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Blood proteins at the neurovascular unit (NVU) are emerging as important molecular
determinants of communication between the brain and the immune system. Over the
past two decades, roles for the plasminogen activation (PA)/plasmin system in fibrinolysis
have been extended from peripheral dissolution of blood clots to the regulation of central
nervous system (CNS) functions in physiology and disease. In this review, we discuss
how fibrin and its proteolytic degradation affect neuroinflammatory, degenerative and
repair processes. In particular, we focus on novel functions of fibrin—the final product
of the coagulation cascade and the main substrate of plasmin—in the activation of
immune responses and trafficking of immune cells into the brain. We also comment on
the suitability of the coagulation and fibrinolytic systems as potential biomarkers and drug
targets in diseases, such as multiple sclerosis (MS), Alzheimer’s disease (AD) and stroke.
Studying coagulation and fibrinolysis as major molecular pathways that regulate cellular
functions at the NVU has the potential to lead to the development of novel strategies for
the detection and treatment of neurologic diseases.
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Fibrin Formation and Degradation in the CNS

The plasminogen activation (PA) system is an enzymatic cascade with key regulatory
functions in fibrinolysis and degradation of extracellular matrix proteins (Syrovets and
Simmet, 2004; Castellino and Ploplis, 2005; Kwaan, 2014). Plasminogen circulates in the
blood as an inactive zymogen that is converted into active plasmin by tissue-type plasminogen
activator (tPA) or urokinase-type plasminogen activator (uPA). The serine protease tPA is
an immediate-early response gene expressed in the brain (Bignami et al., 1982; Qian et al.,
1993; Sappino et al., 1993; Carroll et al., 1994; Tsirka et al., 1995). The activity of tPA is
controlled by plasminogen activator inhibitor 1 (PAI-1). Upon activation, plasmin binds

Abbreviations: Akt, Protein kinase B; APC, Antigen-presenting cells; CCL2, Chemokine (C-C motif) ligand 2;
CSPG, Chondroitin sulfate proteoglycan; CXCL10, C-X-C motif chemokine 10; EAE, Experimental autoimmune
encephalomyelitis; EGFR, Epidermal growth factor receptor; ERK1/2, Extracellular signal-regulated kinase 1/2;
FIE, Fibrinogen-induced encephalomyelitis; ICAM-1, Intercellular adhesion molecule 1; MCP-1, Monocyte
chemoattractant protein 1; MEK, Mitogen-activated protein kinase kinase 1; NF-κB, Nuclear factor ‘‘kappa-light-
chain-enhancer’’ of activated B-cells; PI3K, Phosphoinositide 3-kinase; ROS, Reactive oxygen species; Smad2, SMAD
family member 2; TCR, T-cell receptor; TGFβ, Transforming growth factor beta; TJ, Tight junction; TLR4, Toll-like
receptor 4; VCAM-1, Vascular cell adhesion molecule-1; VE, Vascular endothelial.
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its main substrate fibrin(ogen) and degrades insoluble fibrin
deposits that form intravascularly during blood clotting, as
well as in the central nervous system (CNS) parenchyma after
vascular rupture (Cesarman-Maus and Hajjar, 2005; Davalos
et al., 2012). Fibrin controls plasmin activity through its capacity
to bind plasminogen (Plg) as well as tPA or tPA/PAI-1 complexes
to facilitate their proximate interaction (Wagner et al., 1989;
Kaczmarek et al., 1993; Kim et al., 2012).

The pivotal fibrinolytic functions of the PA system were
discovered in Plg-deficient mice, which show impaired wound
healing, severe thrombosis, early lethality and delayed nerve
regeneration (Bugge et al., 1995; Akassoglou et al., 2000).
Interestingly, this phenotype is rescued by fibrinogen deficiency,
suggesting that fibrin(ogen) is the main physiologic substrate
for plasmin in vivo (Bugge et al., 1996; Akassoglou et al.,
2000). Besides binding plasmin, fibrin(ogen) interacts with cell
surface receptors expressed by different cell types in the CNS,
including microglia (Adams et al., 2007; Davalos et al., 2012;
Ryu et al., 2015), neurons (Schachtrup et al., 2007), astrocytes
(Schachtrup et al., 2010) and Schwann cells (Akassoglou et al.,
2002; reviewed in Davalos and Akassoglou, 2012; Ryu et al.,
2009). Thus, fibrinogen acts as a molecular switch linking the PA
system to activation of cell intrinsic signaling pathways involved
in immune response and CNS homeostasis/neuronal functions
(Figure 1).

The multifaceted and central functions of fibrin(ogen) in the
PA system are highlighted by studies showing that fibrin acts:
(1) as a main substrate of plasmin during fibrinolysis; (2) as a
feed-back regulator of PA by binding tPA/PAI-1 or Plg directly;
and (3) as a signaling molecule for cell activation in the CNS.
By highlighting the PA system as a molecular link between
coagulation, fibrinolysis and inflammation, this review will focus
on cellular mechanisms andmolecular signaling pathways driven
by fibrin deposition and fibrinolysis in the CNS, specifically at the
neurovascular unit (NVU).

The Plasminogen System in Blood-Brain
Barrier Dynamics

Under healthy conditions, plasma proteins like fibrinogen and
Plg are not found in the brain parenchyma—a relatively immune-
priviledged environment sealed by the selectively permeable
blood-brain-barrier (BBB). Activation of the Plg system in the
CNS parenchyma occurs in response to BBB disruption in which
components from the blood enter the brain milieu (Figure 1).
The BBB is an emergent property of the brain vasculature
controlled by endothelial cells ensheathed by pericytes and
astrocytic endfeet. The brain vasculature with an intact BBB plays
essential roles in maintaining flow of nutrients into the brain,
as well as protecting the brain from invasinto the brain, as well
as protecting the brain from invasion by toxins, pathogens and
inflammatory cells (Zlokovic, 2008; Daneman and Prat, 2015).

BBB opening can result from tight junction (TJ) complex
disassembly or downregulation, increased transcellular
transport, or physical damage to the blood vessel (Stamatovic
et al., 2008). Disruption of the BBB is observed in a variety of
neurological conditions in humans and in their animal models,

such as stroke (Elster and Moody, 1990; Belayev et al., 1996),
traumatic brain injury (Tanno et al., 1992; Conti et al., 2004;
Shlosberg et al., 2010), epilepsy (Sokrab et al., 1990; Liu et al.,
2012) and chronic neuroinflammation and neurodegeneration,
including multiple sclerosis (MS; Paterson, 1976; Grossman
et al., 1988; Miller et al., 1988; Adams et al., 2004; Gaitán et al.,
2011) and Alzheimer’s disease (AD; van Oijen et al., 2005;
Ahn et al., 2010; Cortes-Canteli et al., 2010; Oh et al., 2014b).
BBB opening is also a hallmark of normal aging (Tucsek et al.,
2014; Montagne et al., 2015). Indeed, contrast-enhanced MRI
showed an age-dependent BBB breakdown in the hippocampus,
a region critical for learning and memory that is affected in
neurodegenerative diseases, such as AD (Montagne et al., 2015).

Multiple components of the PA system and in particular
tPA function in BBB homeostasis (Vivien et al., 2011). tPA
opens the BBB via mechanisms that include activation of
platelet-derived growth factor-CC (PDGF-CC) signaling (Su
et al., 2008), astrocyte remodeling through plasmin (Niego
et al., 2012) and phosphorylation of BBB proteins claudin-5 and
occludin (Kaur et al., 2011), as well as through a mechanism
independent of its catalytic activity toward Plg (Abu Fanne et al.,
2010). tPA may also open the BBB via low density lipoprotein
receptor–related protein 1 (LRP-1) signaling (Yepes et al., 2003),
which may be mediated by matrix metalloproteinase (MMPs;
Wang et al., 2003; Lakhan et al., 2013). In contrast, PAI-1,
the primary inhibitor of tPA, enhances barrier tightness in in
vitro BBB models (Dohgu et al., 2011). tPA may also regulate
the BBB through annexin-2 (Cristante et al., 2013). These
studies show that tPA regulates several potentially overlapping
pathways involved in BBB dysfunction. Evidence for tPA in
maintaining vascular integrity can also be found in the clinic,
as tPA treatment for thrombotic stroke increased hemorrhagic
risk (Fugate and Rabinstein, 2014). Similarly, anticoagulants,
such as clopidogrel, which inhibit platelet functions, increase
the risk of brain hemorrhage after a stroke (Morrow et al.,
2012).

In addition to the fibrinolytic system, molecular players
promoting clot formation also regulate the BBB. Thrombin, the
catalyst of fibrin formation, may disrupt the BBB (Lee et al.,
1997; Liu et al., 2010) and in a human brain endothelial cell
line can induce upregulation of intercellular adhesion molecule
1 (ICAM-1), Vascular cell adhesion molecule-1 (VCAM-1)
and cytokines chemokine (C-C motif) ligand 2 (CCL2) and
CX3CL1 (Alabanza and Bynoe, 2012). Fibrinogen increases
endothelial cell permeability in vitro, in part by reducing
expression of TJ proteins (Tyagi et al., 2008; Patibandla et al.,
2009). The likelihood of BBB opening in response to fibrinogen
may be increased under pathological conditions in which
fibrinogen/fibrin accumulates on the blood vessel wall and in the
parenchyma. A positive feedback loop whereby a precipitating
event transiently opens the BBB, leading to the activation of
the Plg and coagulation systems in the CNS, the components
of which then further act to exacerbates BBB dysfunction can
be envisaged. In sum, many pathologies are associated with
BBB breakdown, indicated by persistent fibrin deposition inside
the CNS. Therefore, fibrin has emerged as a potential target
for development of diagnostic tools and therapeutic strategies
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FIGURE 1 | The coagulation and proteolytic cascades at the neurovascular interface. (A) Fibrinogen leakage in the central nervous system (CNS)
and activation of the plasminogen activation (PA) system occur following blood-brain-barrier (BBB) disruption. The molecular network of fibrin and the PA
system enable inflammation and neurodegeneration via activation of microglia, macrophages, and leukocytes. (B) A series of proteolytic events converts
extravasated fibrinogen into insoluble fibrin, which can be cleaved into FDPs. Fibrin and FDPs interact with cellular receptors to induce inflammation,
degeneration, and repair inhibition in the nervous system. tPA, tissue plasminogen activator; PAI-1, plasminogen activator inhibitor-1; FDPs, fibrin
degradation products.

(Conti et al., 2004; Adams et al., 2007; Craig-Schapiro et al., 2011;
Ahn et al., 2014; Davalos et al., 2014).

Plasminogen Activation and Fibrin
Degradation in CNS Inflammation

Insofar as fibrin is necessary to stop hemorrhage, and plasmin
can remove fibrin clots that block vital blood flow, the PA system
has a beneficial role in the brain. However, dysregulation of the
PA and coagulation systems are linked to inflammation, which
is a common hallmark of many CNS pathologies, including the
autoimmune disease MS (East et al., 2005; Marik et al., 2007;
Han et al., 2008), as well as other chronic neuroimmune and
neurodegenerative disorders (van Oijen et al., 2005; Paul et al.,
2007).

MS is an autoimmune disease in which the myelin-
producing oligodendrocytes are targeted for destruction by
the immune system. Histopathology of human brain tissue

shows focal fibrin deposition in MS plaques, indicative of
perivascular inflammation and BBB disruption (Gay and Esiri,
1991; Kirk et al., 2003; Vos et al., 2005; Marik et al.,
2007) that is also observed in MS mouse models (Paterson
et al., 1987; Adams et al., 2004, 2007). Proteomic analysis
of chronic active plaques from MS patients revealed a set
of coagulation proteins uniquely present in active plaques,
suggesting a role for the coagulation cascade in the development
of MS pathology (Han et al., 2008). Indeed, MS lesions
have increased levels of PAI-1 and less fibrin degradation
and, thus, more sustained fibrin deposition than normal
control tissue (Gveric et al., 2003). Fibrin depletion provides
protection in a wide range of MS mouse models (Paterson,
1976; Akassoglou et al., 2004; Adams et al., 2007; Yang
et al., 2011; Davalos et al., 2012). Studies of other Plg
cascade components also support the hypothesis that fibrin
deposition is a major instigator of experimental autoimmune
encephalomyelitis (EAE). tPA−/− mice have increased disease
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severity in EAE, which may be due to accumulated fibrin
deposits and/or loss of fibrin-independent tPA functions in
the CNS (Lu et al., 2002; East et al., 2005). Exacerbation
of demyelination in tPA−/− or plg−/− mice after peripheral
nerve injury is fibrin-dependent, since fibrin depletion rescues
the damaging effects of tPA or Plg deficiency (Akassoglou
et al., 2000). Furthermore, PAI-1−/− mice have reduced EAE
severity associated with increased fibrinolysis (East et al.,
2008). It is important to underscore that fibrin and the
tPA/plasmin system act in concert to exert the full effect of
vascular-driven neuroinflammation. For example, inflammation
and fibrin-induced neurodegeneration are reduced in plg−/−

mice, suggesting that multiple molecular players from the
coagulation and fibrinolytic systems are needed for a full
inflammatory and degenerative response (Hultman et al.,
2014).

Emerging evidence suggests a pivotal role of fibrin in the
regulation of CNS innate and adaptive immune responses
(Davalos et al., 2012; Ryu et al., 2015; Table 1). Fibrin(ogen)
interactions with microglia, macrophages, and neutrophils
via integrin receptor CD11b/CD18 (also known as Mac-1,

Complement Receptor 3 or integrin αMβ2) were identified
as direct activation pathways of innate immune response
(Davalos and Akassoglou, 2012). Extravascular fibrin deposition
stimulates recruitment and perivascular clustering of microglia
in EAE lesions (Davalos et al., 2012), while deletion of fibrin or
blockade of fibrin signaling protects from microglial activation
and axonal damage in EAE (Akassoglou et al., 2004; Adams
et al., 2007). A recombinant mutant thrombin analog similarly
ameliorated EAE progression, corroborating the regulatory
functions of thrombin-mediated fibrinogen/fibrin conversion
during neuroinflammation (Verbout et al., 2015). Fibrin-induced
activation of microglia via CD11b/CD18 induced secretion
of cytokines and chemokines that stimulate recruitment
of peripheral monocytes/macrophages (Ryu et al., 2015).
Importantly, fibrin in the CNS white matter was sufficient
to induce the infiltration and activation of myelin-specific
T cells, suggesting a fibrin-induced innate immune-mediated
pathway that triggers CNS autoimmunity (Ryu et al., 2015).
Potential direct effects of fibrin on T cells might also
play a role in autoimmune responses (Takada et al., 2010).
Moreover, PA-mediated opening of the BBB and extracellular

TABLE 1 | Fibrin(ogen) cellular targets at the NVU in neurologic diseases.

Target Functions Receptors/Signaling Model Reference
pathways

Resident cells

Microglia Activation CD11b/CD18 In vitro: microglia Adams et al. (2007)
– Phagocytosis RhoA, Akt, PI3K cultures Davalos et al. (2012)
– Perivascular In vivo: EAE; FIE, Ryu et al. (2015)

clustering AD animal models Paul et al. (2007)
– Chemokine and proinflammatory
gene expression
– ROS release

Astrocytes Gliosis TGFβ, Smad2, CSPGs In vivo: stab wound Schachtrup et al. (2010)
– Scar formation CSPGs injury; cortical

fibrinogen injection

Neurons – Axonal damage β3-integrin, EGFR In vitro: neuronal Schachtrup et al. (2007)
– Inhibition of neurite cultures Davalos et al. (2012)

outgrowth In vivo: EAE, spinal Ill-Raga et al. (2015)
cord injury,
ischemic stroke

Endothelial – Increased ICAM-1, α5β1 In vitro: endothelial Tyagi et al. (2008)
cells permeability F-actin, TJ proteins, cell cultures Patibandla et al. (2009)

– Infiltration of MEK, ERK, VE- Jennewein et al. (2011)
leukocytes cadherin, fibrin Muradashvili et al. (2011)

fragment E and
Bβ15–42,
RhoGTPase

CNS infiltrating cells

T cells – Recruitment APC CD11b/CD18 In vitro: T cell/APC Ryu et al. (2015)
– Activation CXCL10, IL12, co-cultures
– Proliferation IFN-γ In vivo: FIE; 2D2
– Th1 differentiation TCR MOG

transgenic mice

Macrophages – Recruitment CD11b/CD18 In vitro: Ryu et al. (2015)
– Chemokine TLR4 macrophage Smiley et al. (2001)

expression CXCL10, CCL2, cultures
– Infiltration MCP-1 In vivo: FIE
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proteolysis facilitates T-cell extravasation and migration (Cuzner
and Opdenakker, 1999; Yepes et al., 2003). Genetic and
pharmacologic evidence point to CD11b/CD18 as the major
receptor mediating the in vivo proinflammatory effects of
fibrin in the CNS (Adams et al., 2007; Davalos et al., 2012;
Ryu et al., 2015). In addition to CD11b/CD18, in vitro
evidence indicates a role for toll-like receptor 4 (TLR4) in
fibrin-induced macrophage activation (Smiley et al., 2001).
Moreover, in vitro evidence suggests a role for fibrinogen
in neutrophil activation (Skogen et al., 1988; Rubel et al.,
2001). The relative contributions of these proinflammatory
pathways in the CNS in vivo remain to be determined. Overall,
fibrin(ogen) and tPA/plasmin can be potent modulators of
neuroinflammation.

Plasminogen Activation and Fibrin
Degradation in Neurodegeneration and
Repair

The PA system plays a critical role in normal cognitive function
(e.g., regulation of synaptic plasticity) and neural dysfunction
(Melchor and Strickland, 2005). For example, tPA can modulate
neurotoxicity as tPA−/− mice exhibit less neuronal death after
hippocampal kainate injection or after ethanol withdrawal, both
of which induce neurodegeneration (Tsirka et al., 1995; Skrzypiec
et al., 2009). Unlike tPA and plasmin, fibrinogen is not present in
the healthy brain. However, fibrinogen is detected in the brains
of patients with MS (Gay and Esiri, 1991; Kirk et al., 2003; Vos
et al., 2005; Marik et al., 2007), schizophrenia (Körschenhausen
et al., 1996), HIV-encephalopathy (Dallasta et al., 1999), ischemia
(Massberg et al., 1999), AD (Paul et al., 2007; Ryu andMcLarnon,
2009) and normal aging (Viggars et al., 2011), all conditions
which have transient or long-lasting BBB opening.

AD is a common aging-related neurodegenerative disease
of dementia and is characterized by extracellular aggregates
of beta-amyloid (Aβ) plaques and intracellular neurofibrillary
tangles of tau protein (Huang and Mucke, 2012). Co-localization
of microhemorrhages and amyloid plaques in human AD
brains suggests that bleeding can precipitate or promote plaque
deposition (Cullen et al., 2006). Fibrin deposits colocalize with
areas of neurite dystrophy in human AD tissue and AD mouse
models (Cortes-Canteli et al., 2015). Individuals with high levels
of plasma fibrinogen have an increased risk for developing
AD and dementia (van Oijen et al., 2005; Xu et al., 2008).
Furthermore, AD patients with two alleles of apoE ε4, which
is the strongest genetic risk factor for AD (Mahley and Huang,
2012), have significantly more fibrin deposition than AD patients
with ε2 or ε3 apoE alleles (Hultman et al., 2013). Fibrin depletion
in AD model mice via genetic and pharmacological methods
ameliorates the disease pathology and cognitive impairment
(Paul et al., 2007; Cortes-Canteli et al., 2010, 2015). AD model
mice lacking one allele for tPA develop more severe Aβ plaque
deposition and cognitive impairment (Oh et al., 2014a). This
effect may be due to reduced fibrinolysis, but there is also
evidence that tPA is neuroprotective via a fibrin-independent
mechanism by promoting Aβ degradation (Melchor et al., 2003),
perhaps by activating microglia to phagocytose Aβ plaques. The

physical association of fibrin and Aβ impairs fibrin degradation,
which has the potential to induce chronic inflammation (Ahn
et al., 2010; Cortes-Canteli et al., 2010; Zamolodchikov and
Strickland, 2012). This interaction seems to be instrumental in
the disease process as administration of a peptide that inhibits
fibrin-Aβ interaction rescues cognitive decline in AD mice (Ahn
et al., 2014). An important question to address is whether Aβ

plaques associated with fibrin exacerbate neurodegeneration.
Studies indicate that fibrinogen and the PA system also

impacts nervous system repair through regulation of neuron-
glia interactions. Regeneration in the CNS may be limited by
the development of astrogliosis via fibrin-induced transforming
growth factor beta (TGF-β) signaling in astrocytes (Schachtrup
et al., 2010) or by fibrinogen-mediated inhibition of neurite
outgrowth (Schachtrup et al., 2007; Table 1). In the peripheral
nervous system, fibrin impedes remyelination by inhibiting
Schwann cell migration and differentiation into myelinating cells
(Akassoglou et al., 2002, 2003). The increased severity of nerve
injury in tPA−/− or plg−/− knock-out mice in the sciatic nerve
crush model is rescued by genetic or pharmacological fibrinogen
depletion (Akassoglou et al., 2000; Siconolfi and Seeds, 2001),
supporting the concept that fibrin accumulation is an important
trigger for inhibition of remyelination. While these findings are
highly suggestive of new pathways for fibrin and tPA/plasmin
in regeneration, more work will be needed to determine their
contribution as inhibitors of nervous system repair.

Future Directions

Emerging evidence from the fields of neuroscience, immunology,
and vascular biology have aimed the spotlight on fibrin and the
fibrinolytic system for their pleiotropic functions in neurological
diseases. Although current evidence points to fibrin as a major
contributor to neuroinflammation and neurodegeneration, it
is possible that other components of the coagulation cascade
are activated upon neurologic disease and play a role in CNS
diseases via fibrin-dependent and potentially fibrin-independent
mechanisms (Akassoglou, 2015). For example, a novel molecular
probe for thrombin identified increased thrombin activity in
animal models of stroke (Chen et al., 2012) and MS (Davalos
et al., 2014). In accordance, depletion of thrombin by anti-
coagulants inhibits fibrin formation and is protective in MS
animal models (Adams et al., 2007; Han et al., 2008; Davalos
et al., 2012). It is now timely for the fields of neuroscience and
neurology to explore the contribution of the coagulation cascade
in inflammatory, degenerative, and repair processes in the CNS.

Fibrin degradation products (FDPs) are commonly
used as biomarkers to assess the severity of trauma after
injury, in sepsis, or myocardial infract. Components of the
coagulation cascade and FDPs have been detected in MS
patients (Aksungar et al., 2008; Han et al., 2008; Liguori
et al., 2014), in patients with mild cognitive impairment
(Xu et al., 2008), and in human AD (Cortes-Canteli et al.,
2015; Zamolodchikov et al., 2015). However, most of these
studies have been performed in small population cohorts
without availability of imaging data, response to treatments,
and disease duration. Studies in large patient cohorts would
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be required to assess whether components of coagulation or
the fibrinolytic cascade correlate with disease progression in
neurologic diseases. Although coagulation and fibrinolysis
could trigger and perpetuate neurologic disease, animal models
of vascular-driven inflammation and neurodegeneration are
currently lacking. Inducing neuroinflammation in the CNS in
Fibrinogen-induced encephalomyelitis (FIE) by introducing
fibrinogen in the brain (Ryu et al., 2015), or perhaps by
manipulating PA, or by transgenic or pharmacological
models that increase BBB permeability could lead to vascular-
driven experimental settings to study disease pathogenesis
in the CNS.

Several FDA-approved drugs target different aspects of the
coagulation cascade leading to reduced fibrin formation.
Although new generation anticoagulants have reduced
hemorrhagic effects, target-based drug design would be
preferable to selectively inhibit the pathogenic effects of
coagulation in the CNS. Indeed, pharmacologic inhibition of
fibrin interactions with CD11b/CD18 using a fibrin peptide

suppressed EAE pathology without adverse effects in blood
clotting (Adams et al., 2007; Davalos and Akassoglou, 2012).
Future studies will determine whether pharmacologic reagents
can be developed to selectively target the pathogenic effects of
fibrin and perhaps other components of the coagulation cascade
in the CNS without affecting their beneficial effects in blood
clotting.
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