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HIV/AIDS drug treatments, one of which is highly active anti-retroviral ther-apy (HAART), often fail by the
emergence of drug resistant virus. In this paper we study a quantitative method to evaluate the chance of resistant
virus gen-eration. To this end we develop a mathematical description of the possibility of the emergence of
resistant virus species against drug treatments, depend-ing on the trajectories of the state variables of HIV
infection dynamic model. By simulation studies of mathematical models we apply the proposed analy-sis method

to HIV/AIDS drug therapies, improved gradual dosage reduction (iGDR) and structured treatment interruption
(STI). Based on the analysis it can be explained the reason why STI therapy often fails. Moreover it is con-cluded
that iGDR is desirable particularly by decreasing the threat of resistant virus emergence.

1. Introduction

Acquired immune deficiency syndrome (AIDS) is induced by the
infection by human immunodeficiency virus (HIV) [1]. When HIV
infection progresses further, the function of immune system is consid-
erably disturbed. Accordingly the infected person becomes significantly
vulnerable to other infections, for ex-ample, tuberculosis, tumours, and
opportunistic infections. Note that these infections usually do not have
serious effect on people with proper functions of immune systems [2].

Infected CD4 T-cells can be destructed by direct viral suppression
action or by CD8 cytotoxic lymphocytes (CTL) which indicate infection of
CD4 T-cells. When the count of CD4 T-cell is less than 200/mm3, the
infected patient is claimed to be AIDS patient [3]. Cell-mediated immu-
nity of AIDS patient does not perform properly. Thus the human body of
AIDS becomes substantially sus-ceptible to other opportunistic in-
fections, resulting in death. The survival time for HIV infected patient is
approximately evaluated as 9-11 years, without any HIV/AIDS therapy.

Highly active anti-retroviral therapy (HAART) is able to control the
number of HIV effectively in the human body. As a result HAART makes
the immunity of the human body to be maintained and thus it can pro-
hibit other opportunis-tic infections [4]. However we know that the
therapy cannot exterminate HIV in infected patient, which means that
HIV patient has to take long term HAART drug treatment. At the moment
it considers that HIV/AIDS treatment is dif-ficult because the cost of
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anti-retroviral drugs is expensive and also the drug treatment schedule is
complicated.

Note that HAART treatment can cause adverse side effects, including
fatal liver damage. It is one of the most common causes of infected pa-
tients' death. Thus, instead of long term drug treatment of HAART, it is
desired to develop such a drug therapy that further drug treatment can be
stopped eventually, by helping the immune systems enhanced to work
appropriate.

If HIV infected patient has no proper treatment, then the patient is
prone to progress towards AIDS status. As a result the patient dies due to
other opportunistic infections. Note that, however, all infected patients
will not do necessarily. Among the HIV infected patients producing the
virus antibodies a few examples of long-term non-progressor (LTNP)
have been discussed in [2].

It is known that LTNP patient does not progress towards AIDS status
for over 15 years. The count of CD4 T-cell of LTNP patient is maintained
signif-icantly higher than that of other HIV patients. This implies that the
immune response of LTNP patient is able to work effectively against
other opportunistic infections. To explain the LTNP phenomenon, several
mathematical models have been proposed and investigated [5, 6].

Such HIV mathematical models have two' asymptotic stable equi-
libria with-out any administration of medicine. One of the equilibrium
points corresponds to the full-blown status of AIDS, while the other
does to the status of LTNP. When a person is initially infected with
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HIV, unfortunately the state vector of the infected patient is mostly
located in the region of attraction for the equilib-rium corresponding
to AIDS status. Only for few exceptions, the state vector is located in
the region of attraction for the equilibrium corresponding to LTNP
status. In consequence HIV infected patients mostly progress towards
the status of full-blown AIDS unless the patient is treated by a therapy
specially designed to drive the HIV patient state towards the LTNP
status.

For implementation of such a special treatment, the strategy of
structured treatment interruption (STI) has been investigated in [5, 6, 9].
This strategy is a scheduling method for drug treatment, switching be-
tween zero dosage and full dosage of drug. One of practical problems of
the strategy is that it strictly relies on the model parameters, usually hard
to be estimated precisely. Hence the result of this strategy is considerably
sensitive to the parameter uncertainty. To deal with such a problem we
employ control systems perspective. Note that if we apply model pre-
dictive control (MPC) method then the feedback property of this method
help to solve such a problem to some extent [10, 11].

However even in case that we apply MPC technique the controlled
system sta-bility is not still guaranteed if the designed schedule of drug
administration is not followed accurately.

In order to solve such a drawback with respect to sensitivity, gradual
dosage reduction (GDR) method has been proposed in [12], in which this
technique is applied to the 4-dimensional HIV mathematical model of
[5]. The technique has been applied in [13] to the 5-dimensional HIV
infection model of [6]. GDR is not sensitive to the parameter uncertainty
and robust with respect to the schedule of drug treatment. Therefore this
method can overcome the drawbacks of STI and MPC.

In the meantime the generation of drug resistant HIV species is a
critical problem for HIV drug therapy, because it is one of the most sig-
nificant rea-sons for the failure of HIV drug treatment [3, 5, 9, 11, 14].
The emergence of resistant virus species is related to the quantity of
administered HIV drug [15]. An optimal control problem for the HIV
schedules has been addressed in [16] particularly based on the cost
function including the constant probability of drug resistance risk, and a
more extensive study can be found in [17]. Besides HIV/AIDS disease, it
is notable that drug resistance in cancer treatment has been investigated
in [18] while antimicrobial resistance in bacterial treatment with anti-
biotic usage has been researched in [19].

To address the drug resistance problem in HIV/AIDS treatment,
improved gradual dosage reduction (iGDR) has been proposed in [20].
Based on GDR, the improved scheduling method is suggested to decrease
the amount of admin-istered HIV drug reducing the possibility of gen-
eration of drug resistant virus mutation.

Although iGDR has been designed to consider drug resistance in anti-
retroviral therapy, the reducing effect on the generation of drug resistant
species of HIV has been analysed only qualitatively in [20]. Note that any
quantitative measure method has not been developed so far to estimate
the chance of the emergence of drug resistant virus.

A preliminary study of this research has been presented in [21]. Based
on the preliminary study, in this paper we investigate an evaluation
method to estimate the risk of drug treatment of HIV infection. The paper
shows how our proposed method is designed and how it works for some
exemplary cases. Moreover we apply the method to drug scheduling
strategies to compare them with respect to the risk of drug resistant
generation.

The paper organises as follows. In Section 2 we introduces the HIV
math-ematical model studied in this research and provide a short sum-
mary of the research from [5, 12, 20]. Then Section 3 suggests a quan-
titative evaluation method to measure the expectation of the emergence
of drug resistant species by HIV drug administration. In Section 4 we
present case studies of the appli-cation of the proposed estimation
method to the HIV drug scheduling schemes introduced in Section 2, and
we discuss the results with additional remarks. The paper concludes in
Section 5 with a summary of the main contribution and further research
directions.
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2. Background and motivation

In this section we present the 4-dimensional HIV mathematical model
sug-gested in [5]. Also we provide a summary of the drug scheduling
strategies, i.e., STI and iGDR, as well as their simulation results. Finally
we introduce the motivation of the research of the paper at the end of this
section.

2.1. HIV model

Several mathematical models have been researched so far to describe
the dynamic reaction between the immune response and HIV. For a
detailed expla-nation on modeling, refer [3, 14].

In particular the mathematical models in [22, 23] do not include any
term corresponding to memory CTL. Thus the state is led to the AIDS
status in these models if drug administration is stopped. Such models can
be considered to study the dynamic response of initial infection of HIV
whilst they cannot be used suitably to investigate long term plan for HIV
drug treatment.

Note that the model in [5] includes the term describing memory CTL
dy-namics, thus it has the equilibrium point which corresponds to the
LTNP status.

We here consider the 4-dimensional HIV mathematical model,
namely

(1) = 4 — ax() = npy(1)x(1),
(1) = npy(0)x(t) — ay(t) = pz(0)y(1), o))
w(r) = CX((t)y(t

t

w(t) = cqy(t)w(z) — bw(t),
t

The states, i.e., x, y, w, and 2, are the concentrations of uninfected CD4
T-cell, HIV-infected CD4 T-cell, memory CTL, and helper dependent CTL,
respectively. Therefore the states are all positive real. In model (1) the
virus is not needed to be represented as state directly because the state y
approximates HIV proportionally.

The parameters of the model are normalised, which implies that the
states do not represent real clinical measures necessarily. For model (1)
the time unit is ‘day’. For a detailed description of model (1), refer [5].

The 7 term (0 < n < 1) is modified to describe the drug suppression
effec-tiveness on model (1). To this end the term is rewritten as

n=1-n*u 2)

The maximum level of the drug effect is presented by the parameter
n*. Thus if a drug is able to prevent maximally 92% of virus infection,
then #* is defined as 0.92. Consequently the control input u (0 < u < 1)
describes the amount of administered drug.

The final purpose of HIV drug scheduling in this paper is to drive HIV
patient towards the status of LTNP so that the drug treatment can be
stopped. The four equilibria of the model is analysed to see whether the
purpose can be realised or not. For a detailed description of the analysis
on these equilibria, see [12, 20, 24].

For the exemplary model parameters suggested in [5], only two of the
equi-libria show asymptotic stability under the condition of no medica-
tion, u = 0. One of these two points represents the status of AIDS, while
the other does the status of LTNP. The point corresponding to the LTNP
status is with compara-tively high level of uninfected CD4 T-cell state and
memory CTL state. Thus it makes possible for the immune system to work
properly, responding effectively to other opportunistic infections.

2.2. Scheduling strategies for HIV drug treatment

To drive the HIV infected patient towards the status of LTNP, STI
method has been researched in [5, 6, 9], while GDR and iGDR methods
have been investigated in [12, 13, 20].

Here we will not provide the full descriptions of these strategies.
Instead we show some simulation studies of the strategies to help to
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understand how the strategies' procedures work. For the detailed ex-
planations of the implementation steps, refer [5, 12].

For the simulation studies we employ the initial state and the model
param-eters of [5], namely4=1,d=0.1,=0.5,a=0.2,p=1,c=0.1,
q=0.5,b=0.01, h = 0.1, y* = 0.9958, and [x(0), y(0), w(0), 20017 =
[0.52786, 3.5889, 0.035628, 0.063932]”. The initial state corresponds to
a status of full-blown AIDS patient [5].

A computer simulation of STI scheduling method is carried out, and
Figure 1 depicts the result. Drug administration is interrupted twice
throughout the simulation of drug scheduling, as shown by the control
input u(t) in Figure 1. As a result the STI scheduling technique leads the
state of the model to the status of LTNP, described by the point [9.47,
0.011, 813.96, 4.53]7 for the given parameters. This implies that with the
enhancement of states w and z the immune system can respond effec-
tively to HIV without further HIV medication. Meanwhile Figure 2 pre-
sents the result of a simulation study of iGDR schedul-ing method of [20].
By this scheduling scheme the HIV patient state is driven to the status of
LTNP. In the later sections of this paper, we study the results of both
simulation examples. While these two scheduling strategies lead the state
of HIV patient towards the status of LTNP eventually, comparison
research is carried out with respect to the chance of drug resistance
generation.

2.3. Motivation of research

Partial HAART is still able to suppress the viral load close to the viral
load under full HAART or the viral load of the LTNP status [20]. More-
over the viral load during the therapy suggested in [20] is comparatively
lower than the viral load during STI therapy of [5, 6, 11, 15, 25].

In STI protocol the drug dosage is controlled to switch between ‘On’
Sta-tus and ‘Off’ status, in other words, between full HAART medication
and no administration of drug. It has been suggested in [15] that STI
scheduling with such switching method should minimise the possibility
of establishment of drug resistant virus due to the following reasons: if
HIV patient does not take any administration of anti-retroviral drug, then
the HIV level in patient increases. It could be considered that in this case
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Figure 1. A simulation study of STI scheduling method of [5].
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Figure 2. A simulation study of iGDR scheduling method of [20].

the virus strain of wild-type is significantly competitive to survive,
compared to any mutation strain. This implies that the mutant HIV
cannot continue to survive in such situation. Meanwhile in the case with
full medication the viral load is too low for HIV mutant strains to be
established. Note that, if any HIV mutant strain is established, then this
full medication condition helps the drug resistant virus to survive
without difficulty.

Because the STI method utilises only two states of drug dosage, full
dosage and zero dosage, it has been suggested that this drug scheduling
strategy minimises the risk of emergence of drug resistant virus [15].

However it is notable that the STI scheduling method continues to
switch be-tween these two medication states, rather than to stay at one
state steadily. For example we here consider the switching instance from
no medication treatment to full medication treatment. Note that at this
instance the risk of generation of drug resistant strain is maximised by the
aforementioned analysis from [15]: according to [15], at this instance the
viral load level at the instance is a certain positive so that the drug
resistant strain might exist, and such resistant strain becomes more
competitive for survival than the wild type strain when switched to full
medication treatment.

Meanwhile the GDR and iGDR strategies of [12, 13, 20] exploit partial
dosage of suppressive drug therapy. Nevertheless the treatment strategies
keep signifi-cantly low level of viral load during the treatments. In the
following section we investigate a quantitative evaluation method to see
which HIV drug scheduling strategy induces greater risk of generation of
drug resistant HIV mutation.

3. Chance of emergence of drug resistant virus

The GDR and iGDR treatments, as illustrated in Section 2, can
decrease the total amount of drug administered during the treatments.
This could imply that the treatments can reduce the risk of emergence of
drug resistant virus, To support the implication quantitatively, we here
provide an estimation method for the risk of generation of drug resistant
mutation.
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3.1. Suggestion of estimation function form

Now we present some results from [26] to be used in this research.
Require-ments which the evaluation tool must satisfy is provided in [26].
The require-ments have been derived in [26] based on biological systems
perspective.

Requirement 1: The emergence of drug resistant strain has positive
relation with viral load.

Requirement 2: Without wild type virus, drug resistant virus does not
exist. Requirement 3: The emergence of drug resistant virus is mono-
tonically in-creased by administered dosage of HIV drug.

Requirement 4: Without HIV drug administration, drug resistant
strain is not generated.

Requirement 2 and requirement 4 represent particular cases of
requirement 1 and requirement 3, respectively. Requirements 1 and 2 are
induced by the fact that the drug resistant strains are generated from the
genetic error of wild type strain [3, 14]. Requirements 3 and 4 come from
the fact that the drug resistant virus can survive with stronger competi-
tiveness than wild type virus during drug therapy [15].

In [26] a function form has been defined satisfying the four require-
ment conditions. The proposed function form F is described as follows.

F (1) = F (Vititep Uptitep B Te)- 3

t; is the instant of time at which drug therapy is initiated while t, is the
instant of time at which we evaluate the possibility of the emergence of
drug resistant strain. Consider that t; is the instant of time at which drug
therapy is terminated. If we evaluate the risk during drug therapy, t. < t;.
If the risk is estimated after drug therapy, t, > t1.

The y state of model (1) for time period [t; t.] is denoted by y| r]. The
controlled input u for time period [t; t.] is represented by ujg re.

Without loss of generality we assume t; = 0. Now the Eq. (3) is rewrit-
ten as

F(t) = F(y u, t). (€]

Note that we denote upg ] and ypo) by u and y, respectively, to
simplify the notation in (4). By means of function F (t,) of (4) we evaluate
the chance of drug resistance emergence at the instant of time ¢, based on
y(®) and u(®) for 0 <t <t,.

Note that the value of F (t.) of (4) could be greater than one, implying
that the value of the function is not considered as probability. One value
of the function would not have any practical implication. Instead, values
of the function can be used to compare multiple drug scheduling methods
with respect to the emerging chance of drug resistant species.

The model (1) can be simulated for different drug scheduling strategies
with one initial condition. Then the values of F (-) for the drug strategies
are calcu-lated. With these values we could compare the strategies. From
the perspective of the emergence of drug resistant species, we examine
which drug scheduling method is more desirable than other methods.
Such a quantitative investiga-tion, for example, with function F (-) of (4)
has not been reported so far to estimate the risk drug resistant mutation.

The value of function F (-) is not related to probability. Instead its
implica-tion could be explained as follows: model (1) does not have any
term to describe dynamics of drug resistant species. For some examples of
mathematical mod-els with mutant HIV strain refer [3, 14, 27, 28, 29].
Thus once drug resistant strain is established, mathematical model
including no dynamic term for mu-tant species, such as model (1), cannot
represent the behaviour of virus infection dynamics in a proper way
anymore.

Consequently the higher the value of function F (-) from the state
trajectory of model (1) is, the less the simulation up to evaluation time ¢,
describes the realistic behaviour of the HIV infection dynamics. That is to
say, a great value of function F () is considered that the current simu-
lation would not show precise result due to the possible establishment of
drug resistant species. Accordingly function F (-) increases monotonically
with respect to evaluation time t,.
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Now we recall a function from [21], satisfying the four requirements
and then we study characteristics of the function.
For the form of (3), a function is suggested in [21] as

Fly, u, 1, 1,) = / () un)" / Cu(n)'de, | dr. ®)

In this equation [, m, and n are positive and real constants. The
properties of the function are clearly consistent with all the requirements
suggested in this subsection. Also F of (5) is monotonically increased with
respect to t,, as stated above. Noticeably F of (5) is not the only function
with which the requirements can be satisfied, that is, there can be other
forms of functions.

In [21], the following function has been proposed as one of examples,
based on (4) with (5) wherel=1,m=1,n=1,and t; = O:

Fly.u,16) = /0 () < / ’ u(zz)dh)dzp ®)

The integrations in (6) can be explained term by term as follows: The
term y(t;)u(t;) is proportional to the emergence of drug resistant virus at
t; (t; € [0, t]). Note that if the product of virus load and drug adminis-
tration increases the possibility of resistance emergence becomes higher
[30]. By the discussion in Subsection 2.3, for the drug resistant strain
emerging at t;, the establishment is related to the drug dosage over t > t;.
Thus it is assumed that the possibility that drug resistant strain has
been established and exists at t, (t, > t;) is proportional to the term f:f

u(t)dt, describing the accumulation of drug administration for the
period [ty, t.].

In the following section we show how to apply the function F of (6) to
some examples, including the cases discussed in Subsection 2.2.

4. Application examples

In the section we demonstrate some applications of F of (6). As a
result we illustrate how the suggested function (6) works for exemplary
cases of HIV drug treatment. Then we compare the two HIV drug
scheduling methods of Subsection 2.2 with respect to the emergence of
drug resistance, particularly based on the function (6).

4.1. Application to illustrative cases

In this subsection we provide application examples of function (6) for
some illustrative cases of HIV treatment. These application examples
show how F of (6) can present the emergence of drug resistant strain,
helping to understand the function F.

It is noted that the y(t) and u(t) data employed in this subsection are
artifi-cial. Hypothetically the functions of time, y(t) and u(t), are gener-
ated in order to demonstrate evaluation of F of (6). We do not obtain the
data from com-puter simulations or from clinical cases. Note that in the
following subsection we study with y(t) and u(t) obtained from simula-
tion result.

At first we discuss two trivial cases, i.e., no drug input case and no HIV
infection case. Consider a case with u(t) = 0 (0 < t < t,), no drug
administra-tion. Then for any positive value of t,, F (y, y, t.) is 0 by (6).
Consider a case with y(t) = 0 (0 < t < t,), uninfected by HIV. Then for any
positive value of t,, F (¥, 1, t.) is 0 by (6). For these trivial cases we can see
that the function works properly as an evaluation method to the emer-
gence risk of drug resistant virus.

From Figures 3, 4, 5 and 6, we discuss more realistic 10 scenarios
which can occur during HIV drug therapy. We present three examples,
i.e., cases 1, 2, and 3 in Figure 3. For the 3 cases, we assume that the drug
administration u(t) is u(t) = 0.5 (0 < t < t,) where t, = 100. The top panel
of Figure 3 depicts y(t) corresponding to the cases, explained in the
legend of Figure 3.
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Figure 3. The integrands of function F of (6) corresponding to case 1, case 2,
and case 3, respectively. For the cases te = 100 and input u is assumed to be

L

constant. fi(t) = [u(tz)dt; and f2(t) = y(t)u(t). Accordingly the product f1(t)
t

f2(t) is the integrand term of F of (6).
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Figure 5. The integrand of the function F (y, u, te) of (6) for case 8 and case 9.
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Figure 6. The integrand of the function F (¥, u, te) of (6) for case 10 and case
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Note that fi(t) = fu(tz)dtg and fo(t) = y(Hu(t) in this figure. This
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implies that f()f2(t) represented in the bottom panel is the integrand
term of F of (6). The values of F for case 1, case 2, and case 3 are evaluated
as 1250, 1054.7, and 820.31, respectively.

Figure 4 describes four examples, that is to say, case 4, case 5, case 6,
and case 7. For these examples y(t) is assumed to be constant, thus y(t) =
0.5 for 0 < t < t, where t, = 100. The top panel of Figure 4 indicates u(t)
employed by each example (see the legend). F (y, y, t,) of the cases 4, 5, 6,
and 7 are obtained as 625, 2500, 1435.5, and 1377.0, respectively.
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Figure 8. The integrand of the function F (y, u, te) of (6) for the iGDR treatment
te
example of Subsection 2.2. Note that t. = 1, 000, f1() = [u(tz)dty , and fo(t) =

t

Y®u(®.

Heliyon 7 (2021) e05883

fo(t) of case 1 is equal to fo(t) of case 5 whereas fi (t) of case 1 is not the
same with f;(t) of case 5, because u(t) of case 1 is different to u(t) of case
5. Accordingly the values of F for case 1 and case 5 are different. Likewise
the value of F of case 2 is not equal to that of case 6 even though the
cases employ the same f,(t). Note that case 3 and case 7 also show such a
result.

Figure 5 shows two examples, i.e., case 8 and case 9. y(t) of the case 8
is equal to that of the case 9 as indicated in the second panel while u(t) is
depicted in the top panel (see the legend). The case 8 could be considered
as an HIV- infected patient who becomes insensitive to HIV drugs so that
the treatment cannot suppress its viral load anymore. The case 9 corre-
sponds to a case where the viral load rebounds after interruption of HIV
treatment. F (y, u, t,) of the cases 8 and 9 are computed as 2656.2 and
625.125, respectively.

Figure 6 presents two examples, i.e., case 10 and case 11. u(t) and y(t)
considered in these cases are described in the first and the second panels,
re-spectively (see the legend). In the case 10 the drug therapy is inter-
rupted at 10 (day) and y(t) begins to increase and then the HIV treatment
reinitiate at 30 (day) and the viral load is controlled to the initial state
while in the case 11 u(t) is zero for 50 < t < 70. Note that these cases can
describe the process of STI scheduling therapy and also see how this
scheduling method influences the value of F of (6). F (y, u, t,) of the cases
10 and 11 are evaluated as 1178.4 and 650.415, respectively.

4.2. Application to the HIV drug therapy

In this subsection we obtain the values of the function F of (6) for the
simulation examples of STI and iGDR scheduling methods in order to
compare the two strategies with respect to the risk of drug resistance.

Thus f1(8)f2(t) is the integrand.

To calculate the function F of (6) for the STI simulation example we

first plot the integrand of the function, as shown in Figure 7. In the figure

te
A= f u(tz)dt; and fo(t) = y(®)u(t), assuming that t, = 1, 000. Then F (1,

t
000) = 6.6883 x 10° for the STI example, using the graph of f,(O)f2(0).

Note that for this STI example F (t,) = 6.6883 x 10° for t, > 350 since
u(t) = 0 for t > 350. Also note that the integrand goes to high values when
the drug administration changes from no dosage to full-dosage, as we
predict in 2.3. Based on Figure 8 we also calculate the function F for the
iGDR simulation example. Assuming that t, = 1, 000, F (1, 000) = 4.9584
x 10° for this example, considerably lower than the value for the STI
simulation example.

Note that for this iGDR example F (t,) = 4.9584 x 10° for t, > 357
because u(t) = 0 for t > 357. Mostly this value is obtained from the early
stage of the simulation since, compared to the STI example, there is no
such a high peak value of the integrand in the middle of the simulation.

Remark: In this paper we develop a method to estimate the possibility
of the emergence of drug resistance in HIV therapy. In this section we
demon-strate examples to show the applications of our proposed esti-
mation method and the proposed evaluation method is used to compare
different drug scheduling methods with respect to the drug resistance
emergence. Such a comparison can hardly be found elsewhere in the
literature but the estimation method proposed in this paper can be car-
ried out for the comparison study.

5. Conclusions

The paper is now concluded with a summary of the work and further
research direction.

Based on the preliminary study in [21], this paper has proposed and
investi-gated a quantitative estimation method measuring the emergence
possibility of the drug resistant virus. So far such possibility has been
qualitatively estimated only. In this paper function of (6) has been
developed in Section 3 and then we have applied it to the examples of
two HIV drug scheduling schemes, STI and iGDR. According to the
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research of this paper we could evaluate these two schemes by a
perspective of the risk of drug resistant emergence.

Although the analysis method of the paper can be applied to compare
a drug scheduling scheme with other schemes with regard to the possi-
bility of drug resistance emergence, it is assumed that we can obtain the
time histories of state variables of dynamic infection model. Note that in
this paper we have studied simulation cases for HIV drug treatment. In
order to be employed for the clinic treatment cases the method should be
further researched with discrete-time measurement of the state variables
due to the realistic limitation from the HIV/AIDS drug therapy. This
could be one of the most significant future works. In this paper for the
analysis of the cases of Section 4 we have mainly em-ployed (6) with [ =
1, m =1, and n = 1, which is one example of the general form (5). This
general form can be further investigated with various positive real values
of [, m, and n, as a future research direction, to show a possible extension
of the evaluation method of this paper.

It is notable that this paper can shed light on the reason why disastrous
results have been shown by some STI trials, (e.g., see [31]). Moreover we
expect that this paper could inspire other researchers so that advanced
quantitative methods will be further developed and investigated.

In the meantime, the primary goal of iGDR scheme studied in [20] is
to minimise drug administration subject to a set of given conditions. This
approach has been developed considering the emergence of drug resis-
tance, but it is not an approach to minimise such emergence. However,
with the help of the study of this paper, we can improve the iGDR
scheduling with respect to the emergence of drug resistant virus. To
minimise the risk of drug resistance emergence, instead of administered
drug dose of HIV therapy, HIV drug scheduling strategy can be
researched in the future.
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