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Abstract
Background/aims Concerning healthcare approaches, a paradigm change from reactive medicine to predictive approaches, 
targeted prevention, and personalisation of medical services is highly desirable. This raises demand for biomarker signatures 
that support the prediction and diagnosis of diseases, as well as monitoring strategies regarding therapeutic efficacy and 
supporting individualised treatments. New methodological developments should preferably rely on non-invasively sampled 
biofluids like sweat and tears in order to provide optimal compliance, reduce costs, and ensure availability of the biomate-
rial. Here, we have thus investigated the metabolic composition of human tears in comparison to finger sweat in order to find 
biofluid-specific marker molecules derived from distinct secretory glands. The comprehensive investigation of numerous 
biofluids may lead to the identification of novel biomarker signatures. Moreover, tear fluid analysis may not only provide 
insight into eye pathologies but may also be relevant for the prediction and monitoring of disease progression and/ or treat-
ment of systemic disorders such as type 2 diabetes mellitus.
Methods Sweat and tear fluid were sampled from 20 healthy volunteers using filter paper and commercially available 
Schirmer strips, respectively. Finger sweat analysis has already been successfully established in our laboratory. In this study, 
we set up and evaluated methods for tear fluid extraction and analysis using high-resolution mass spectrometry hyphenated 
with liquid chromatography, using optimised gradients each for metabolites and eicosanoids. Sweat and tears were system-
atically compared using statistical analysis. As second approach, we performed a clinical pilot study with 8 diabetic patients 
and compared them to 19 healthy subjects.
Results Tear fluid was found to be a rich source for metabolic phenotyping. Remarkably, several molecules previously 
identified by us in sweat were found significantly enriched in tear fluid, including creatine or taurine. Furthermore, other 
metabolites such as kahweol and various eicosanoids were exclusively detectable in tears, demonstrating the orthogonal 
power for biofluid analysis in order to gain information on individual health states. The clinical pilot study revealed that 
many endogenous metabolites that have previously been linked to type 2 diabetes such as carnitine, tyrosine, uric acid, and 
valine were indeed found significantly up-regulated in tears of diabetic patients. Nicotinic acid and taurine were elevated in 
the diabetic cohort as well and may represent new biomarkers for diabetes specifically identified in tear fluid. Additionally, 
systemic medications, like metformin, bisoprolol, and gabapentin, were readily detectable in tears of patients.
Conclusions The high number of identified marker molecules found in tear fluid apparently supports disease development 
prediction, developing preventive approaches as well as tailoring individual patients’ treatments and monitoring treatment 
efficacy. Tear fluid analysis may also support pharmacokinetic studies and patient compliance control.

Keywords Biomarker discovery · Individual metabolomics · Mass spectrometry · Predictive preventive personalised 
medicine (PPPM) · Sweat · Tear fluid analysis · Type 2 diabetes mellitus (T2DM)

Introduction

In clinical metabolomics applications, blood sampling and 
analyses are typically employed in order to identify biomark-
ers for diagnosis and prognosis. However, blood collection 
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is invasive and, thus, impedes time-course measurements, 
and the identification of dynamic biomarkers due to several 
compliance issues as multiple samples would have to be col-
lected in short intervals [1–3]. This calls for the evaluation 
of alternative body fluids, such as sweat, saliva, or tears [4, 
5]. All of these matrices are accessible in a non-invasive 
fashion, and can be collected painlessly, rapidly, with only 
minimal to no discomfort and stress for the patients, thus, 
supporting optimal compliance for biomedical studies [1, 
6–9]. As we have previously investigated, the composition 
of sweat collected from the fingertip was found to be a rich 
source for various biologically highly relevant metabolites 
[10, 11]. Sweat from fingertips can be sampled in a frequent 
manner (up to 12 times per hour); hence, finger sweat analy-
sis proved to be an optimal tool for kinetic measurements, 
exemplified by the ingestion of caffeine and its hepatic con-
version to paraxanthine, theobromine, and theophylline. 
However, sweat analysis faces a normalisation problem 
impeding absolute quantification of metabolites as the exact 
amount of collected sweat cannot be determined. The imple-
mentation of mathematical models of related metabolic pairs 
measured in sweat allowed to overcome this limitation and 
permit the calculation of the sweat rate for each sample [11]. 
Further, sweat and also saliva may suffer from contamination 
stemming from the skin and bacteria, food intake, or smok-
ing, respectively, potentially impeding and distorting highly 
sensitive mass spectrometry (MS)-based metabolomic analy-
ses [1, 4]. In contrast to saliva and sweat, tear fluid faces 
the least contamination problems, and tear volume can be 
determined when tear fluid is collected with the commer-
cially available Schirmer strips. However, tears cannot be 
sampled as frequently as sweat or saliva as Schirmer strips 
may irritate the eye [1, 12]. Thus, we decided to evaluate the 
biomedical power of tear fluid analysis in a more systematic 
fashion regarding its potential applicability for predictive 
screening, targeted prevention, tailoring individual interven-
tions, and monitoring treatment success in the framework of 
predictive, preventive, and personalised medicine (PPPM).

Tear fluid composition and its potential applications 
in the context of PPPM

Due to its distinct origin, tears may actually contain bio-
marker candidates hardly accessible via blood or sweat. 
The function of the ocular tear film is complex including 
maintenance of lubrication and health of the ocular surface, 
guaranteeing normal vision and immune defence of the eye 
[7, 13–16]. Compared to sweat, which is mainly excreted by 
eccrine and apocrine glands, tears get secreted from differ-
ent glands: Whereas the lacrimal glands mainly produce the 
aqueous component of the tear film, the meibomian glands, 
goblet cells, and ocular surface epithelial cells are respon-
sible for the lipid and mucin components of the tear film [7, 

14]. Next to water (98%)[13], tear fluid comprises proteins 
such as lipocalin, lactoferrin, lysozyme C and immuno-
globulins [17–20], lipids (e.g. phospholipids, sphingolip-
ids, wax esters, and triglycerides), glycans, and electrolytes 
(e.g. sodium, potassium, chloride, and phosphate) [16, 21], 
as well as metabolites like amino acids, urea, cholesterol, 
creatine, and epinephrine [22]. Even though tears are mainly 
derived from secretory glands, molecules can also enter into 
tears via conjunctival vessels. Hence, the investigation of 
the metabotype of tear fluid may improve the understand-
ing of systemic disease processes [16]. Changes in tear film 
composition have already been explored in many ocular 
diseases such as age-related macular degeneration, dry eye 
disease, glaucoma or diabetic retinopathy using ‘Omics’ 
approaches. Additionally, systemic diseases like cancer, 
multiple sclerosis, Alzheimer’s disease, and diabetes have 
also been linked to alterations of the molecular composition 
of tears [7, 21, 23–32]. Several medications such as antibiot-
ics, chemotherapeutics, and anti-inflammatory drugs were 
further successfully detected in tears after drug administra-
tion [33–37]. Regarding tear fluid analysis, metabolomics is 
still rarely applied compared to other ‘Omics’ techniques, 
even though the metabolome is an essential element of the 
phenotype [16]. Thus, the metabolic investigation of tear 
fluid may support the identification of novel biomarkers for 
diagnosis and prognosis, a better understanding of disease 
mechanisms, or the monitoring of treatment efficacy, allow-
ing for a more patient-tailored therapy [38].

Metabolomic investigations supporting biomarker 
discovery of type 2 diabetes mellitus

Type 2 diabetes mellitus (T2DM) is a metabolic disorder 
affecting half a billion of patients worldwide [39]. How-
ever, the underlying disease mechanisms and potential risk 
factors are not yet fully elucidated. Non-modifiable risk 
factors like genetic predisposition and advanced age, but 
also modifiable risk factors associated with the personal 
lifestyle such as physical (in-)activity and sugar-rich diet, 
leading to elevated Body Mass Index (BMI) and increased 
fasting plasma glucose levels, are synergistically involved in 
diabetes manifestation [39, 40]. T2DM is not only associ-
ated with premature mortality, but also several other health 
issues, including kidney failure and retinopathy, increased 
risk of cardiovascular disease and stroke as well as with a 
reduced quality of life [41, 42]. Predictive biomarkers are 
urgently needed for early identification of individuals at high 
risk of developing T2DM in order to design highly effec-
tive targeted preventive measures [43]. Untargeted metabo-
lomics of plasma samples from diabetic patients has already 
proven to provide novel insights into mechanisms of disease 
pathogenesis and to supply biomarkers for diabetes [44]. As 
diabetes is a systemic disease that is known to also affect the 
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eye (diabetic retinopathy), it was presently chosen as model 
disease for the evaluation of tear fluid in a clinical context 
and to potentially establish T2DM reliable biomarker sig-
natures for patient stratification as well as diagnostic and 
prognostic assessment in the framework of PPPM.

Tear fluid analysis enabling the metabolic 
phenotyping of T2DM

In this basic research project, we have developed a simple 
and quick sample preparation workflow for the compre-
hensive investigation of tear fluid, which is based on our 
previously established liquid chromatography-mass spec-
trometry (LC–MS) methods for sweat metabolomics [10, 
11] and plasma eicosadomics [45, 46]. This study was con-
ducted to explore potential fields of applications of tear fluid 
analysis in the clinical routine, hence, supporting the further 
development of PPPM. First, we wanted to systematically 
investigate and compare tear fluid composition with sweat in 
order to find differences deriving from the respective secre-
tory glands. Indeed, distinct small molecules were prefer-
ably accumulated in tears such as eicosanoids, taurine, or 
epinephrine, while other molecules like amino acids could 
be found in higher concentrations in sweat, demonstrating 
that each fluid has its unique set of metabolites, which may 
prove to be useful for PPPM as both biofluids offer orthogo-
nal information on individual health states and may be used 
to generate multi-biofluid metabolic pathway networks 
that may be associated with certain diseases or individu-
als at risk. Our findings prove tear fluid as a rich metabolic 
source being worth for further investigations regarding bio-
marker discovery. Therefore, as a second part of this study, 
the potential of tear fluid analysis for biomarker discovery 
and individual diagnosis in T2DM was investigated. To 
this end, exogenous as well as endogenous metabolites of 
diabetic patients and healthy controls were profiled in tear 
fluid. Remarkably, many blood-borne metabolites that have 
already been linked to diabetes such as tyrosine, valine, 
carnitine, and uric acid were presently found significantly 
up-regulated in the tears of diabetic patients. Moreover, we 
have found individual medication (e.g. metformin), but also 
lifestyle factors (e.g. the sweetener sorbitol) associated with 
the disease in the tear fluid of diabetic patients. Thus, here, 
we demonstrate the potential of tear fluid analyses for diag-
nosis (T2DM) but also for lifestyle monitoring (regarding 

individual medication and consumed goods), potentially 
supporting the development of biomarker signatures used 
for personalised diagnosis, targeted prevention, identifying 
novel pharmacological targets, and personalisation of medi-
cal services in the context of PPPM.

Materials and methods

Reagents and chemicals

LC–MS grade formic acid, water, and acetonitrile used for 
chromatographic separation as well as for preparation of 
internal standards and samples were purchased from VWR 
(Germany), whereas LC–MS grade methanol was bought 
from Honeywell International Inc. (USA). Internal and 
external standards used for normalisation and verification 
were obtained either from Sanova Pharma GmbH (Austria) 
or Sigma Aldrich (Austria). Filter papers used for the collec-
tion of sweat from fingertips were stamped out of fuzz free 
paper (precision wipes, number = 7552, white, 11 × 21 cm, 
Kimtech Science, Kimberly-Clark Professional, USA). Tears 
were collected using Schirmer plus paper strips (Grecis, 
France).

Cohort design

Volunteers were recruited by the Department of Clinical 
Pharmacology, Medical University of Vienna, Austria, and 
gave their written, informed consent for the different stud-
ies outlined in Table 1. All experiments were approved by 
the ethics committee of the Medical University Vienna. For 
study A, sweat from the fingertips and tear fluid from both 
eyes were sampled in parallel, whereas for study B and C, 
only tears were obtained. Some volunteers were sampled 
several times. In case of the diabetic participants, basic 
clinical and ophthalmological characteristics were collected 
(Table 2). To diagnose whether patients suffered from dia-
betic retinopathy, pupils were dilated with tropicamide 0.5% 
eye drops for better visualisation during eye examination. 
For the assessment of intraocular pressure, a mixture of 
oxybuprocaine and fluorescein was used. Moreover, patients 
were asked about medication they took on a regular basis, of 
which some could be detected in tears.

Table 1  Overview of all studies 
discussed in this publication

Age and BMI are expressed as average ± standard deviation

Study Participants Age BMI [kg  m−2] Sampling

A 20 healthy subjects 31 ± 13 25 ± 4 Sweat and tears, two visits
B 20 healthy subjects 24 ± 6 22 ± 6 Tears, up to 5 visits
C 8 diabetic patients 64 ± 9 32 ± 4 Tears, 1 visit
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Collection of sweat from the fingertip and sample 
preparation

Finger sweat samples were collected and processed as previ-
ously described [10, 11]. In short, pre-wetted filter papers 
were provided in 0.5-mL Eppendorf tubes. For each sweat 
collection, volunteers washed their hands with warm tap 
water and dried them with disposable paper towels. After 
waiting for 1 min at room temperature without touching any-
thing, filter papers were placed between the thumb and index 
finger using clean tweezers and held for another minute, 
resulting in the collection of 2 min sweat in total. Then, the 
sampling unit was transferred into the labelled Eppendorf 
tube and stored at 4 °C. For the extraction of the metabolites, 
an extraction solution consisting of an aqueous solution of 
caffeine-(trimethyl-D9) in a concentration of 1 pg µL−1 with 
0.2% formic acid was prepared. One hundred twenty micro-
litre of this extraction solution was added into the 0.5-mL 
Eppendorf tubes containing the sampling unit. The metabo-
lites were extracted by pipetting up and down 15 times. The 
filter paper was pelleted on the bottom of the tube, and the 
supernatant was transferred into HPLC vials equipped with 
a 200-µL V-shape glass insert (both Macherey–Nagel GmbH 
& Co.KG) and analysed by LC–MS/MS.

Collection of tear fluid and sample preparation

Tear fluid was collected according to the instructions of the 
manufacturer. Briefly, donors were asked to look up, then the 
lower eyelid was gently pulled down, and the bent strip end 
of the Schirmer plus strip was placed in the temporal section 
of the lower conjunctival fornix. Both eyes were tested at the 
same time. The donors were then asked to gently close their 
eyes without squeezing. After a maximal collection time of 
5 min, subjects were instructed to open their eyes again, and 
the strips were removed. Schirmer strips were transferred 
into 2-mL glass vials (Agilent Technologies, USA) after 
tear collection and stored at − 20 °C until further sample 
preparation. Different extraction solution and reconstitution 

conditions were evaluated to determine the best conditions 
for the parallel analysis of eicosanoids and metabolites: (i) 
200 µL water with 0.2% formic acid and internal standards 
without pre-concentration and reconstitution, (ii) 300 µL 
35% methanol with 0.2% formic acid and internal standards 
without pre-concentration and reconstitution, and (iii) 300 
µL 80% methanol and internal standards followed by dry-
ing and reconstitution in 5% methanol (s. results). Finally, 
samples were prepared as follows: Filter papers were first 
thawed before 5 µL of a deuterated eicosanoid standard mix-
ture containing 15S-HETE-d8, 12S-HETE-d8, 5-oxo-ETE-
d7, PGE2-d4, 20-HETE-d6, and 11,12-DiHETre-d11 (Cay-
man Europe, Tallinn, Estonia) was pipetted onto Schirmer 
strips. Exact concentrations for the deuterated eicosanoid 
standards can be found in Supplementary Table 1. For the 
extraction of the samples, 300 µL of 80% methanol was 
added onto the filter paper, and samples were vortexed and, 
additionally, put on a shaker for 30 min. The Schirmer strip 
was pelleted at the bottom of the glass tube, and the super-
natant was transferred into a new HPLC glass vial (Mach-
erey–Nagel GmbH & Co.KG). Samples were dried using a 
gentle stream of nitrogen and reconstituted in 200 µL of 5% 
methanol, 0.2% formic acid containing the internal standards 
caffeine-(trimethyl-D9) and N-acetyl-tryptophan (both in a 
concentration of 1 pg µL−1). Samples were transferred into 
V-shaped glass inlets, put back in the labelled HPLC glass 
vial, and analysed by LC–MS/MS. Schirmer strips with no 
tears were subjected to the same extraction protocol to serve 
as blank controls.

Untargeted LC–MS/MS analysis

For LC–MS/MS analysis, the Q Exactive HF mass spec-
trometer coupled to a Vanquish UPLC system (both Thermo 
Fisher Scientific) was used, and both were controlled by the 
Xcalibur software (Thermo Fisher Scientific).

For the metabolomics analyses of both sweat and 
tears, chromatographic separation was achieved using a 
Kinetex XB-C18 column (100 Å, 2.6 µm, 100 × 2.1 mm, 

Table 2  Clinical characteristics 
for diabetic patients

Donor Fasting 
glucose [mg 
 dL−1]

HbA1c
[%]

Status Medication detected in tears

35 138 5.8 No clinical signs of retinopathy Metformin
50 222 7.8 Mild retinopathy Metformin
53 198 7.6 Mild retinopathy Concor (bisoprolol)
60 148 6.6 Moderate to severe retinopathy Metformin
61 162 6.8 Moderate to severe retinopathy Xigduo (metformin), gabapentin
64 212 7.3 No clinical signs of retinopathy Metformin, sitagliptin
97 - 6.8 No clinical signs of retinopathy Metformin, pioglitazone
103 162 7.3 No clinical signs of retinopathy Eucreas (metformin, vildagliptin)
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Phenomenex Inc.). Mobile phase A was water with 0.2% 
formic acid, and mobile phase B was methanol with 0.2% 
formic acid. The following gradient was used: 0.0–0.3 min 
1–5% B, then 0.3–4.5 min 5–40% B, followed by a column 
washing phase from 4.5 to 6.9 min at 80% B, and then a 
re-equilibration phase of 1.6 min at 1% B resulting in a 
total runtime of 7.5 min. The column temperature was set 
to 40 °C, the flow rate was 500 µL  min−1, and the injec-
tion volume was 10 µL. Samples were analysed in technical 
duplicates. An untargeted mass spectrometric approach was 
applied for compound identification. Therefore, electrospray 
ionisation was performed in the positive mode, the MS scan 
range was from 100 to 1000 m/z, and the resolution was 
set to 60,000 (at m/z 200). A top 4 method was applied and 
dynamic exclusion was set to 6 s. Selected precursors were 
fragmented applying 30 eV collision energy, and fragments 
were subsequently analysed in the orbitrap at a resolution of 
15,000 (at m/z 200).

For eicosanoid profiling of sweat and tears, a Kinetex C18 
column (2.6 μm, 100 Å, 150 × 2.1 mm; Phenomenex Inc.) 
was used, and a 20 min gradient flow method was applied to 
separate molecules. Mobile phase A was again water with 
0.2% formic acid, whereas mobile phase B consisted of 90% 
acetonitrile, 10% methanol, and 0.2% formic acid. The gra-
dient was programmed as follows: starting with 35% B for 
1 min, then 35–90% B from 1 to 10 min, and followed by 
a wash phase at 99% B for 3.25 min before returning to the 
starting condition of 35% B. The column temperature was 
set to 40 °C, the flow rate was kept at 200 µL  min−1, and the 
injection volume was 20 µL. Eicosanoids were measured 
in negative ionisation mode, and the scan range for MS1 
spectra was from 250 to 700 m/z at a resolution of 60,000 
(at m/z of 200). The two most abundant precursor ions were 
selected for fragmentation, applying a collision energy of 
24 eV. An inclusion list (Supplementary Table 2) for priori-
tised fragmentation was predefined for m/z corresponding 
to well-known eicosanoids and their precursors. Generated 
fragment ions were analysed in the orbitrap at a resolution 
of 15,000 (at 200 m/z).

Data analysis, statistics, and figures

Raw files generated by the Q Exactive HF instrument 
were processed by the Compound Discoverer Software 3.1 
(Thermo Fisher Scientific) using a user-defined workflow 
tree. Automatically identified compounds were manually 
reviewed using Xcalibur 4.0 Qual browser (Thermo Fisher 
Scientific), and additionally, in case of metabolites, the 
obtained MS2 spectra were compared to a spectral library 
(mzcloud—Copyright © 2013–2021 HighChem LLC, Slo-
vakia). For eicosanoid identification, recorded MS2 spectra 
of eicosanoid-specific precursor masses were compared to 
reference spectra available in the LipidMaps (© 2003-2022 

LIPID MAPS®) spectral library and mzcloud. The match 
factor cut-off from mzcloud in the Compound Discoverer 
Software was set to ≥ 80 for manual investigation, and the 
maximum mass tolerance was 5 and 10 ppm on MS1 and 
MS2 level, respectively. Verification of key metabolites 
was done with purchased analytical standards analysed 
under the same LC–MS conditions as samples. The Trace-
finder Software 4.1 (Thermo Fisher Scientific) was used for 
peak integration and calculation of peak areas. Peaks with 
a signal-to-noise of > 25 and a minimum area of 1E5 were 
considered for further evaluation. Afterwards, batch tables 
generated by the Tracefinder Software were exported and 
further processed by means of Microsoft Excel, GraphPad 
Prism (Version 6.07) for univariate analysis such as t-tests or 
Mann Whitney tests as well as to check if data displayed Gauss-
ian distribution, and the Perseus software (version 1.6.12.0) 
[47] for multivariate analysis, namely PC and volcano plots. 
Figure 1A is created using BioRender (www. BioRe nder. com).

Results

Tear fluid has a distinct metabolic composition 
compared to sweat

A straightforward workflow was established for process-
ing tear fluid collected with Schirmer strips according to 
the manufacturer’s protocol (Fig. 1A). In short, metabolites 
were extracted from Schirmer strips using organic condi-
tions; the resulting solution was evaporated, reconstituted in 
the initial solvent conditions of the LC method, and subse-
quently analysed by high-resolution MS. Sample collection 
takes ≤ 5 min depending on tear flow rate of the individual, 
and sample preparation of a single tear fluid can be per-
formed within 5 min. In addition of being fast, simple, and 
cost-effective, sampling of tear fluid is non-invasive, which 
facilitates patient compliance as it is less discomforting com-
pared to blood collection, allows point-of-care testing, and 
may be established as a tool for a population-wide predic-
tive screening. LC–MS data acquisition of samples requires 
further 7.5 min in case of metabolites or 20 min in case of 
eicosanoids, which gives a total of approximately 40 min for 
the entire workflow per sample.

Metabolic profiling of minute amounts of sweat as 
well as of low abundant plasma eicosanoids using the Q 
Exactive HF hyphenated with an ultra-high-performance 
LC (UPLC) was already successfully demonstrated by us 
[10, 11, 45, 46]; consequently, this set-up was also applied 
for tear fluid analysis. Regarding sample preparation, sev-
eral extraction conditions were tested in order to ensure 
optimal extraction for both, metabolites and eicosanoids, 
present in tears (Fig. 1B). First, water was evaluated as 
solvent as it is the standard method for sweat analysis. 
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Further, extraction using 35% methanol representing the 
loading conditions of the eicosanoid analysis method was 
investigated. Lastly, we evaluated the extraction with 

80% methanol followed by drying and reconstitution in 
5% methanol, which was similarly reported in the litera-
ture [22]. The evaluation of different extraction solutions 

Fig. 1  Non-invasively sampled tear fluid and sweat have distinct met-
abolic compositions. A straightforward workflow for tear fluid col-
lected with commercially available Schirmer strips was established 
and successfully applied to proof-of-principle studies. A Graphical 
summary of the workflow including sample collection of tear fluid 
and sweat from fingertips, the extraction of analytes and subsequent 
LC–MS/MS analysis as well as data analysis. B Respective peak 
areas of caffeine and arachidonic acid extracted from tear fluid with 
water, 35% methanol and 80% methanol. AA, absolute area; RT, 
retention time. C Principal component analysis (PCA) of metabo-
lites detected in sweat and tears simultaneously derived from the 

same healthy volunteers is depicted. The PCA was calculated with a 
set of 165 metabolites identified in both sweat and tears and success-
fully clustered samples according to biofluids. D Examples of eicosa-
noids (hydroxyeicosatetraenoic acids (HETEs), docosahexaenoic acid 
(DHA) and arachidonic acid (AA)) identified in high levels in the tear 
sample of a healthy control (relative intensities of 4E6–3E7), but not 
in the respective sweat sample. AA, absolute area; RT, retention time. 
E Metabolic differences of sweat and tears depicted with a volcano 
plot. Fourteen and 95 metabolites were found at higher levels or spe-
cifically in tears and sweat, respectively
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was performed regarding peak areas and shapes of rep-
resentative molecules. For caffeine and arachidonic acid 
(Fig. 1B) as well as for paraxanthine and docosahexaenoic 
acid (Supplementary Fig. 1), highest peak areas and best 
peak shapes were obtained using 80% methanol as extrac-
tion solution. Additionally, 80% methanol-extracted pre-
liminary tear fluid led to more feature annotations by the 
Compound Discoverer Software in contrast to the other 
two extraction conditions; however, Schirmer strip back-
ground levels were similar for all conditions. Thus, 80% 
methanol was used for sample preparation in the following 
proof-of-principle studies.

Initially, tear fluid and sweat were collected from 20 
healthy donors in order to evaluate and compare the meta-
bolic composition of these biofluids. Many metabolites were 
detected in both, sweat and tear fluid, but interestingly, a 
principal component analysis (PCA) using these metabolites 
(165 in total) separated the two groups perfectly (Fig. 1C). 
Further, tear fluid was found to be a rich source for eicosa-
noids exemplified by the hydroxyeicosatetraenoic acids 
(HETEs) and the precursor molecules arachidonic acid (AA) 
and docosahexaenoic acid. Actually, none of these mole-
cules was detectable in sweat (Fig. 1D). Statistical analysis 
of the metabolites reproducibly detected in all 20 volunteers 
revealed that 14 metabolites such as creatine, adenosine, tau-
rine, epinephrine, and uric acid were found at significant 
higher levels in tears, whereas other 95 metabolites, like 
adenine, dopamine, nicotine, and histamine were detected 
at higher levels in sweat (Fig. 1E). In case of taurine, abun-
dance levels detected in tear fluid were also significantly 
higher than in plasma [25]. Interestingly, some metabolites 
could only be specifically measured in one of the investi-
gated biofluids such as 3-hydroxycotinine and 3-phenyllactic 
acid in sweat, whereas kahweol and eicosanoids could only 
be detected in tear fluid (Fig. 1D and E). These findings indi-
cate that the simultaneous collection and analyses of several 
biofluids may be synergistic, as some molecules may prefer-
ably accumulate in one biofluid due to distinct environmen-
tal factors such as pH (sweat: 4.0–6.0, tears 7.0–8.0 and 
blood: 7.35–7.45) or polarity. Thus, certain diseases may 
give rise to biomarkers that are transported to specific bio-
fluids or secreted via specific glands [1]. The monitoring of 
biofluid-specific metabolic responses to certain environmen-
tal conditions may consequently gain great relevance in the 
further development of PPPM. The power of the developed 
method regarding the detection of low abundant molecules 
such as eicosanoids, which are difficult to detect in other 
biofluids due to matrix effects, demonstrates the suitability 
of tear fluid analysis as a tool for PPPM supporting clinical 
practice. Additionally, molecular patterns may be derived 
from all measured metabolites across the analysed biofluids 
and may thus lead to more reliable molecular information 
supporting patient stratification.

Tear fluid analysis allows to discriminate 
between diabetic patients and healthy controls

In a clinical pilot study, 20 healthy volunteers and 8 T2DM 
patients were recruited to evaluate tears as a diagnostic and 
prognostic fluid (Fig. 2A). All of these 28 donors received 
eye drops in the course of their ophthalmological examina-
tion, namely oxybuprocaine/fluorescein (Thilorobin ®) for 
measurement of intraocular pressure (both study B and C) 
and tropicamide (Mydriaticum ‘Agepha’ 0.5%) for pupil 
dilation in diabetes patients (study C). Additionally, tear 
fluid from both eyes was sampled using Schirmer strips, 
which were extracted and subsequently analysed by LC–MS/
MS. Some of the healthy volunteers were sampled several 
times, thus, leading to the collection of 127 healthy and 16 
diabetic volunteer profiles. Our untargeted metabolomic and 
eicosadomic workflow applied to the 143 Schirmer strip 
samples resulted in the identification of 226 metabolites and 
70 eicosanoids and eicosanoid-like features (Supplementary 
Data) in tears of study participants (Fig. 2B), including oxy-
buprocaine, which was administered to all subjects for diag-
nostic purposes (Fig. 2C).

A PCA using the 226 metabolites successfully dis-
criminated between healthy controls and diabetic patients; 
however, donors 35 and 64, both belonging to the diabetic 
cohort, rather clustered with healthy controls (Fig. 2D). 
Interestingly, these two donors showed no signs of diabetic 
retinopathy according to the clinical evaluation, which 
may be a causal factor influencing the PCA separation. In 
addition, some healthy participants donated tear samples 
at different site visits. Multiple sample of three donors are 
highlighted in the PCA (Fig. 2D, orange, violet, and pink 
symbols), demonstrating that tear samples cluster accord-
ing to each individual and not the sampling time point. This 
indicated that the molecular composition of tears collected 
from both, left and right eye, was determined by the indi-
viduum showing little variance associated with multiple 
sampling. The principal components underlying the PCA 
plot were influenced by specific medications such as met-
formin and tropicamide, which was used for pupil dilation 
during eye examination, but also endogenous factors like 
methionine sulfoxide, glutathione, threonine, and citrulline 
(Fig. 2E). Even though high levels of eicosanoids have been 
measured in tears (Fig. 1), a PCA based on the 70 identified 
eicosanoids and eicosanoid-like features in tears was not 
able to discriminate between healthy controls and diabetic 
patients (Supplementary Fig. 2). No significant eicosanoid 
differences between the two groups were observed. The 
successful clustering of healthy controls versus diabetic 
patients (Fig. 2D) already demonstrated the great potential 
of tear fluid analyses as a tool for PPPM. In particular, the 
analysis of tear fluid may not only support the discrimina-
tion of distinct disease states but also provide a rich source 
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of biologically relevant metabolites potentially serving as 
future biomarkers to expand our means to assess individual 
health states as well as for predictive approaches, targeted 
prevention, and personalisation of medicine.

Evaluation of tear fluid as potential source 
for biomarker candidates

The observation that individuals, who repeatedly donated 
tears, formed clusters in the PCA (Fig. 2D) indicated that 
the metabolic composition of tear fluid is specific for each 
individual and hardly affected by sample collection and 
preparation. This motivated us to investigate the differ-
ences between the study groups in greater detail in order 
to identify potential T2DM-related marker molecules in 

tear fluid. Statistical analysis of the metabolites detected 
in tears of study participants revealed significantly higher 
levels of carnitine, nicotinic acid, and sorbitol, as well as 
tropicamide and metformin in diabetic patients (Fig. 3A, B 
and C). While carnitine and nicotinic acid are two endog-
enous metabolites, tropicamide as well as metformin rep-
resent individual medications and the sweetener sorbitol 
may represent a lifestyle-related xenobiotic compound. 
Elevated levels of circulating carnitine have already been 
observed in obesity and insulin resistance and may be an 
early predictor of developing T2DM [48, 49]. Altered lev-
els of nicotinic acid have not been reported in the litera-
ture before; thus, nicotinic acid might represent a potential 
novel biomarker associated with diabetes.

Fig. 2  Pilot study using tear fluid samples. A Study set-up including 
the number of healthy participants and diabetic patients. B Identi-
fied metabolites as well as eicosanoids and eicosanoid-like features 
in tears using the 7.5-min and 20-min LC–MS methods (s. methods), 
respectively. C Head-to tail comparison of the recorded MS2 spec-
trum (black) to the reference spectrum from mzcloud (red) of oxybu-
procaine, which is the active ingredient of the eye drops all partici-

pants received prior to tear collection. D Two dimensional PCA of 
tear fluid stemming from healthy controls (64 volunteer profiles × 2 
eyes) and diabetic patients (8 × 2 eyes) is shown. PCA was calculated 
with a set of 226 metabolites (Supplementary Data) and success-
fully clustered diabetic patients (red circles) and healthy participants. 
Additionally, three healthy donors that donated tears more than once 
(violet, pink, and orange) are highlighted
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Further, a significant difference of oxybuprocaine, the 
active compound of the eye drops (Thilorobin®), was 
observed between diabetic patients and healthy controls 
(Fig. 3D). Oxybuprocaine was found at higher levels in 
tears of diabetic patients. This observation may indicate that 
the active ingredient of the eye drops was not as efficiently 
cleared within the eye in case of diabetic patients compared 
to healthy individuals. Metabolomic tear fluid analysis actu-
ally allowed the identification of individual medications. 
Next to metformin, which is the first-line oral medication in 
the treatment of T2DM [50], other diabetic medications such 
as pioglitazone, sitagliptin, or vildagliptin were success-
fully detected in some patients (Fig. 3E). Untargeted mass 
spectrometric analyses further led to the detection of other 
drugs in tears of diabetic patients such as the beta-blocker 
bisoprolol and the anticonvulsant gabapentin, which have 
indeed been taken by respective patients according to their 
questionnaire (Fig. 3F). Tropicamide, a medication used 
in diabetic patients during clinical examination in order to 
assess signs of diabetic retinopathy and to identify potential 
occurred damage to the retina, was specifically found in the 
tear fluid of diabetic patients.

These findings clearly demonstrate that tear fluid analyses 
revealed potential biomarker candidates for diabetes, which 
have to be further evaluated in larger patient cohorts to vali-
date if tear fluid analysis can be used as routinely applied 
tool for predictive population screening. Moreover, we have 
not only identified endogenous molecules, but also xenobiot-
ics that are associated with the disease (e.g. medication and 
artificial sweetener), allowing to non-invasively monitor a 
patient’s compliance regarding the intake of specific pre-
scribed medications, which may become relevant for patients 
suffering from dementia or Alzheimer’s disease. Together 
with the potential for economic point-of-care testing, tear 
fluid analysis is a promising tool for PPPM developments.

Several amino acids and other endogenous 
molecules were significantly elevated in tear fluid 
of diabetic patients

Statistical t-tests further uncovered several endogenous 
metabolites displaying significantly higher levels in diabetic 
patients compared to healthy controls (Fig. 4). Among them 
were the essential and non-essential amino acids aspartic 
acid (Asp), glutamate (Glu), glutamine (Gln), methionine 
(Met), methionine sulfoxide (MetO), serine (Ser), threo-
nine (Thr), tyrosine (Tyr), and valine (Val) (Fig. 4A). Previ-
ous metabolomics investigations have already linked these 
amino acids to insulin resistance and used them as predictors 
for T2DM risk [48, 51–53]. Moreover, citrulline, ornithine, 
and uric acid were found at significantly higher levels in dia-
betic patients (Fig. 4B), indicating an impaired metabolism 
(urea cycle and purine catabolism). High levels of uric acid 

have already been associated with diabetes; however, it is not 
yet clear whether uric acid contributes to the development of 
diabetes or if hyperuricemia is a result of insulin resistance 
[54]. An apparent accumulation of taurine in tears of T2DM 
patients, as presently observed, has already been described 
in case of dry eye syndrome [26]. Moreover, taurine levels 
may be increased in diabetic patients following the long-
lasting stress due to the metabolic disorder. Hence, taurine 
may represent a tear-specific biomarker for T2DM and/ or 
diabetic retinopathy.

Conclusively, tear fluid analyses revealed endogenous and 
exogenous metabolites that were differently regulated or spe-
cifically found in diabetic patients. This demonstrates the 
great potential of LC–MS-based tear fluid analyses for the 
characterisation of disease state(s) and to support biomarker 
discovery. This new approach may extend current means 
to asses individual health states, to identify potential new 
targets for therapeutic interventions, and to monitor thera-
peutic efficacy and to control patient compliance, which are 
all factors urgently needed in the context of PPPM.

Discussion

The present work clearly demonstrates that tear fluid sam-
pled with Schirmer strips can be used for individual meta-
bolic phenotyping. Tears are easily accessible, and their 
collection is non-invasive, painless, and fast, thus providing 
important characteristics regarding point-of-care testing. 
Compared to blood, the non-invasive nature of tear fluid 
collection supports repeated sampling of the same individual 
in order to evaluate dynamic biomarkers which is of great 
relevance for meaningful metabolic phenotyping. Moreover, 
a straightforward and quick (< 5 min) tear sampling method 
combined with a fast LC–MS analysis strategy (approxi-
mately 7.5 min for metabolites and 20 min for eicosanoids) 
(Fig. 1) offers the opportunity to use tear fluid for large-scale 
longitudinal metabolic studies and for predictive population 
screening.

Distinct metabolic composition of sweat and tear 
fluid

Since sweat has already been demonstrated to be a rich 
source for biologically highly relevant molecules [10, 
11], this study was conducted to evaluate the composi-
tion of tear fluid collected with Schirmer strips in greater 
detail. Therefore, sweat and tears from 20 healthy partici-
pants were collected in parallel in order to investigate and 
compare the distinct molecular composition of these two 
non-invasively sampled biofluids. While both biofluids are 
easily accessible, they also have specific properties: Sweat 
can be sampled in a highly frequent manner allowing 
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kinetic time-course measurements. Tears are less likely to 
be contaminated due to the protection of the eyelids and 
the lipid layer, and the sample volume can be determined, 
which is necessary for absolute quantification. Numerous 

endogenous and exogenous small molecule metabolites, 
which have previously been identified in sweat [10, 11], 
were also successfully profiled in the minute amounts 
of tears using the same LC/MS–MS methodology. 
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Interestingly, while some molecules were specifically 
detected in one biofluid, other molecules showed high 
abundance differences between the two specimens. For 
example, kahweol and the whole panel of eicosanoids 
and eicosanoid-like features were only detected in tear 
fluid. Molecules such as taurine and epinephrine were 
found at significantly higher levels in tears compared to 
sweat (Fig. 1). These findings highlight the potential of 
tear fluid analysis in order to successfully identify low 
abundant metabolites, which may be challenging to be 
detected in other biofluids such as sweat or blood due to 
matrix effects, pH, or polarity. Intriguingly, eicosanoids, 
important inflammatory mediators, were detectable solely 
in tears demonstrating that tear fluid may be a relevant 
biofluid allowing insights into disease-related metabolic 
alterations. Certain diseases often have multiple causes; 
thus, they may become detectable only at advanced stages 
due to diagnostic challenges. Earlier molecular diagnosis 
typically results in better treatment outcome and improved 
recovery [55]. Most importantly, the more data we can 
collect on these influencing factors in vivo with the help 
of biofluid analysis, the better we may understand differ-
ent pathologies. Thus, combining the analysis of several 
biofluids such as sweat and tears may be valuable to gain 
complementary information on individual metabolic traits 
and help to assess individual lifestyle parameters and 
health states as well as to facilitate a better understand-
ing for different disease pathologies. This may potentially 

lead to the identification of novel therapeutic targets and 
an improved prognosis.

The need for non‑invasive metabolic biomonitoring 
in type 2 diabetes

T2DM is a metabolic disorder that can cause long-term 
tissue damage and dysfunction of several organs, includ-
ing the eyes, eventually resulting in sight loss [56]. The 
underlying disease mechanism of T2DM is still not fully 
elucidated, and currently there exists no curative therapy. 
However, the treatment of pre-diabetes, meaning already 
impaired β-cell function and insulin resistance but not yet 
sufficiently high blood sugar levels for diagnosis, has been 
demonstrated to prevent disease progression [57]. Thus, 
identifying biomarkers to diagnose the disease prior to 
clinical manifestation or assess the risk for future insulin 
resistance and T2DM is crucial in order to initiate preven-
tive treatments by anti-diabetic drugs such as metformin 
and/or lifestyle intervention in time. As already known, 
ocular diseases (e.g. dry eye disease) as well as systemic 
diseases (e.g. diabetes) can lead to the accumulation of 
disease-associated molecules such as proteins or lipids in 
tear fluid. The fact that T2DM finally results in the devel-
opment of diabetic retinopathy in 50% of patients [58] 
justifies tears as a promising source for biological relevant 
molecules potentially serving as future biomarkers in per-
sonalised medicine. So far, most clinical metabolomics 
studies focusing on the identification of small molecule 
key players in the pathology of diabetes rely on the analy-
sis of blood/plasma. As metabolite profiles change con-
stantly due to varying environmental demands and disease 
progression, metabolomic measurements call for repeated 
analyses in a short timeframe in order to identify dynamic 
biomarkers. Thus, blood sampling is hardly applicable for 
time-course analysis due to several compliance issues. 
Moreover, the lack of inexpensive sampling methods 
and point-of-care testing devices as well as the absence 
of high-throughput analysis impede the development of 
clinical tools used for early disease detection [55]. Non-
invasive methods such as tear fluid sampling and analysis 
seem rather preferable. Since only small volumes of tear 
fluid can be collected and analytes are generally very low 
abundant, there is great demand for ultra-sensitive ana-
lytical methodologies. With the continuous improvement 
of detection sensitivity in mass spectrometric approaches, 
the analysis of the minute amounts of tear fluid and other 
alternatively sampled biofluids becomes feasible. Hence, 
an ultra-sensitive LC–MS method was used for the con-
duction of a clinical pilot study based on T2DM patients 
and healthy controls in order to evaluate tear fluid as a 
diagnostic biofluid for biomarker discovery in T2DM.

Fig. 3  Endogenous and exogenous metabolic differences between 
diabetic patients and healthy controls. A Multiparameter corrected 
volcano plot revealing significant differences of metabolites between 
diabetic patients and healthy controls. B–D Box plots of carnitine, 
nicotinic acid, sorbitol, tropicamide (n = 127 for healthy and n = 16 
for diabetes), metformin (n = 16), and oxybuprocaine (n = 44 for 
healthy and n = 16 for diabetes) are shown for healthy controls and 
diabetic patients. Since data was not normally distributed, two-tailed 
unpaired t-tests (Mann Whitney test) were performed, demonstrating 
the significant increase. Oxybuprocaine is only demonstrated for all 
study participants receiving the same product of eye drops (Thilor-
bin®, for healthy n = 44, for diabetes n = 16), resulting in a p-value of 
0.0105. Metformin and tropicamide were only measured in diabetic 
patients (n = 14); thus, a one sample, two-tailed t-test was performed. 
Boxes are represented as mean and standard deviation. *** = p-value 
of < 0.0001; * = p-value of < 0.05; nAUC normalised area under the 
curve. E–F Head-to-tail comparison of recorded versus reference 
spectra taken from mzcloud for type 2 diabetes mellitus-specific med-
ication metformin (RT = 0.45 min, identified in all diabetic patients 
except for donor 53), pioglitazone (RT = 4.92 min, only detected in 
donor 97), sitagliptin (RT = 3.80, only measured in donor 64), and 
vildagliptin (RT = 1.80, only found in donor 103) as well as for the 
drugs bisoprolol (RT = 4.75 min, only taken by donor 61), gabapen-
tin (RT = 2.09 min, only consumed by donor 53), and tropicamide 
(RT = 2.95 min, identified in all diabetic patients). All of them have 
been identified by the Compound Discoverer Software with a match 
factor > 95 and subsequently verified via the patients’ questionnaire. 
RT, retention time

◂
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Tear fluid proves as rich source for biomarker 
discovery in type 2 diabetes mellitus

The opportunity of analysing tear fluid in order to identify 
potential biomarkers supporting the clinical management 
of T2DM was presently investigated in a pilot study based 
on 20 healthy volunteers and 8 T2DM patients. Therefore, 
the molecular composition of tear fluid was assessed by 
applying comprehensive LC–MS-based metabolic profil-
ing and subsequently evaluated regarding significant differ-
ences between the study cohorts. Altogether, our methodol-
ogy allowed the identification of 226 metabolites as well 
as 70 eicosanoids and eicosanoid-like features in tears of 
all study participants (Fig. 2). Statistical analysis between 
diabetic patients and healthy controls revealed significant 
difference of certain metabolites, but no significant changes 
in the eicosanoid composition was observed. Regarding 
metabolites, we were able to detect medications such as 
metformin, bisoprolol, and gabapentin only in tears of dia-
betic patients as a result of their individual clinical treatment 
(Fig. 3). These findings proofed our analysis strategy as valid 
approach for further investigation of biomarker discovery. 
Statistical analyses revealed a significant up-regulation of 
many amino acids (Asp, Glu, Gln, Met, MetO, Ser, Thr, Tyr, 
Val) as well as the endogenous metabolites carnitine, citrul-
line, ornithine, and uric acid in tears of patients suffering 
from T2DM (Figs. 3 and 4). All of these metabolites have 

already been linked to diabetes and/or diabetic retinopathy, 
demonstrating that our results agree with data described in 
the literature [41, 48, 49, 53, 59–61]. Nonetheless, we have 
further identified nicotinic acid and taurine to be signifi-
cantly accumulated in tears of diabetic patients; both have 
not been reported before and may represent novel biomarker 
candidates for T2DM, which have to be further evaluated in 
larger study cohorts.

The role of branched chain and aromatic amino 
acids, uric acid, and taurine in T2DM

High serum levels of branched chain amino acids (Val, leu-
cine, isoleucine) together with the aromatic amino acids phe-
nylalanine and tyrosine can be used as predictors for iden-
tifying individuals at high risk of developing future insulin 
resistance and T2DM. Levels of these amino acids may be 
relevant up to 12 years before disease onset [40, 53]. It is 
speculated that these amino acids act via the same pathways 
as insulin, namely the activation of the mammalian target of 
rapamycin (mTOR) and its downstream targets. On the other 
hand, accumulation of these amino acids may cause mito-
chondrial dysfunction via stress kinase stimulation resulting 
in β-cell apoptosis. Both effects may lead to insulin resist-
ance and T2DM [62]. While elevated serum levels of the 
respective amino acids have been already reported, we were 
able to demonstrate the accumulation of many amino acids, 

Fig. 4  Tear fluid analyses reveals differences in endogenous metabo-
lites that have already been linked to diabetes. A–B Box plots of 
essential and non-essential amino acids that were significantly up-
regulated in diabetic patients (n = 16) in contrast to healthy controls 
(n = 127). Statistical analyses further revealed a significant elevation 
of citrulline, ornithine, taurine, and uric acid. Normality of the data 
was checked, but data did not stem from a Gaussian distribution. 

Two-tailed, unpaired t-tests (Mann Whitney Tests) were performed to 
confirm significance. Boxes represent means and standard deviation. 
**** = p-value < 0.0001, *** = p-value < 0.001, ** = p-value < 0.01, 
and * p-value < 0.05; Asp, aspartate; Glu, glutamate; Gln, glutamine; 
Met, methionine, MetO, methionine sulfoxide; nAUC, normalised 
area under the curve; Ser, serine; Thr, threonine, Tyr, tyrosine; Val, 
valine
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i.e. Asp, Glu, Gln, Met, MetO, Ser, Thr, Tyr, and Val, also 
in the tear fluid of patients suffering from T2DM. Similar 
to amino acids, high serum levels of uric acid were already 
linked to diabetes, but diabetes-related accumulation in 
tears was not yet reported. Serum hyperuricemia has been 
strongly associated with pre-diabetes and T2DM since the 
1920s; however, it is not clear if accumulation of uric acid 
is due to reduced kidney function associated with diabetes 
or if hyperuricemia contributes to diabetic pathology. Yet, 
it has been shown that uric acid can induce mitochondrial 
oxidative stress resulting in impaired fatty acid oxidation, 
insulin-dependent nitric oxide release, and glucose deliv-
ery [63]. Taurine, which has several important functions 
including membrane stabilisation, antioxidation proper-
ties, osmoregulation, and being a pro-inflammatory regula-
tor, was shown to be decreased in plasma levels of diabetic 
patients in contrast to healthy controls [26, 64]. Here, we 
have observed contrary results: while decreased plasma 
taurine levels have been reported, taurine levels in tears 
were significantly increased in diabetic patients compared 
to healthy participants. Taurine concentrations were found 
to be elevated in stressed states, including the inflammation 
of the ocular surface in dry eye disease [65]. T2DM has 
also been associated with ocular surface changes and dry 
eye symptoms; hence, taurine could be a novel biomarker 
specifically found in tears of diabetic patients reflecting an 
imbalance of metabolic homeostasis due to long-lasting 
stress and inflammation of the ocular surface [66].

The potential of tear fluid analyses to support PPPM 
concepts

Metabolic phenotyping of tear fluid derived from T2DM 
patients and healthy controls enabled the successful identi-
fication of many meaningful marker molecules potentially 
serving as future biomarkers. While many of them were 
already linked to the pathology of diabetes, others seem 
to be a result of the general metabolic imbalance associ-
ated with diabetes. This study clearly demonstrates that 
tear fluid analyses may not only be used to assess per-
sonal health states and lifestyles by evaluating endogenous 
metabolites but also has the potential to monitor the intake 
of xenobiotic medications used in the treatment for T2DM 
in an individualised fashion. Follow-up clinical studies 
using tear fluid of larger study cohorts are needed in order 
to evaluate the power of suggested biomarker candidates. 
Conclusively, mass spectrometry-based tear fluid analysis 
seems a powerful tool to identify and quantify changes 
associated with ocular or systemic diseases and may thus 
facilitate the development of novel PPPM-related applica-
tions. This includes identifying reliable biomarker candi-
dates for an early prediction of individuals at risk, finding 
novel pharmacological targets for treatment interventions 

as well as monitoring therapeutic efficacy, and, thus, may 
lead to improved prognosis and to tailor individualised 
treatments for personalised medicine. Compared to blood, 
tears can be obtained non-invasively in a frequent manner 
(around 3 times per day to avoid risk for eye irritation). 
Moreover, sample preparation and analysis are quick, easy, 
and cost-effective. Both factors are needed for preventive 
population screening, which may be achieved with the help 
of tear fluid analysis. Last but not least, tears are in close 
proximity to disease location (e.g. diabetic retinopathy) 
and may thus provide more reliable biomarker candidates 
for ocular pathologies in contrast to biomarkers in blood, 
where relevant molecules may be far from their disease 
origin and may potentially be diluted [16].

Strength and limitations

Schirmer strip collection was chosen for tear sampling as it 
is fast, non-invasive, easy, gentle with minimal discomfort 
for patients, thus, ensuring patient compliance and allow-
ing to collect multiple samples from the same participant. 
Sample preparation of Schirmer strips is straightforward 
and inexpensive. Nevertheless, Schirmer strip collection 
could slightly irritate the eye and induce reflex tear secre-
tion in some subjects and may alter tear fluid composition. 
Moreover, evaporation of water collected with the strip 
cannot be excluded, which may result in higher appar-
ent concentrations and may impede the determination 
of actual collected tear volume and, thus, also absolute 
quantification [12]. We have already demonstrated that 
the kinetic profiles combined with mathematical mod-
els of biochemically related pairs such as caffeine and its 
metabolites can overcome this normalisation problem and 
enable the determination of individual sweat flux rates, 
which can easily be applied to tear fluid analyses as well 
[11]. Metabolomic profiling of tear fluid using LC–MS/
MS is quick and highly sensitive and revealed that tears 
are a rich source for many endogenous and exogenous 
metabolites. The presented approach further allowed to 
identify significant differences between healthy controls 
and diabetic patients, thereby, demonstrating the applica-
bility of tear fluid analyses as a diagnostic and prognostic 
tool for clinical applications. However, the sample cohort 
of this pilot study was quite small, the T2DM sample size 
was limited, and groups were not age/ BMI matched; thus, 
other confounders causing these characteristics cannot be 
fully excluded. Hence, the findings of this study will have 
to be tested in larger cohorts, which may even allow the 
identification of further biomarkers and potential targets 
for therapeutic intervention for diabetes.

119EPMA Journal (2022) 13:107–123



1 3

Conclusions and outlook

We conclude that tear fluid analysis has the great potential 
to support further developments of PPPM strategies as tears 
can be sampled non-invasively, gently, and repeatedly, and 
thus, it allows cost-effective point-of-care testing. Moreover, 
tears are optimal for personalised prediction, patient strati-
fication, monitoring of treatment efficacy, and disease pro-
gression as well as for individualised prevention screening. 
Tears represent a rich source of different classes of endog-
enous and exogenous metabolites including eicosanoids. 
Profiling of these metabolites may enable the assessment of 
individual health states as well as the identification of bio-
marker patterns to environmental changes and disease states. 
These patterns may provide a more accurate understanding 
of molecular disease mechanisms, and may thus be used 
for the identification of biomarker candidates for person-
alised prediction, diagnosis, and prognostic assessment of 
diseases in the framework of PPPM. We have demonstrated 
that the tear fluid composition of diabetic patients and con-
trols displayed significant differences and presented a panel 
of potential tear-specific biomarkers. Ongoing research may 
be able to relate dynamic molecular patterns obtained by 
tear fluid analysis with other ocular and systemic disease 
states or identify individuals at high risk for certain dis-
eases. Moreover, a larger diabetes cohort is required to test 
the presented biomarker signature with regard to specificity, 
accuracy, and sensitivity in order to transfer it to clinical 
practice. To conclude, we suggest that tear fluid analysis 
offers many opportunities for applications in personalised 
medicine ranging from identifying reliable biomarker pat-
terns over assessing individual health states to the monitor-
ing of patient compliance and therapeutic efficacy.
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