenge of incorporation of TiO2
nanopowders on woven fabrics. TiO2 incorporation can provide antibacterial and self-
cleaning functions to fabrics, but the anchoring of particles on any flexible substrate is,
generally speaking, a challenging issue. In the particular case of fabrics, irregular shapes
of fibers often hamper the interfacial adhesion. The authors report the successful prepa-
ration of photocatalytic paper by preparing TiO2 hydrosols and introducing them in the
production process of paper sheets. The use of sodium alginate as a binding agent proved
to be beneficial for the mechanical properties (i.e., better tensile index, breaking length,
tear and burst index, and air permittivity) of the photocatalytic paper, thanks to the inter-
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action between hydroxyl groups on TiO2 surface, sodium alginate and cellulose. Finally,
they also proved that photocatalytic papers can be used repeatedly while retaining their
photocatalytic activity.

As a final consideration, we wish to point out that, as the literature on TiO2-based
systems is so comprehensive, editorial products such as reviews and Special Issues are
extremely valuable and useful for scholars (in particular PhD students who are approaching
the field), provided that they focus on specific and, eventually, fundamental topics. We
also believe that the knowledge that has being accumulating on TiO2-based systems will
turn out to be very important even if other materials and systems will turn out to be more
useful or even keystones for future breakthroughs.
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